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PREFACE

The book is based on latest syllabus prescribed by Board of Secondary
Education Rajasthan, Ajmer. The presentation of the study material incorporates
latest concepts supported by relevent diagrams and graphs. To create nterest
in the subject many examples from daily life, relating to the physical concepts
are cited.

The book is basically a translation work of the hindi version published
by Board of Secondary Education Rajasthan, however certain modifications in
the diagrams are made where ever possible, as required.

Inspite of best efforts certain errors and omissions might have crept in.
Feedback is solicited from teachers and students for further improvement of
the book.

(Authers)



Syllabus

PHYSICS
Class-12
Time : Max. Marks :

S.No. Learning Areas Marks
1. Theory question Paper -1 56
2. Sessional 14
3. Practical Examination 30
4. Total 100

It is compulsory to pass theory and practical examination separately.
S.No. Lessons Periods Marks
1 Electrostatics 28 7
2 Current Electricity 18 5
3 Magnetic effect of electric current 17 11
4 Magnet and magnetic properties of Materials 11 3
5. Electromagnetic induction and Alternating current 23 7
6 Optics 33 9
7 Photoelectric effect and matter waves 12 4
8 Atomic and Nuclear Physics 18 )
9 Electronics 20 6
10. Electromagnetic waves and Communication and 10 4

contemporary physics

Total 190 56

Unit : I Electrostatics

1.

Electric field : Electric charge, type of charge and properties, coulomb’s law, force between many charges
and principal of superposition, electric field, electric field due to a point charge, electric field due to system of
charges, electric field lines and their properties, electric dipole, electric dipole moment, electric tield due to
electric dipole, toque on electric dipele inuniform electric field.

Gauss’s Law and its application:- Electric flux, continuous charge distribution, Gauss’s law and its derivation,
to find intensity of electric field using Gauss’s law (1) Infinite liner charge distribution (linear).
(11) Infinite uniformaly charged non conducting sheet (111) Uniformaly charged Infiniteconducting plate.
(iv) Uniformaly charged spherical shell. (v) Charged metallic sphere, (vi) Uniformaly charged non conducting
and force on charged surface. Energy per unit volume in Electric field, equilibrium charged soap bubble.

Electric Potential:- Electrostatic potential and potential difference, Electric potential due to a point charge,



Electric potential due to system of charges, Electric potential due to electric dipole, equi potential surtace.
Relation between electric potential and electric field, calculation of potential due to (1) Due to uniformaly
spherical shell (it) Charged conductor (iit) Charged spherical conductor. Potential energy due to system of
charges, work done in rotating an electric dipole in an external electric field and potential energy.

Electric Capacitance:- Conductor and insulator, Bound and free charges in a conductor. Dielectric material
and polarization. Capacity of a conductor, capacity of an isolated spherical charged conductor, Capacitor,
capacity of a parallel plate capacitor (i) For air or vacuum between the plates (ii) Partially fillled with dielectric
(i11) Capacity with different plates of dielectric with different thickness. Combination of capacitors series and
parallel. Energy stored in capacitor, charge redistribution and energy loss, when two charged conductors are
joined by a conducting wire.

Unit-2 Current Electricity

1.

Current Electricity:- Electric current, flow of charges within a metallic conductor, drift velocity and mobility
and relation with electric current. Ohm’s law and its derivation; electrical resistance ohmic and non-ohmic
resistance. Resistivity and effect of temperature on it. Carbon resistors and colour code. Series and parallel
combination of resistors. Internal resistance of cell. EMF and terminal veltage for a cell. Combination of
cells- series and parallel. Electric energy and electric power.

Electric Circuit :- Kirchhefl’s law and their application. Wheatstone bridge, metre bridge. Potentiometer—
principal, standardisation and sensitively, application of potentiometer to find
(i) Internal resistance of a primary cell. (i) Comparing EMF of two cells. (i) To tine value of small
resistance. Calibration of an Ammeter and voltmeter.

Unit-3 Magnetic effects of electric current :-

Orested’s experience and its conclusions. Biot- Savart‘s law the direction of magnetic field. Magnetic field
due to a straight and infinity long current carrying wire magnetic field due to current carrying current.
Comparison of small current loop with magnetic dipole. Helmholtz coil. Force on charge moving in magnetic
field Motion of a charge in magnetic field. Principal, construction and limitations of a cyclotron. Force ona
current carrying wire in magnetic tield. Magnetic force between two parallel currents. Definition of unit of
current in SI system ie. 1 ampere. Force and torque on a current loop in unitorm magnetic field. (1) Moving
coil galvanometer
(ii) Pivoted coil galvanometer and conversion into an ammeter and voltmeter. Ampere’s law.
Application of ampere’s law to find magnetic field due to a infinite loop straight current carrying conductor,
long cylindrical conductor magnetic field inside infinite long and straight selencid. Comparison of a solenoid
and a bar magnet. Magnetic field at the axis of toroid.

Unit-4 Magnetism and magnetic properties of materials -

Natural and artificial magnet, properties of a bar magnet, magnetic field lines, Neutail points, magnetic moment,
magnetic intensity, Torque on a bar magnet in uniform magnetic field. Geomagnetism, elements of
Geomagnetism, magnetism and Gauss’s law. Behaviour of materials in magnetic field. Intensity of magnetisation,
magnetic field. Magnetic suscepbility magnetic permeability, relation between difterent magnetic quantities,
paramagnetic, diamagnetic and ferromagnetic materials, magnetic Hysteresis’s and B-H curve (hysteresis
loop), Selection of magnetic materials for different uses. Curie law and Curie temperature, comparative



study of different magnetic materials.

Unit-5 Electromagnetic induction and alternating current

1.

2.

Electromagnetic induction :- Magnetic flux, electromagnetic induction, Faraday’s law for electromagnetic
induction, Lenz’s law, induced current and induced charges. Fleming's Right hand Rule, a movingrod in
unitorm magnetic field. Motion of a rectangular loop in non-unitorm magnet field and conservation of energy.
Rotation ot rod, a disc and coil with uniform angular velocity, in uniform magnetic tield and induced EMF.
Eddy currents, selfand mutual induction.

Alternating Current :- Direct Current, Alternating current, instantaneous, peak and average value of
alternating current, phase relationship between voltage and current in different circuits (1) Pure resistive (i1)
Pure inductive (ii1) Pure capacitive (iv) Series L-R circuit (v) Series R-C circuit
(v1) Series L-C-R circuit series LCR resosance circuit AC circuit, Band width in LCR series ac circuit,
Quality factor. Average power in ac circuit, power factor, wattless current and transformer.

Unit-6 Optics :-

1.

2.

Ray Optics :- Reflection of light, spherical mirror, mirror formula, refraction of light, total internal reflection
and its applications, optical fibre. Refraction at a spherical surface, thin lens tormula, lens maker’s formula,
magnification, power of lens combination of thin lenses in contact and resultant power. Refraction through
prism, dispersion by a prism, scattering of light, Rambow, optical instruments, human-eye, refractive errors
of vision and theirs correction. Simple and compound microscopes. Astronomical telescope (refracting and
retlecting type) and magnifying power.

Wave Optics :- Nature of light, Huygens’s principal, wave front reflection and refraction at a plane surface.
Coherent sources and interference of light, conditions for interference. Young‘s double slit experiment
Mathematical analysis of interference, fringe width and its expression, interference by white light. Diffraction,
comparison of sound and light diftraction. Diffraction by a single slit and width of central maxima. Ditterence
between interference and diffraction, resolving power oftelescope and microscope. Polarized and un polarized
light, plane of vibration and plane of polarization. Methods for obtaining polarised hght by reflection and
Brewster’s law polarizetion by scattering, by double refraction — Nicol prism, Dichroism- Polaroid, detection
of polarised, un polarized and partially polarised light Malus’s law.

Unit-7 Photo-Electric Effect and Matter Waves

Photo electric effect, results of experiment on photoelectric effect and their explanation. Concept of photon.
Photo-electric equation of Einstein and explanation of photo electric effect. Dual Nature of light de Broglie
hypothesis, matter wave, wave length associated to difterent particles, Davisson and Germer Experiment
and its conclusion, Heisenberg’s uncertainity principal.

Unit-8 Atomic and Nuclear Physics

1.

Thomson atomic model, Rutherford’s atomic model and Bohr Atomic model, line spectrum of hydrogen
atom and it explanation. Shortcomings of Bohr s Model explanation of Bohr 2™ postulate using deBroglie
wave principle.

Nuclear Physics :- Structure ot Nucleus, size of Nucleus, atomic mass unit, mass defect and Binding
energy. Nuclear forces, Radioactivity, Rutherford and Soddy law for radioactivity, halflite and mean lite. ¢z,



3 and y-rays/particle and their properties, Nuclear energy, Nuclear fission, controlled and uncontrolled
Nuclear chain reactions, Nuclear reactor, nuclear fussion.

Unit-9 Electronics

Energy bands in solids, classification as conductor, insulator and semiconductor, Intrinsic and extrinsic
semiconductors, majority and minority charge carriers P-N junction diode, forward and reverse bias
characteristics, curve Avalanch and Zener diode, P-N junction diode as half wave and full wave rectifier.
Special purpose P-N junction diodes. Transistor, transistor working principal, transistor circuit configuration,
common base, common emitter, common collector, transistor characteristics in common base and common
emitter configuration. Relation between « and 3, Transistor as an amplifier (CE configuration) logic gates
OR, AND, NOT, NAND, NOR and XOR gates.

UNIT-10 Electromagnetic waves, communication and contemporary Physics

Displacement current, Maxwells equation (Qualitative Analysis) EM waves and their characteristics, EM
spectrum, Propagation of EM waves groundwaves, sky waves, space waves, elements of communication,
Need of modulation types of medulation, Amplitude modulation.
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Chapter - 1
Electric Field

Electrostatical phenomena can be observed in
many ways. ltis acommon experience forus that when a
glass rod isrubbed by a silk cloth it acquires a property
of attracting tiny bits of paper. Also, ifanair filled baloon
after being rubbed by cloth put into contact witha wall it
remains cling to the wall for quite along time. All such
phenomena result from the forces between charges at
rest. This chapter and next two chapters are devoted to
electrostatics whichis the study of effects of interactions
between charges at rest.

Inthis chapter we are going to study about electric
charges and their properities, force between two
charged objects and concepts related with electric field
and electric dipole. The study of electrostatics is
important not only from concenptual aspects but it hasa
number of applications which includes, photocopying
mechine, computer printer, electrostatic memory and
seismograph.

1.1 Electric charge

According to history, Thales of Miletusin Greece
is said to have discovered around 600 BC that when
amber was rubbed with woolen cloth it would attract tiny
pieces of straw, feathers etc. The greek word tor amber
is electron and from this root word comes the word
electricity . Similar eftects were observed onrubbing a
glass rod with silk or an eboniterod with cat skin.
Substances in such states are said to be electrified or
electrically charged. In examples cited above the objects
were charged (electrified) due to friction and thus the
eftect is termed as frictional electricity. However, as we
will see shortly that there are other ways also to charge a
given object.

An object when electrified beheves somewhat
different than whenitisuncharged, and it canbe said that
the object has acquired a characteristic property
(charge). This characteristic property of an electrified
object is termed as electric charge.

Charge 1s an intrisic property of elementary
particles which constitutes the matter, i.e. it s a property
that comes automatically with such particles wherever
they exist. Although a tormal definition of charge can not

be given and it can beunderstood in terms of it effects.
However it can be said that "charge 1s the property
associated with matter due to which it preduces and
experiences electrical and magnetic effects.”

1.1.1 Types of Charges

From anumber of experiments it was found that
there are two kinds of elcetric charges, which are given
names positive and negative charges. To determine the
type of charge we perfrom the following experiment,
experimental setup for whichis depicted in Figure 1.1.

Consider a glassrod that has been rubbed on silk is
suspended by a thread. If we bring a second, similarly
charged glass rod near by, the two rods repel each other;
that is, each rod experiences a force directed away from
the other rod. Like wise if we suspend an ebonite rod that
hasbeen rubbed on catskin and bring a second similarly
charged ebonite rod near by, again the two rods repel
each other. However if we rub an ebonite rod with
catskin and suspend it using a thread and then bring a
glass rod rubbed on silk near by, the two rods attract
each other.

Repulsion Repulsion
(7lass md/% Abonite rod
(A) (B)
Allraction

N

Glassrod
Abonite rod
()

Fig. 1.1 Expcrimental sctup for determining
the types of charges



From above experimental observations we can
conclude that two glass rods which have been rubed on
silk have same type (sign) of charge and hence the charge
of same type (sign) repel each other. Likewise, the two
ebonite rods which have been rubbed on cat skin have
same type of charge and repel each other. However, the
type of chargeon glassrod and that on ebomite rod are of
opposite signs indicated by the fact that there1s attraction
between them.

The 'positive’ and 'negative’ names and signs for
electric charges were given by Benjamin Franklin.
Franklin arbitrarily chosed the type of charge on glass rod
rubbed on silk as positive. From experimental
observations the conclusion is that "charges with same
signrepel each other and the charges with opposite signs
attract each other." Thus all other charged objects which
arerepelled by such a positively charged glass rod must
have positive charge and all such charged objects which
are attracted to a positively charged glass rod must have
negative charge.

According to modern view all matter is composed
ofatoms. Every atom consits of anucleus (composed of
neutrons and proptons) and electrons. Protons are
positively charged, electrons are negatively charged and
neutrons are electrically neutral. In atoms, the number of
electronsis equal to the number of protons and atoms are
neutral or uncharged. As the matter is composed of
atoms the same is also true for matter. 1fin an object
thereis excess of electrons over it neutral configuration it
18 said tobe negatively charged and if thereis adeficiecny
ofelectronsit is said tobe positively charged.

Materials throught which charge (generally
electrons) can tlow freely are called conductorse.g.
copper. Materials through which charge cannot tlow are
called insulators or dielectrics e.g. glass, plastic and
ebonite. Now let us discuss in brief the methods of
charging various objects.

1.1.2 (a) Charging by friction

We have seenthe process of charging by frication
in experiment described earlier (Fig 1.1). When the two
bodies are rubbed together the electricity so produced is
called as trictional electricity. Inthis process a transfer of
electrons take place from one body to another. The body
from which electrons have been transferred is left witha
deficiency of electrons so it gets positively charged and
the body whichrecieves electrons becomes negatively

charged. For example, when a glass rod is rubed with silk
its gets positively charged while the piece of silk gets
equal negative charge. This happens dueto transfer of
electrons from glass to silk piece at the point of contact.
In the process of rubbing though the number of contact
pointsincreases, there by amount of charge transferred
increases, however 1t is worth noting that amount of
charge transferred in the process is quite small.

Inthe table presented below on rubbing objects
mentioned in column I with objects mentioned in column
I1, object mentioned in column I gets positively charged

and the object belonging to column IT gets negatively
charged.

Table 1.1

1(+) ()
Glassrod Silk cloth
Catskin (i) plasticrod

(i1) ebonite rod
Woclencloth (1) amber

(i) plastic

(ii1) ebonite

(iv) rubber

Ifin place of a glass rod we take a copper rod in
hand and rubit with some woolen cloththen the charge
tranferred from woolen cloth to the rod flows through our
body to the ground and the conducting rod does not get
charged. However if we hold the conducting rod using
aninsulating handle and then rub it withwoolen cloth the
conducting rod can be charged. Here the insulating
handle does notallow charge to flow through thebody to
the ground.

1.1.2 (b) Charging by Conduction (contact)

Aswehere mentioned, conductors are materialsin
which electric charge moves quite freely. When some
charge is given to a conductor, it quickly redistributes it
self over the entire outer surface ofthe conductor,
however it isnot so forinsulators. If somechargeis given
to aninsulatorit remains at the place whereit was given.
This difference in beheviour of conductor and insulator
will be explained in next chapter.

The direct transter ot charge from one object to
another object in contact is called charging by contact.
Conduction from a charged object involves transter of
like charges. Consider two conductors, one charged and



another uncharged as shown in Fig. 1.2 . Bring the
conductors in contact with each other. The charge
(whether positiveor negative)underitsownrepulsion will
spread over both the conductors. Thus the conductors
will be charged with same sign. Thisis called as charging

by conduction (through contact).
9

~Neutral

Positively Bodics in contat  both Positively Charged

Fig. 1.2 Charging by Conduction

1.1.2 (¢) Charging by Induction
The process under which a charged object induces
an opposite type of charge on another object without

coming into contact with it is called charging by
electrostaticinduction.

Fig. 1.3 shows an example of charging by
induction. Anuncharged metal ball is supported onan
insulating stand [Fig. 1.3 (a)]. When we bring a
negatively charged rod nearit, without actuially touching it
[Fig. 1.3 (b)], the free electrons in the metal balls are
repelled by the negative charge on the rod and they shift
toward the right, away from the rod. They can not
escape theball because the supporting stand is insulator.
So we get excess negative charge at the right surface of
the ball and a deficiency of negative charge (electrons)i.e.
anet positive charge at the left surface. These excess
charges are called induced charges. However, the ball is
still electrically neutral.

When you contact one end of aconducting wire to
the right surtace ofthe ball and the other end to the earth
[Fig 1.3 (a)] the negative charge(electrons) flowsthrough
the wire to the earth. Now suppose we disconnect the
wire [Fig 1.3 (d)] and thenremove therod [Fig 1.3 (e)]a
net positive charge is left onthe ball. The charge onthe
negatively charged rod has not changed in this process.
The earth acquires a negative charge that is equal in

magnitude to the induced positive charge remaining on
the ball.

Metal Wire

bau(A) /(B) ZED_) -@my

©"
Fig. 1.3 Charging a metal ball by induction

Onbringing a positively charged rod near the metal
ball and repeating above steps the ball can be negatively
charged.

How a charged object(positive or negative) attracts
an uncharged object:

When an uncharged object is brought near the
charged object electrostatic induction takes place. Asa
result, the near end of the uncharged object acquires
opposite type of charge and hence attraction takes place
between two unlike charged objects. The other (far) end
ofuncharged object acquires similar charge, hence there
1s torce of repulsion between two like charges, but this
torceis weak (compared to the attractive force) because
of larger distance. Thusthe net force betweena charged
and uncharged objects is attractive. As an example we
can note that, atter combing dry hair with a plastic comb
and if we take it near the tiny bits of paper they are
attracted by it.

Following peints are worth noting regarding
charging an object

(1) Incharging, the mass ot body changes. Consider
two identical metallic spheres of excetly the same
mass. One is given a positive and the other an equal
negative charge. Their masses after charging are
ditferent with negative charged sphere having
greater mass (in principle). This is because the
negatively charged sphere has gained additional
electrons so its mass is increased while the
positively charged sphere has lost some electrons
causing a decrease inmass. However, thisincrease
or decrease in mass is negligibly small owning to
the very small mass ot electrons.

(2) Thetruetest ofelectrificationisrepulsionand not
attraction as attraction may also takes place
between a charged and an uncharged object.

(3) Charge canbe detected or measured with the help
of gold leafelectroscape, elecrometer, orballastic



golvameter.

(4) When X-rays (electromagnetic waves having
wavelength between 0.1 Ato 10 A)areincident on
a metal surface eletrons are ejected. Thus the
surtace becomes positively charged.

1.1.3 Electroscape

Asimple apparatusto detect charge onan object is
the gold leatelectroscape. It is a very sensitive apparatus.

=

Melalie dise

Cork

— Matclic rod

= Bolile

|~ Gold leal’
F Farthing Point

Fig. 1.4 Gold-lcaf clectroscape

Asdepictedin Fig. 1.4 ina gold-leafelectroscape
avertical metal rod is enclosed in a glassjar with two thin
gold leaves attached to its lower end. Theupper end of
the rod 1s connected to a conducting disc. When a
charged object touches the metal disc charge flowsonto
the gold leaves which then spread apart because of
electrical repulsion between their charges. The degree of
divergenceisanindicator ofthe amount of charge.

It a charged object is brought near a charged
electroscape the leaves will turther divergeit'the charge
onthe object is similar to that on the electroscape and
will usually converge if opposite. In this menner we can
determine the nature of charge on an object.

1.1.4 Unit of charge

In ST units current (I) is assumed to be a
fundamental quantity with ampere ( A) as unit. Since I=
charge/time so charge is a derived quantity. In STunit, the
unit for charge is coulomb and 1s denoted by C.

1C=1As
and dimensions [Q] =M'L'T'A

Since coulombis a relatively large unit so follwoing
umtsarealsoused for charge.

1pC=10°C
1nC=10°C
1pC=10"2C

In CGS unit the charge is expressed in stat
coulomb (esu) also called franklin.

1C=3x10%esu

A practical unit of charge is Faraday (and not
farad)

1 Faraday =96500C
1.2 Properties of Charge

We have seen that the charges are of two types
positive and negative and they tend to cancel each other.
Here, we are discussing some other important properities
of'electric charge.

1.2.1 Additivity of Electric charges

Charge is a scalar quantity. Electric charge is
additive and the net charge in a system is given by the
algebraic sum of'the charges present within. Special care
must be taken regarding the sign of charges while adding.
For exapmle ifthree chages +3(, -4q and +5q are given
to an object the net charge on the object is +4q. If the
sum of the charges on a objectis zero the objectis said to
be electrically neutral. Here it is worth noting that mass is
ascalar quantity but it can have positive values only.

1.2.2 Invarience of Electric Charge

Electric charge is independent ofthe choice ot the
frame of reterence. In other words the charge on an
object isindependent of the speed ofthe object or the
observer. 1.e. the value of charge (q) on a particle is
independent ofthe velocity of object. Charge on object at
rest=charge on this object inmotioni.e.

qrest - qmotion

This property is worth mentioning as in contrast to
charge, mass ot'a body depends onits speed. According
to Einstein's special theory ot realtivity (about which you
will learn in higher classes) at speeds comparable to the
speed of light (v ~ ¢) the mass of a particle becomes
many times larger than its rest mass but charge does not
change. The ratio g/m of charge q and massmofa
particleis called it specific charge, this depends on speed



and at high speedsits value decreases.
1.2.3 Conservation of Electric charge:

According to this "the net charge on an isolated
system is always conserved and it does not change even
if someinteraction or processis being completed in the
system. In other words" charge can neither be created
nor destroyed, it can only be transferred.

Mlustrations

()  Intheexample of frictional electricity, both the
glass rod and silk cloth are uncharged (neutral)
before rubbing them together. When they are
rubbed together a positive charge appears on the
rod and a negative charge of equal magenitude
appears onthe silk. Inthis process few electrons
are transferred fromthe glass rod to the silk so silk
cloth gets negatively charged while glass rod is
positively charged by the same amount. Here the
glass rod and the silk cloth forms a composite
uncharged (neutral) system. Intially both are
neutral, after they are rubbed together the charges
of equal magnitudes but opposite sign appear on
these two objects so the net charge on the system
isstill zero.

(i) When an electron (whose charge is -¢) and its
antiparticle, the position (whose charge is +e),
under go an annihiliation processthey transform
into two gamma rays (high frequecny
electromagnetic wave) whichare neutral. Inthis
processtotal charge before annihiliation was (-e) +
e=0and after the processis zero again. Thus the
charge is conserved. This process is written as -

e + e —);v(l ,O2MeV)
(Flectren)  (Tositroni
In pair production, the converse of annihilation
charge is also conserved. Inthis process a gamma ray
transforms into a positive and an electron.
y(LO2MeV)—— e + &

(Llecirony  (Positrond

(n1) Chargeis also conservedinradioactive decay and
nuclear reactions. You will learn more about these
in alater chapter. Few examples are cited below

Radioactive decay

U —iTh + jHe( a-particle)

0 =92¢ (J, =90e+2e =92¢

Nuclear reaction:
“N+iHe »JF—'J0+ H

Te+2¢e 29 > 8+e
1=9¢ Os = 9¢

The hypothesis of conservation of charge first put
torward by Benjamin Frankilin is empirical with no
known exceptions so far.

1.2.4 Quantization of charge

When a physical quantity can have only distrete
values rather than any value, the quantity is said to be
quantised. The minimum value that this quantity can have
1s called as the quantum of that quantity.

When two insulators are rubbed together these get
charged due to exchange of electrons. The exchage of
electrons always takes place in whole numbers. The
minimum number of electrons that canbe exchanged 1s
unity therefore the total charge on an object must be an
integral multiple of electronic charge. This was
established experimentally by Millikan by his famous oil
drop experiment,

From the observations of Millikan oil drop
experiments that the smallest charge that can exists in
nature is the charge of an electron which is equal to
1.6021 x10 ™ C. Ttis common to consider its value to be
1.6 %10 " C forthe purpose of calculations. Ifthe charge
on an electron e is taken as the elementary uniti.e.
quantum of charge than charge on any object can be
expressed as -

g=tne withn=1,2,-------

and charge onan object canneverbe+1.2¢, +
1.6e,+2 3¢ et

The quantum of charge is so small that when
electricity is studied on amacroscopic scale the grainness
ofelectricity does not show up and charges appearstobe
continuous. For explanation of internal structures of
protons and neutrons these are assumed to be composed
of particles (called quarks) having charges +2/3 (e) and
1 1/3 (e). However quarks do not existin free state, the
quantum ofcchargeisstill e.

Some important facts regarding the charge are as



follows -

(i) Chargeisalwaysassociated withmass, i.e, charge
cannot exist without mass though mass can exist
without charge. Photonis a particle which is both
massless and chargeless while neutron has no
charge but a finite mass. In general each charged
particle has some mass.

()  Astationary charge produces only electric field in
its surrounding space. Ifa charge particleismoving
atauniform velocity it produces both electric and
magnetic fields but does not radiate evergy. An
accelerated charge not only produces electric and
magentic fields but also radiate energy in the form
of electromagentic wavesin spece surrounding it

Example 1.1 - How many electrons are to be
removed from a metallic sphere in order to positively
charge it with 1 C charge.

Solution: Use g=ne
Here g=1C

“Tedi07 6.25x10" electrons

I

Example 1.2 : Abody is charged such that its
mass increases by 9.1 ng then

(1) How many electrons were givento the body
(i) Determine the value of charge and its nature
Solution : Here, the change in mass

AM =91x107g=91x10" kg
and mass ot electron

m, =9.1x10 i kg
(DAs AM = nm,

AM
n=—
m

&

9. 1x107"

e ———
9.1x10 !

(i1) Value of charge g=rne

=10" electrons

g=10" x1.6x107"
g=16C
As the body is receving electrons it must be
negatively charged.

Example 1.3 - Calculate the amount of positive
and negative charges present in a cup of water (250gm)

Solution -Here the mass of water m=250 gm
Molecular mass of water M= 18 gm

Number of Molecular inone cup of water

N = % <N,
(Here N, is Avagaro Number)

N:%x6,023x']03

As one molecule water consits of two hydrogen
and one oxygen atom so one molecule of water contains
10 protons and 10 electrons. Electronsand protons have
equal but opposite charge.

So amount of positive (or negative) chargeinone
cup of water -

g=Nx10e

.fl,_v:%xé,OBxlO23 x10%1.6x107"°

g=1337x10"C
1.3 Coulomb'slaw

Based on experiments in 1875 Coulomb put
forward a law regarding the electric forces acting
betweem two point charges at rest. This law is known as
Coulomb'slaw and according to it " the magnitude ofthe
electric torce (ot repulsionor attraction) acting between
two point charges at rest is directly proportional to the
product of magenitudes of the charges and inversely
proporional to the square of the distance between them.
This force acts along the line joming thetwo charges and
depends onthe nature of medium between the charges.
This law is also termed as Coulomb's inverse square law.

Iftwo poitns charges ¢, and ¢, are at adistancer
apart then.
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Where k is a proportionality constant whose
numerical value depends on the system ofunitsused and
the nature of the medium present between the charges.

For vacuum (free space) or air mediumin ST units.

1 Nm?

k= =9x10’

+2

4 e,
Where €, (epsilon - knot or epsilon zero) called
the permitivity of tree space.
€,=8.854x10 “ C*/ Nm®

Hence for free space or air

I 99
F :_.1_1“
ire, 1 (14
Dimensionsof €
lof o

T [# [ Lenga] ~MITE

E] :M—lL—3I~4A2
(

If ¢ =¢q.=1C

and r=1m

Then /< = =9x10° N
dr e,

Thus, itthe force acting betweentwo equal charges
placed in tree space or air at a distance of 1m apart is

9x10” N then the magnitude of each charge is 1
Coulomb.

Foramedium otherthan freespace (or air)

1
mudium

L a4

dzec r°

(1.5)

Here ¢ is called permitivity of the mediim.
1.3.1 Dielectric Constant (Relative permitivity)

It has been found from experiments that if two
charges are kept in different media at a given separation
then the force acting between them changes with the
change inmedium, The force is maximum for free space
orair asmedium while for insulator mediuimit s relatively
small, in presence of a conducting medium the force
reduces to zero.

Hence in presence ot a medium the factor by which
the force isreduced compared to its value infree space is
termed as relative permitivity, dielectric constant or
specific inductive capacity of medium. Itis denated by

=

-

Loree beiween the charges in vacuum (f )

= =
Force between the charges in that medium (F;n)

1 49¢.
dr e, r S
E?': _—
] . QIQZ e(]
Are 5

=
&= - 1sa dimensionless quantity

o
Many times symbol K is used in place of
€, Insulators are also called dielectrics.
Values of relative permitivity for some common
dielectric materials are shownin table 1.2

Table 1.2 : Realtive permitivities of
some dielectrics (at 20° ()

Mecdium Diclectric | Medium Diclectric
Constent Constent

Air 1000539 | Glvcerene 425

Glass Sto 10 Rubber 7

Mica 3t06 Oxveen 1.00033

Parcfinn wax 2t02.5 Conductor — —-—(a0)

Distilledwater 80

Freespace 1




1.3.2 Vector Form of Coulomb's law

As force is a vector quantity 1t 18 useful to write
Coulomb's law in vector form. For this, let us consider
that realtive to some arbitarily chosen origin the position
vectors of point charges ¢, and ¢, placed infree space
are r and r_respectively. According to Fig (1.5) the
position vectorof charge ¢, relative to charge ¢, isthen.

hy=6—h

and 1| = 1,

I,

O Qrigine point

Fig. 1.3 Vector representation of Coulomb's law
From Coulomb's law the electric force on charge

¢,duetocharge ¢,

P

q.q, -
flLr

|2 21

21

dr g,

P

Where 7, is a unit vector directed from ¢ tog, .

J_"“‘ _ ]' q‘lql e
Accordingly “2 7 4. e lF I

)

SR S e
or '21_471.6[]]7(’3_’1)

...(1.6)

J""2_"'"1|

Likewise the force on charge ¢, dueto charge ¢,

-1

12

G-

3 J"12

4 g,

s

Where £, is a unit vector directed from ¢.to ¢, .

Accordingly

I __ L

12

AL (5-5) 9

Cdze, ;73_;‘-1'|

as 1, and 7, are directed opposite to each other,
therefore F,, = —F;,

Thus it isclear that for two point chargesthe force
which one charge exerts on the other is equal and
opposite to the force which the other charge exerts onthe
first (whatever the signs of charges may be). Thus the
force is an action-reaction pair or Coulomb's law is
consistent with Newton's third law. This force acts along
thelinejoining the two chargesi.e. electrostatic forceis a
central forcein nature.

Important facts

1. Strictly specking Coulomb'slawis valid for point
charges at rest. Ifthe point charges are in motion
the Coulomb's law can not account for the force
acting between them as now in addition to electric
force, magnetic force also acts between the
charges.

2. Whenthecharges are sperated by 10" morless
the Coulomb's law 1s not appicable as now nuclear
force also acts between the charges.

3. Theforcebetweentwo chargesis not aftected by
the presence of other charges, therefore the
Coulomb force is a two body interaction.
Theretore the principle of linear superpositionis
applicable for Coulomb forces (see section 1.4).

4. Coulomb'slawisinverse squarelaw and Coulomb
forceis conservative in nature.
Example 1.4 - Inhydrogen atom the separation
between the electron and protonis 5.3 x 107" m,

Calculate the force of attraction between them. Compare
thisforcewith the gravitational force acting between them

(G=667x107""Nm° kg™, electronic charge

¢=1.6x10 " mass of electron 7, =9.1x107 kg |
1 g -7

mass proton #7, =1.67x107" kg.

Solution : Electrostatic force of attraction between
electronand proton



1"“‘ — 1 q]il

Y odre, ¥

(1,6><10'”)(1,6><10_”)
(5.3x10™"Y

12 =9x10"
F =82x10°N

Gravitational force between electron and proton

i = 6.67x107" x(9.1x107 )2(1,67><10‘”)
(5.3x107")

- 10136

= x1077 =3.6x107" N
52809

F, 82x107

e _—227x10"
I, 3.6x107

Therefore the electrostatic force is2.27 x 10 time
large thanthe gravitational force.

Example 1.5 - Two positive ions of same charge
repel each otherby a force of 3.7 x10~° N whenthey

are SA apart. How many electrons are less on each ion
compared to theirneutral atom state.

Solution : Let the charge oneachion=q

Here r =54 =5x10""m

rore F o4
orce are, 1 ere g, =q. = ¢
Fo_1 4
dre, ¥
3.7x107° =9x10° — T
or (5x107)
q: ZSXJ,?X.IO__';S

g= %x'l,92><'] 07"

=200 232510 7 C

J
¢ — re (n=number of electron)

Example 1.6 - The force between two point
charges placed in free space 1s18N. Keeping the same
seperation between them ifthese charge are placed in
glass medium of dielectric constant 6. Calculate the force
acting between them,

Solution: [ = £

Ef.
Here F=18N €,=0
F,=2 =3
o
Example 1.7 - A point charge

¢, =2uC, (2m, Im)is located at (2m, Im) and
another point charge ¢, =—5uC, (-2m, 4m) is
located at (-2m, 4m). Determine the force on ¢, due

to ¢,

Solution : Asper question

g, =2uC, g, =—5uC, ¥ =2i+1jmand
F=-2i+4jm.

Asthe chargesare of opposite signs so forceon g,

dueto g, isofattractive nature and acts towards ¢, 1.e.

frompoint (-2, 4)to (2, 1) along 7,

F:w = ‘ ‘(ilg qﬁlﬁz

lalla]
= = f‘q
|r§ A ( 1')

_ 9%10" x2x107° x5x107™°
|(2f +1j)- (-2 +4})3

[(25 +17)- (-2 +4,})]




90x10 7 (& oy 90x107, o s
:4?—73‘}‘3(4{_3 )_?(4;—3 )

=72x10 *(47 -3])N

Example 1.8 - Two small point like spheres, each
having a mass of 200 g are suspended from a common
point by insulating strings ot length 40 cm each. The
spheres are identically charged and the separation
between them at equilibrium is tound to be 4 cm. Find the
charge on each sphere.

Soultion : The forces acting on two spheres are
shownin figure. As each sphereisin equilibrmm the net
force oneachiszero. So

Tcos@=mg (1)
and - (1)
mg mg
Fromequations (i) and (ii)
k 2
tan@ = q,,
mgd”
As d(:4cm)_, E(: 40c:m)
t:cmé?:r-siné?:ﬂ:i:L
£ 40 20
\/mgd?sin@ \/0,2x10x16><104 1
hus ¢g—=. =, — X—
k 9x10 20
:ix'lo”c

3

1.4 Force among Many Charges and
Superposition Principle

Theelectric force actingbetween two point charges
does not affect by presence of other charges near by,
therefore the force ona point charge at rest due to two or
more stationary point charges is obtained by the supper
position principle. According to this pricniple "the force
on any charge due to a number of other charges is the
vector sum of all the forces on that charge due to other
chargestakenoneatatime.

Itthe torce acting on charge under question due to
othern chargesare I, I, I',... I, respectively then the

net force acting onitis given by
F=F+1+F+. +1
Considera systemofn charges at rest placed in free

space. Let the charges be ¢, ¢,...4, respectively and

we wish to determine the net force due to this system of
charges on a charge q_. Let the position vector of

4,.4,.-4, etc and relative distance from q_to are

-

s Fys By Fy TESpectively (see Fig. 1.6). Ifthe force

on g,dueto ¢, isrepresented by ﬁo  then

q]‘?[] Iy

200l

-

al

dre, 7,

Fig 1.6: Force on ¢, duetoa number

of point charges



Where 7, isaunit vector directed from ¢, to ¢,.

Similary ifthe forces acting on ¢, due to other charges

F,

are . ,.P:,M respectively then fromthe principle of

02

superposition, the net force acting on ¢,

-

F O e L o A SO S DN
= 1 g4, ., L ¢4, . ' g4, .
0 2 ol T+ T+ A
dre, 7| dre, |F.| dre, |F |
i ‘rm o oo O [Fom
: ! q q g
— 1 ) 2 - " -
FEI - 4 (:{(’_l 2 r:)l — = ?‘;)3 +'”+Tr&ln
yia E(_. F’bl }}.IE rb”
. 1 » q
¢ = ion
0 92, 5t .. (L8)
dre, “TF,

To determine the net force, paralleogram law of
forces or polygon law ot forces may be used according to
situation.

Example 1.9 Two point charges of 9eand 4eare
at adistance r apart. Where on the line joining the two
charges another charge ¢ 1splaced such that it ramins in
equilibrium?

Solution : The pictorial representation of the
problemis shownin figure shownbelow. For equilibrium
ot q, net force on it must be zero.

F+i' =0
F=-r
Howeverin magnitude
!\“ = !\‘“
e F! q I de
Aw <} o e + B

“ X P (r—x) b

. F »

4

()

kg9¢  kgde 9
qn_ __"q =
TS

ontaking squareroot

3 2

x (r—x)

x>

11

-

" 3
5x:3r:>x:§r

It should be placed at 3/5 r from charge 9¢.

Example 1.10 Two identical charges Q are
placed r distance apart. At the mid point onthe linejoining
them another charge q is placed. What should be its
magnitude and sign so that the entire system is in

equilibriam?
Solution :
q —_
Q O ] Q .
o o 4 o » [
A« 72 - 122} » B g
< I3 i

As the charge ¢ is on the mid point on the line
joining the two charges Q each, due to symmetry torce
onqisalways zero. For the equilibrium of entire system it
1s essential that the force onremining charges aeachat A
and B must be zero tor charge Q at B to be in equilibrium
tobea equilibrium

F, +‘I}:} =0
I:.:f = I:[‘]
KO kg
or »* (1’;’2)3
Q’f ——4—?:Q=—4ff
F P
= g=-U/4

Example 1.11 Fouridentical point charges each 2
uC are placed on axis at positions x=0, 2,4, 8cm
respectively. Determine the resultant force acting onthe
charge placed at x=2cm.

Solution : Accordingto question

. . 4 q
g r.pg! r, C D
A .—dﬂ—.—b'—.—.—bx -
0O 52 4 8 — X

Force onchargeat B dueto chargeat A

= kqq 9x 10" x2x 107" x2x107° »
F;f: 3 I
4x10

');":

(2x10°)




F,=90iN
force onchargeat B duetochargeat C
B 0x10° x2x107° x2%x107°

4x10 7

torce onchargeat B due to chargeatD

Fe

(—f ) — 007 N

. Ix10"x2x10 “x2x10 °
n - an 2
(6x107)

Therefore the net torce on charge at B

FB = ﬁ,‘; +‘ﬁc +ﬁD
=907 +(-907 )+ (~10) = _107 N

F.=10(— )N
So the net force is 10N innegative x direction.

Note : [In this problem from symmetry it is
obvious that force on B dueto charges at Aand C cancel
out so thenet force on B is dueto chargeat D only]

Example 1.12 : Four identical charges ¢ eachare
placed at the four verticles of a square of side a. Determine
the magnitude of net force on each charge due to
remaining charges.

Soultion : The situation pertaining to the questionis
depicted inadjoining figure. Here we determine the force
onchargeat B dueto remaining charges. From symmetry
forces acting on charges placed at other points due to
remaining charges will be equal in magnitude but differin
directions. From fig,

RD = \/a2 +a = \f2.:41r2 :a\/E

D4 9c
a2
2]
B I3
Aq a q %"ﬁJ
YO
N
IX F
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o [7|=[fi] =24

and as shown in fig 1 and /;, are mutually

perpendicular. So their resultant 7' makesangle of 45°
with both F‘; and ﬁc

I'=\F; +I; =\2I7 =T \2

qu \/E

o
Next, force oncharge at B due to charge at D

I=

kq’

F, = -
(aﬁ) 2a”

kg

as ' and ﬁD are in same direction (fig) so net

force oncharge at B

F=F“F,

FzﬁgﬁﬂE%
a 2a-

Fot [\5 +lj
a 2
and is directed along DB

Example 1.13 : Infinite number of point charges 4
nCeachareplaced onxaxis at Im, 2m,4m, 8m..........
respectively. Determine the force dueto theseata 1C
charge placed at origin.

Solution ;: Here

G =q,=q,=q, =4uC =4x10"C

471C g~ 4pC
q,— 4 nc

FOE R g, ~ 4 puC 4

Fir

(1’0 =1 (‘

Net forceon ¢,

F=F+F+F+F+. +F,
£\ = *fjlgfn (~F)+ *fggfn (~F)+ *fsjfn (F)+..e



B K

!Tl.'] = kqq, {%+L+Lﬂ+w}(—;)

F, =9x10" x4x 107" x1 l—i-l—i-L_—i-,,,ao (_5)
1 4 16

The term within the bracket forms a geometrical
progression with first term a = 1 and common ratio
r=1/4. The sumof such a seriesis givenby S =

F =36x10° Li}(—;)

_!"

=36x10° {m}(—i“)

£, :36><103><g(—f)

— 48%10° (—f)N

1.5 FElectric Field :

When a point charge 1s brought near another
charge, it experiences a force of attraction orrepulsion. If
we are interested only in determining the force acting
between these charges then Coulomb's law is sufficient.
Similarly for a system of point chargesto determine force
acting on a charge due to the remaining charges we use
principle of superposition along with Coulomb's law.
However a nagging question remains: how does a
charged particleinteracts with another charge kept at a
distance as the charges are not touching each other? In
other words how does one charge know about the
presence of the other charge? To answer such a question
the concept ofelectric field is very important. To explain
the interaction between two charges, it can be imagined
that a charge creates an electric field inits surrounding
space. When another charge is placed in this eletric field
then due to this electric field first charge does some action
on the second charge whereby the second charge
experieneces the presence of the first. Thus the space
surrounding a charge or system of charges in which some
other charged particle experiences a force of attraction
or repulsion depending upon its nature s called electric
field. A particleis considered to be in an electric field if it
experiences electric force. The concept of electric field
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was but forward first of all by scientist Michael Faraday.
Electric field is a vector field which is described
mathematically in terms of the intensity of electric field.
1.5.1 Intensity of Electric Field

By definitionintensity of electric field at some point
in an electric field 1s equal to the force acting on a unit
positive test charge placed at that point and its direction s
same as the direction of force acting on this unit test
charge. The test chargeis assumed to be sufficiently small
positive point charge such that it does not disturb the
charge (or charges) that create the electric field. Thusthe
presence of test charge does not modify the original
electricfield. Electricfield mtensity1s avectory quantity. It

isdenoted by 7 . Many times electric tield intensity is
referred as electric field.

If £ isthe force acting on some positive test

charge ¢, placed at some point in a given electric tield,
then the intensity ot electric field at that point is

gt

" . (1.9)

Since ¢, should be sufficiently small so as not to
disturb the electric field it is more proper to write

E=Lim L

oy i q[]

... (1.9(a))
The electric field intensityis expressed in units of N/
Cin ST system. In next chapter we will see that another

unitfor £ is V/m. The dimensional formula for electric
tield intensity is

Iy 12
E:EZ[MI;TI‘ :|:|:M1L1T—3A—1:|
g, [AT]
=[MLT A ']

Ifa charged particle having acharge of magnitude

g is placed inelectric field of intensity I thenthe force
acting on the particleis given by



—4+0r > [ :fﬂ?
I'=—qls O- 4

F=gk
Iftheparticles positively charged the direction of
force /; issameasthatof £ ifthe particleis negatively

charged, theforce /= onitis directed opposite to field.
(Fig 1.7)
Fig 1.7 : Forcc on a charged particle in clectric ficld
Electric field due to a positive point charge or
uniform spherical positive charge distribution is directed

radially outward fromit. If the point source charge is
negative the electric field is directed radially toward it fig

(18)
V‘
- o N4
 J

(a) (b)
Fig 1.8 : Electric ficld duc to
(a) positive (b) negative point charge
1.6 Electric field due to a point charge
Consider a point charge + Q situated at a point O
(Fig 1.9) we are interested in electric field F ata point P

ata distancer from O. Let us consider atest charge + ¢,

imagined to be placed at P.
0 P 7
[/
+Q r 7

Fig 1.9 : Electric ficld duc to a point charge
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From Coulomb's law force exerted on test ¢, at P

duetocharge+Qis
= kQ;fc. ;
F

1t

By definition /- =
o

qu(I »

o R
g, r

S50 it

kO .
—F
P

I =
Where is a unit vector directed from Q towards

¢, - Electric field at point Pisin direction ('YP

Ifinstead of + Q, a point charge - Qisplaced at O
then electric field at P is given as

.1 0.
J[':: ‘_‘: . q -
ro— .(110)
.1 -0, .
Fo— ¥(5
r —~(-7) (L)

Thus it is obvious that tor a point chargei.e. the
intensity of electric field is inversely proportional to the
square of distance. For a point charge this variation is
shown graphicallyinFig 1.10

T -

H E

. I
L >

y— 1

. [
Fig 1.10: Variation of £ with r for a point charge
If the point charge is situated in a medium of

dielectric constant <_ then

10, 1 0,
" dme ¥ dmee, 1
L‘Fﬂ = £ :> L‘Fﬂ < Lr: ('l' E > ].)

=



Thus for agiven distance in adielectric medium the
electric field intensity decreases by €, compared to that
in free space.

Table 1.3 : Typical values of some
electric fields present in various cases

System Electric field
X-ray tube Sx10°N/C
Dielectric strengthofair | 3x10° N/
Van-de Graft Generator | 2x10° ¥/
Atomsphere 100N/C
Arround domestic 300N/C
electric wires

1.7 Electric Field due to a System of Charges:

To calculate the electric field intensity ina point due
to asystem ofcharges, the principle of super position of
electricfieldsis employed.

According tothis principle "the electric field at a
point due to a system of point charges is equal to the
vector sum of electric tields at that point dueto each of
the charges of the system".

If for a system of n point charges

4,49, q, theelectric field at point P dueto these

chargesare F F, F,,. . F, respectively (Fig 1.11)

then net electric field at P

Z

Fig 1 11 : Electric field due to svstem of point charges

E=E 4L+, +. .+

. 1 n 1 A
p=—tj L,
dre, K, dre, 1y,
1 g .
+...+ "”3 o
47[ EI) r:)n
- — ’l]] :’[_]]
il
|r01| ol
L 1 4, o 1 q- o
- 3 'm K ’i]’_’
47 g, 1) 4z €, Iy
1 .
+...+ q” .
dre, F,,
g 1 &g¢g,.
L= Dt L (L12)

RZ A

Example 1.14 An o1l drop has a charge equal to
that of 12 electrons and it remains in equilibriumina

constant electric field of 2.55x10* N/C . Itthe density

ofoilis 1.26 x 107 kg/m* then determine the radius of the
drop.

Soultion : For equilibrium of charged drop in
electric field its weight must be balanced by electric force.

+ + + 4 gl + +
Io
- - mg —-
Le mg =gk
but m=Vp
m=—xr
or 3 L

Where and risits radius, Visits volume and p is
density of oil

4
then 3 T pg =nels



| 3nel v
Anpg

Onsubstituting thevalues of relevent quantities

L _[3x12x1.6410 " x2 5510 b
4x3.14x1.26x10° x9.8

F=98x10"m
Example 1.15 An electron falls from restin a

constant electricfield of 2.0x10* N/ through .5 cm.

Keeping the magnitude of electric field same now its
directionisreversed and now a proton falls fromrest in
this field through the same distance. Determine the time
offall inboth these cases. Compare this situation with
“free fallunder gravity".

Soultion : First case- As shown inFig. (a) the
electric field is acting vartically upward so force on
negatively charged electron F_= ¢E is directed
downwards.

try

+ + + +

Sothe acceleration of electron

el

If starting from rest the electrons falls through a
distance hintimet then

1
h=—at;

2
. 2h |2hm,
“ Va, el:

f _\/2><1.5><10 >%9.1x10
b 1.6x107" x2.0x10*

=29x107s
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Second case : Asshownin Fig (b) the electric field
acts vertically downward so force on proton (positive
charge) also acts downward, hence acceleration of
preton,

+ + + +
+e
l ﬁ‘
F, el
a, =—=—
r
m, m,

For proton, time to fall through a distance h

2h 2hmp
1 = _— =
" \a, Y eE

JZx'l,Sx'] 02 x1.67%x1077
1.6x10 ® x2.0x10*

F

=13x107s

For both the cases accelerations a, and @, are

much greater compared to acceleration dueto gravity g
hence gravitional effectis taken asnegligible.

eE (1.6x10 ¥)x(2.0x10%)

P om 1.67x107

Is

eg.

=1.9x10"” m/s*
g(f»lOm;’sz) to ~ 10!
Which is nearly ~10" times more than

g (- 10m/s” ) ,acceleration ot electron a, is 183 times

morethan @,



) . / 2h
Time to fell freely under gravityis /, = [—is
: <

independent of mass so it 1s same for both electron and
preton,

Example 1.16 At some point a torce of 2.25 N
actsanacharge of 5x10 7 (' . Determine the electric
field intensity at that point.

Soultion : Here ¢, = 5x10 *C

['=2.25N
5 _
_E 2‘2_4:4,5><'|03N£(_.'
q, 5x10

Example 1.17 In a rectangular coordinate
system, two positivepoint charges 10 # C each are fixed

atpoints x=+0.1m, y=0 and x=-0.1m, y=0.
Find the magnitude and direction of electric field at the
following points.

(a)theorigin(b) x=02m,y=0 (c) x=0, y=0.1m

Solution : For the system of charges, placed as
shownin Fig(a)

'

Fig(a)
(a) electric field at origin must be zero as fields

produced by individual charges at thislocation are equal
and opposite.
(b) For apoint such as P shown inFig (b), electric

field due to individual charges are in same direction (along
+ ve x axis) so net electric tield at P

I = ke —+ ke -
(0.1+02)  (02-0.1)
o L B T

009 001 0.09
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_ 9x107 x10 * x10

=1.0x10*N
0.09
Y
q : q p
(0. 1.0) O wLe 2,0 > X

(c)Atpoint P(0, 0.1)the electric fields dueto the
given charges have equal magnitudesi.e. E =E,

In this case, the x components of E ,and E )

cancel while y components add [fig(c)] net electric field
atPisthenE

FisinG+FE,sing
A .

q /0 . ONG
(LD {0, 1. 0)

I =L sinf + [, sin 8 (along Y axis)
E =2FK sin8 = 2F, sin45°

[From geometry of figureit canbe seenthat & = 45°]

FeZgnas o 290 e 1
7 (0.1 +(0.1) | 2
= 20910 6 36x10° NIC

V2[0.02]

1.8 Electric Field Lines

The concept ot electric field lines is very usetul in
visulalizing electric field arround charge contigurations
graphically. An electric field line is an imaginary line or
curve drawnthrough a region of space (where electric
field exists) so that its tangent at any point is in the
direction of electric field vector at that point. Fig. 1.12
depicts thebasicidea.



LElectric Ficld
Line

/

Fig 1.12 : The direction of electric field at any
point is tangent to the field line through that point

The concept of field lines was given by British
Scientist Michal Faraday (in the first haltof 19th century)
todevelop anintutive non mathematical way of visualizing
electric tield arround charge configurations. Faraday
called them "line of force™ but the term "field line" is more
appropriate.

Fig 1.13 depicts the field lines arround some simple
charge configruations. The field lines are in three
dimensional space, however the figure shown here exhibit
themonlyinaplane. For a singleisclated positive charge
the field lines are radially outward while for a single
negative charge field lines are radially inwards. The field
lines surrounding a system of two point charges (q,q)
depicts a vivid graphical representation of their mutual
repulsion, while those surround a dipole (two equal and
opposite charges) (g, -q) depicts clearly the mutual
attraction between the charges.

18

(<)

{d)

Fig 1,13 : Electric Field lines due to
some simple change distributions

The electric field lines follow some general
properties:
()  Fieldlines always orignates from positive charges
and terminates at negative charges. In case ofa
single charge the may start or terminates at infinity.
For an isolated positive charge field lines are
radially outwards while for anegative charge these
are radially inwards [asin Fig 1.12 (a) and (b)]
Ina charge free region field lines can be considered
as continuous curves without any breaks. Tangent
drawn at any point on an electric field line gives the
direction of electric field at that point, thus it
indicates the force acting on aunit positive charge
placed at that point.

(ii)

The number offield lines that starts from orend on,
achargeis proporticnal to the magnitude of that
charge.

(iii)

Number of field lines per unit area normal to the
area at a point is proporitional to the intensity of
electric tield at that point. Thus the electric tield is
strong when the field lines are crowded and weak
when they are far apart. Intig. 1.14 field is
maximum at Aand minimumat C.

(iv)

Fig 1.14: The field strength is proportional to the
number of lines that crosses unit area normal to the field



Two electric field lines can never cross each other
since it they cross at a point, intensity at that point
will have two directions (corresponding to two
tangents) whichis meaningless.

)

In electrostatics, electric field lines can never be
closed loops as a line cannot start and end at the
same charge. This follows fromthe conservative
nature of electrostatic field.

(vi)

(vi) Thereexistsalongitudinal tension in the field lines
which explaing attraction between two unlike
charges. The field lines exert alateral pressure on
each other which explains for the repulsion
between two like charges. (see figs 1.13 (¢)and
(d).

The field lines are perpendicular to an equipotential
surtace. ( You willlearn about equil potential surface
In next chapter). Since a charged conductorisan
equipotential surface hence field lines are always
normal tothe conductor surface-

(vii)

In Fig. 1.15, electric field lines are shown for
different types of electric field. Foruniform electric field,
field lines are equispaced parallellines as infig. 1.15(c).

/_’_\
/_/R\ —\ >

(@) () {c)

Fig 1.15 : (a) Dircction is not constant
(b) magnitude and direction both are not constant
(¢) both magnitude and direction are constant,

Electric tield lines are not same as trajectories of
charged particle. It is a common misconception that a
charge particle of charge q in some electric field must

move along an electric field line. As electric field E at
any point is tangent to the tield line that passes through

that point, it is correct that the net force £ = ¢£ and

hence acceleration of the particle are tangent to the field
line, however fromour study of kinematics we know that
when a particle moves ona curveitsacceleration can not
be tangent to the path. Thus, in general the path of a
particleis not same as afield line.

A charged particle will move along a field line only 1f
field line 1s straight and initially either it is at rest or its
velocityis parallel or antiparallel to the field line.
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1.9 Electric Dipole and Dipole Moment

"The arrangement of two equal and opposite
charges separated by a small distance is called an
electric dipole”. Infig 1.16 an electric dipole is shown
where the magnitude of each charge is q and their
separationis 2a.

A 0] B
_‘Ef vl d-l’ninl ‘Fq’
“ 2d >

Fig 1.16: Electric Dypolc

The mid point between the chargesis called 'centre’
of dipole and the line joining the charges is called its axis.
The line through centre and perpendicular to the axisis
called equatorialline. The electrical behaviour ofa dipole
is described in terms ofits dipole moment. ltis a vector

quantity denotedby 5 .

— P g
& I + B
A 0
< 2t »
Fig 1.17

The magnitude ofelectric dipole moment is defined
asthe product of the magnitude of one ofthe charges and
their separation. It the separation 2abetween the charges
1s considered as a vector directed trom the negative
charge to the positive charge then by definition.

. (1.13)

The Slunit for dipole moment 1s Coulomb x meter
=C.mand it has dimensions of M°L'T'A!

There exists some molecules in nature where there
1s a tinite separation between centre of positive and
centre of negative charges. Suchmolecules aretermed as
polar molecules. Few examples are NaCl, H,O, HCI
etc.

p=2aq

There are also some molecules in which normally
the centres of positive and negative charges coincides.
However, in presence of external electric field the centre
of negative charge gets shifted by asmall amount relative
tothe centre of positive charge, there by creating a dipole
moment. Such dipoles are termed as induced electric
dipoles.



Example 1.18 In NaCl molecule the separation
between Na* and Cl ionsis 1.28 A . Find the electric
dipole moment of the molecule.

Solution: Here ¢=16x107""(C
20=1284=128x10""m
p=qla
p=16x10""x128x107"

=2.048x10 * Cm
1.10 Electric Field due to a Dipole

The electric field due to a dipole at some point, 18
the vector sum of the electric field produced by the
individual charges ot the dipole at that point i.e. the
principle of super position is used to calculate the electric
field ot adipole. For the sake of simplicity, here, we will
determine the electric field at axial and equatorial points
of'the dipole.

1.10.1 Electric field at a point on the axial line of an
Electric Dipole

Intig 1.18 AB is an electric dipole consisting of
charges a qand -q. We wish to determine electric tield at
a point P onits axis at a distancer fromthe centre.

— (rta) >
S —— (ra) ——»
-4 0O £ tg Ez P K |
A > B F -
< 2ar »

Fig 1.18 : Electric ficld at an axial point of a dipole

Electric field at point P due to charge +qat B

1 -
1= 1 7 P (indirection BP)
4z ei] (F’—CI)

=1

(L1

here, p isaunit vectorin direction of dipole moment
P Electric tield at point P due to charge -q at A.
1

T ax & (r+a)

T

—(—p) (indirection PB) ... (1.15)

-
< Z

Hence net electric field at point P

b=
e
I
)
I
ol

. (1.16)

{(Here g-2a = p)
Ifa1s very small compared to r (ez <<r) then

canbe assumed negligible compared to »* . Then

= 1 2p.
F. = ——p
dre, f o AL1T)
1 2p
1 i 1 E\-:‘ - - L
its magnitudeis Py ...(1.18)

Fram the above result it is clear that the field

intensity at axial point doesnot veryas ¢ * asforasingle

point charge ratherit varies as ¢ * . Thus electric field

intensity decreases realtively more rapidly with distance
compared to asingle point charge.

The direction of electric field at axial line is in
direction of dipole moment ( p ).
1.10.2 Electric field at a point on Equatorial line of
an Electric Dipole

Fig. 1.19showsan electric dipole AB with charges
+q and -q at B and A respectively, the displacement AB
=2¢ . Wewishto determine electric field at apoint Pat
distance r fromthe centre O onequatorial line.



o Sind
Y

. F
lizo —F, Cost E, Cosh /
1 2 7

Fig. 1.19: Electric field at a point on equatorial
line of dipole

From A AOPand ABQOPbe

P4 = PB:(},Q +a2)l.-"2

]
Z

(PAY =(PBY =(r" +a’)
Electric field at P dueto charge +q

1 q
C4re, (r2 +a3)

El , (along direction BP) ...(1.19)

Electric field at P dueto charge -q

— 1
F = .

4r e, (r3 +a )

, (directed along PA) ...(1.20)

Thus I??l and ]:fz are of equal magnitudes but differ

indirections.

_ 1 q (12

Fa|= Az e, (r2 +ch)

Z

ie. |£‘1‘:

Iltweresolve £, and £, along axial and equatorial
lines then equatorial components 7 sin & and £, sin 8
cancel out being equal and opposite. Axial components

F cos@ and F, cos @ add as their directions are same.
Therefore
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L'é'qu Her

= (£ cos@+ L, cosB)(-p)

Here, — p indicatesthat the electric field is opposite

tothe direction of dipole monent as can be seen from tig
1.19

-

Z

F e = 2F;, cos G (-p)

| q9 a

A e, (r‘ +a") (;-3 +a3) '

o

cosf =—s
(r" +a")
S— L __(-p) (1.22)
47 €, (r2 +az)h o
g 1 P
Liqpmer = = ..(1.23)

47 =N (r’_’ +a’_> )3"3

Ifais much smaller thanr (¢ <<r)then o° << 7’

chumcr - — -_
80 Aze, P (129
Ecqlmr.cr = - —_—
| A7 =, r3 . (125)

Tt is clear that for same distance r from centre O.

Therefore (1) the electric field at axial point is twice
as that on eqautorial point at the same distance.

(i1) At axial points, the electric field is along the
direction of dipole moment, whereas at equatorial points
the direction of electric tield is opposite to the dipole
moment. From the above discussion it is clear that tor
both axial and equatorial positions the dipole electric field

atlarge distances (r >> 2a)variesas £« 1/ (and

not as (F w1/ ¥ ) asincase ofa single point charge)

and it falls off more repidly compared to the electric field
dueto asingle point charge. The physical reason for this



rapid decreases in this electric field for a dipole is that
from distant points a dipole look like two equal and
opposite charges that almost (but not exactly) coincide.
Thus their electric fields at distant points almost but not
quite cancel each other.

Example 1.19 Two point charges 5 uCand —5
nCare Temapart. Calculate the electric field at a distance
of 0.3 4mfrom their centre at a point.

(1) onthe axis (i1) onequatorial line
Solution : Here ¢ = 5uC =5x107°C
2a=1cm=10*m
¥ =030m(thusr>>a)
Electric dipole moment p = ¢.2a
p=5x107"%x107 =5x107 Cm

1 2p

3

dre, 1

......

_ 9%x10° x2x5%x107
(0.30Y

Ll

=3.33x10° N/

1 p

. : =
(1) At equatorial point ine, r

_9x107 x5x10°

——=1.67x10°N/C
(0.30)

Yeg

1.11 Torque on a Dipole in a Uniform Electric Field

Fig 1.20 (a) shows an electric dipole AB placed in
auniform electric tield with its dipole moment oriented at
angle 8 with E. The force on charge +q, of the dipole

is f = £, indirectionof £ andon-qis g = gk, n
direction oppoesite to electric field E. Hencethe net force
ondipole

F,=qE+{—qE)=0
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-

Fig 1.20 (a) : Dipole in Uniform Electric ficld
p

f=y

k4

YZ=pxE
Fig 1.20(b) : Direction of torque

Thus the netforce onthe dipole is zero so it will not
have a translational motion. However asthe two forces
are not colinear they constitute a couple producing a net
torque on thedipole. This torque tendsto alignthe dipole
in direction of electric field.

Magnitude of torque=(force onany ofthe charge)
x perpendicular distance between lines ofaction of the
forces

T =ql(BC)
Fromfig sin@ _Be
2a
BC =2asinf
So r=ql:(2asind) Cq-2a=p
7= pksind ... (1.26)

Invector notations 7 = gx - (Nm)...(1.27)



p and p inaccordence withright hand screw rule.
Special cases

(1) (a) When @ = 0°

Directionof 7 is perpendicular to plane containing Example 1.20 Two charges + 1000 pC, 2 mm

apart constitute anelectric dipole. This dipoleis placed in
auniformelectric fieldof 15 x10* N /(" at 30°with field.
Find the torque scting on the dipole.

Solution : Here ¢ = 1000 C =10 °C

sin@=0 F=15x10°N/C

dipoleisin stable equilibrium

(b) When @ = 180°

2a=2mm=2x10"m

g =30°

r:pES]n 180" =0 Torque r:pﬁsiné’

dipoleisin unstable equilibrium

(i) When 8 = 90°

T =q(2a)Lsing

=107 x2x107 x15x10" ¢in30°

thent = plisin90°

7=15%107 Nm
Towe = PE

L

Important Points
An object can be charged in three ways (1) by frictien (11) by conduction (contact) (i11) by electrostatic
induction,

Charge s not created in process of friction. Actually in process of friction transfer of a few electrons takes
place from one object to another as a result of which one object gets positively charged and another
negatively charged.

Like chargesrepel and unlike chargesattract each other.

Electric charge is quantized Quantum of charge = electronic charge e = 1,602 x 10 '* ' . Any charge canbe
writtenas g =+tne n=1,2.3..

Fortwo peints charges in free space, electrostatic force between themis given by Coulomb's law as

j_.‘ _ ]' Q] ?2‘, N

dre, r

Z

€, isthe permitivity ot free space or air

In presence of some medium the force between two charges is smaller than the force between themin free
space (for same separation) by afactor called relative permitivity or dielectric constant of medmim.

The electric field intensity at any point is given by

£ = limit LNE(T

% M g where f_isthe force acting on test charge ¢, dueto electric field.
N 8] ’

23



11.
12.

14.

Electric field dueto a point chargeis given by

1 g .

I = :
dre, v

Electric tield lines can never cross each other since if they cross at a point intensity at that point will have two

directions whichis absurd.

Net electric field due to a number of charges 1s the vector sum of electric fields due to individual charges.

E=E 4L+, +. .+

A system consiting of two equal but opposite charges kept at asmall separationis called an electric dipole.

Electric field intensity at an axial point of a dipole

1 2p .
3 P (fora<<r)

L“minl =
dre, r

Electric fieldsintensity at an equatorial point of a dipole

B —

eyl er

1
_ P r_3 (fora<<r)

Torque onadipole placed in auniform electric tield

7= plising

Questions For Practice

Multiple Choice Questions -

1. Twoidentical charges separated by adistance of 3

m experience a force of repulsion of 16 N, the
magnitude of each charge is

(a)2uC (b) 4uC
{(c)40uC (d) 8opuC

The force actingbetween two chargesis8N. Ifthe
separation between them istrippled then the force
acting themwillbe

(a) F
(c)F/9

(b) F/3
() F/27

To give a charee of 3 x 1071 C to some object, how
many cleetrona arc to be removed from ir?

(a)3 (b)3
(c)7 (d)9
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4.

Two point charges + 9e and +e are at a separation
of 16 cm. Where on the line joining them another
charge q must be put so it remains in equilibriam.

(a) 24 cm away from +9¢
(b) 12 cm away from + Y¢
(¢) 24 cm away from +¢
(d) 12 cm away from +¢

Two identical spheres having uncqual and opposite
charges arc 90 cm apart. They arc now madc to
contant and then again separated by the same
distance. Now they repel cach other by a force of
0.025 N. Final charge on cach spherc is

(@)1.5uC (b)1.5C
(©3C (d)3nC



10.

12.

On putting a glass plate in between the two charges
the electrostatic force between them as compared
to carlicr 1s

(b)lcss
(d) infinite

(a) morc
(c) zero

The dipolemoment of HCl molecule is 3.4 x 10737
cm the separation between its ions is -

(a)2.12 » 10 ""m (b) zcro

(c) 2 mm (dh)Zem

Foran electronand a proton kept in same uniform
electric field the ratio of their accelerations s

(a)Zero (b) m,/m,
(c)1 (d) m,/m,

Four equal and like charges are placed on the four
vertices ofasquare. It the field intensity due to any
ofthe charge at the centre is E then the net electric
field intensity at the centre of square willbe

(a) Zero (b E
(c)E/4 (d)4E

On placing a dipole in a unitorm electric field it 1s
acteduponbya

(a) Torque only

(b) Force only
(c)Bothtorce and torque
(d) Neither force nor torque

For the torque to be maximum ona dipole placed
inan electric field angle between g and f must
be

(a) 0 (b) 180¢

(c)45° {(d)90°

An electron and a proton are apart. The dipole
moment ofthe system is

(a) 3.2x107* Cm (b) 1.6x107"" Cm
() 1.6x107* Cm (d)32x10" Cm
For the same distance from centre of dipole the
ratio of electric fields at longitudinal and transverse
positionis

(a)1:2 br2:1

(c)l 4 (d)4:1

The force of attraction between+3 pC and -5
charges kept at some distance apart is 9N. When
the two charges are made to contact and then
separted again by the same distance the force
acting between them becomes.

(a) Infinite (b) 9x10° N
(c)IN (d) Zero

Two equal but unlike charged objects are kept at
some distance apart with a force F acting between
them. 1f 75% charge of one of themis some how
transferred tothe other then the new force between
themis -

F 7F
@ 5 ®

OF 15,
© 715 CHEr s

Very Short Answer Questions

l.
2.

Write the value of one quantum of a charge.

The electrostatic force between two protons
separated by a distanceris F. It the protons are
replaced by electrons then what the force 1s going
tobe?

The force exerted by one charge on otherisF. In
presence of athird charge what will be the force on
second charge by the first charge.

Itthe dielectric constant ot a medium s unity then
what isits absolute permitivity:

For two point charges ¢, and ¢, product ¢,¢.=0.
What is the nature of the force between them.

For two point charges ¢ and ¢, the product
4,4, > 0. Whatthe nature of force acting between
them?

What is the force acting on a charge placed in
electric field E.

What is the effect of speed of a charged particle on
its charge and mass.

What is the magnitude ofthe intensity of electric
tield that can balance the weight of an electron?
Given



11.

12.
13.
14,

e=16x10""C.m, =91x10 " kg

The force acting between two charges placed in
free spaceis F. It a brass plate is now put in the
region between the charges then whatis the value
offorce?

Name the experiment with which the quantum
nature of charge was established?

Give definition of electric dipole moment.
Write the condition for anideal electric dipole.

(ive the example of a particle which has zero he
rest mass and zero charge.

15. On what the value of k depends in the

expressionk = for Coulomb's law ?

4z g,

16.  Writethe charge on nucleus _N''in coulomb.

17. Onrubbing an ebonite rod with furr it gets
negatively charged, why?

18.  Write the CGS and STunit of charge. What is the
relation between them.

19.  Whenanelectricdipoleisin stableequilibriumina
uniform electric field.

20. What is the net force on an electric dipoleina
uniform electric field?

Short Answer Questions

1. Whatismeant byfrictional electricity? Describeits
origin,

2. State Coulomb's law for electrostatic force
between two point charges at rest?

3. Explainquantisationof charge.

4. Write thelaw of superposition for forces?

5.  Theelectric field at the mid point of the line joining
the two charges is zero. What conculsion you can
draw fromit regarding the nature of charges.

6.  Asingley chargenegativeion andan electron are
allowed to move fromrest in auniform electric field
E. Which ofthem will move faster and why?

7. What is meant by electric field lines? Write its two

properties.
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10.

11.

12.
13.

14.

15.

18.

19.

Explain law of conservation of charge.
Define the relative permitivity of a medium.

How can a metallic sphere be charged without
touching it?

How will you show that electric charges are of two
types?

What does ¢, +¢, =0 inreference to charges.

A dipoleiskeptin auniformelectric field. Show
that it will not have a translatory motion.

A charged rod P attracts another charged rod R
while the it repels another charged rod Q. What
will be the nature of force developed between Q
andR.

For determining the electric field due to a point
charge, the test charge employed should be
infintesimal. Why, describe.

A copper sphere of 2 gram contains 2 x 102
atoms. Nucleus of each atom hasa charge 29 .
What fraction of electrons should be removed from
the sphereto giveitacharge of 2 puC.

Consider two identical metallic spheres of exactly
the samemass. One of themis given some negative
charge and otheris charged positively by the same
amount, will there be any difference in the masses
of sphere after charging? Ifyes, why?

On moving away trom a point charge the electric
tield due to charge decreases. The sameis true for
an electric dipole. Does the electric field for both
these cases decreases at the same rate?

Use conservation of charge to identify elements X
infollowing nuclear reactions

(a) \H'+, Be” - X+ n'
(b) .C"+ H - X

(¢) N"+ H — X+ He*

Essay Type Questions

1.

Define Coulomb's law tor the electrostatic torce
betweentwo charges, and discuss its limitations.
Using this law define 1 coulomb of charge.
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Give definition of electric field. Derive expression
for electric field due to a point charge. Ifanother
charge q,, 1s brought in this field what will be the
electric force acting on it?

What is meant by an electric dipole. Define electric
dipole moment. Derive an expression for intensity
of electric field at an axial point of an electric
dipole.

Derive an expression for the intensity of electric
tield due toan electric dipole on a point situated on
its equatorial line.

Derive expression for the torque acting onadipole
placed inauniformelectric field. When willits value
be maximum?

Answer

Mutliple Choice Questions -
l.(c)y 2.(c) 3.(A) 4(B) 5.(A) 6.(B) 7.(A4

8.(B)9.(A) 10.(A)11.(D) 12.(C) 13.(B)

14.(D) 15.(A)

Very Short Answer Questions

1.  Onequantumofcharge=e =1.6x10

2. F

3. F

4. e=ec.e,=1x8.85x10 "
=8.85x10 " C*/ Nar’

5. It g,9. < Othenone ofthe charge must be positive
and other negative so there will be an attractive
torce acting between them.

6. If gq, >0 thenboth charges must have same
sign (either both positive or both negative) and a
force of repulsion acts between them.

8.  Ifspeedis ofthe order ofthe speed of light then
mass increases with increase in speed however
charge remains invariant (constant).

9. ef=mg

_mg  9.1x10*'x938
e 1.6x107"

I
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10.

12.

13.

14.
15,
16.

17.

20.

=557x107" N/C

:EZO
ool

F =

F
L E,_
Milikens oil drop experiment

The product of magnitude of any charge of the
dipole and separation between them is called
electric dipole moment. It 1s a vector quanity
p=q-2a directed from negative to positive
charge.

The magnitude of charge ¢ should be high and
separation (2a) between them should be small such
that product ¢ (2a) is finite.

Photon
On nature of medium and system ofunits.

From g="Ze Is

g=Te=Tx1.6x10 "C=112x10 "

As electrons are more loosely bound in four
compared to ebonite, on rubbing them tews
electrons are transterred from fur to ebonite.

CGS unit 18 esu or stat coulomb and S1 unit is
coulomb (C) 1C=3x 1{¥esu

When p and [ paralleli.e anglebetween them
150,

Zero(0).

Numerial Problems

1.

The charges of 2x107 (" and
3x 107" (! respectively are present on two small
spheres kept in air at a distance 30 cm apart. Find
the force between them.

(Ans: 6x107° N)

Two identical metallic spheres are charged with
+10uCand -20uC . Iftheyare but into contact and
thenkept at the same separation as earlier then find
the ratio of torces in final and initial situations.

(Ans:8:1)

Equal charges g each one placed at the vertices A
and B of an equilateral triangle. Find the magnitude



of electric field at the vertex C.

q a q

NG
\/_q)

Ans: L=
(Ans d

s

Two identical charges spheres are suspended by
strings of equal length. The strings make an angle of
30° with each other. When suspended in a liquid
of density 0.8 g cm ?, the angle remains the same.

What isthe dielectric constant of liquid (density of
material of sphereis [.6gem * .

(Ans: e,=2)

Two idensity spherical conductors B and C carry
equal like charges and repel each otherby aforce
Fwhen placed at a certain distance apart. Another
identical conductor which is uncharged now
removed away from B and C with B then with C
and removed away from B and C. Find the new
forceacting between B and C. ”

(Ans: ?)
In fig four point charges are placed at the four
corners of a square of side 2 cm. Determine the
magnitude and direction of electric tield at the
centre O of'the square ) = 0.02 (.

—20) +2¢)
I Cop
0
2¢cm 90\%«"“
D 0 0 C

10.
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(Ans: 9/2 x10° N /¢ parallelto g4)

An electric charge Q is divided into two part
(), and (), which then are kept at a distance r
apart. What will be the condition for on force
between them to be maximum.

(Ans: 0, =0, =0/2)

Three charges +2q. —¢g are —¢ placed at the
vertices A, B and C respectively ot a equilateral
triangle ABC of side a. Find the magnetude of
dipole moment of this system.

+2gmA

(ATIS . \/gqa)
Two small identical balls each ot massand charge q
are suspended same point by silk cords (each card
1s oflengthl) as shown intig. separation between
charges is x and angle between cords
(26’ = | 0“) . Calculate the value of x assuming
system to be in equilibrium.

In a system two charges ¢, =2.5x107' (" and
g, =—2.5x1077 (" aresituated at point A(0,0, -
15 em)and B (0, 0, + 15 cm). find the electric
dipole moment ofthe system.

(Ans:7.5x107" Cm(-2) )



12.

An electric dipole having dipole moment
4x107° (Cm isoriented at 30°from the direction of
a uniform electric field of magenitude
5%10" NC7' . Calculate the magenitude of the
torque onthe dipole.

(Ans: 107 Nm )

The separation betweentwo point charges ¢, and
¢.1s 3 cm. The sum of the two charges is 20 uC
and they repel each other by a force ot 0.075 N.
Find the value of the two chages.

(Ans:15puCand5uC)
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Chapter - 2
Gauss' Law and Its Applications

In previous chapter we have studied about point
charge and system of point charges at rest, and concept
ofelectric field. We have also seen, howthe principle of
superpositionis of help in calculating the electric field due
to a systemof discrete charges. Inthis chapter curaimis
to determine electric field due to a continuous charge
distrbution . For such cases, concept of charge density is
utilized along with Couloumb's law. What we haveto do
18 to divide the charge distribution into infintesimal
elements of charges which may be considered tobe a
point charge. Electric field due to such an element can
then be calculated using Coulomb's law. Accoding to
principle of super position the total field 1s the sum
(integral) of all such contributions over the charge
distribution.

In principle this method is possible for any
continuous charge distribution, however in many cases
either it is cumbersome to perform the integration or
impossible to solve it exaclty. In situations related to
continuous charge distributions where charge distribution
isuniform the Gauss's law 1s very helpful which makes the
determination of electric field mathematically very simple.
To work with Gauss's law it 1s essential for us to
understand the concept of electric fhux, so we start this
chapter with the study of electric flux.

2.1 Electric Flux

Electric tlux throughaflat surface ot area S lyingin
aunitorm electric field E is defined by

@, = luscosd ..(2.1)

Where Gistheanglebetween 7. and normaltothe

surface (Fig2.1) § isarea vector

=

R

¥ ¥ 7

\ A\
\ \

"

Fig 2.1 : Electric through a flat surface

The area of a flat surface can be represented by
vector § (called area vector) whose magnitude is equal

tothearea S and whose direction is normal to the plane of
the area. Accordingly we can write

¢, = E-s

Thus, electric fhux s a scalar quanity value of which
depends on electric field, area of surface under
consideration and the angle between area vector and the
electric field. The electric flux ¢ through a surface 1s
proportional to the net number of electric field lines
passing through that surface. ¢ 1s positive (when 90°>
8> 0%, negative 180°> 8> 90°and zero (when 8 =
90°). When electric field lines are coming out fromthe
area fluxisregarded positive while field lines entering the
area corresponds to negative flux. Whenfield lines are
parallel to the flat area the flux is considered to be zero.

L.22)

"__ﬁy‘ o

Fig 2.2 : Flux through a closed surface

In a general case where 7 is non uniform and

surface isnot flat, to calculate electric flux we consider
the surface to be divided into alarge number 'n' of small

area elements As,, As, . As (fig 2.2) where each area
element As, 15 small encugh so that

(1) 1tcanbe assumed to be flat (planer)



(i1) The variation of electric field over this area
element is so small that electricfield £, canberegarded

asconstant, thenusing the equation (2.2) the flux linked
with such anarea element is

Ag, =L - As, . (2.3)

Summing the contributions of all elements gives an
approximation to the total flux through the surface.

b =2 F -As
Ifthe area of each element approaches zero the
number of elements approaches infinity and the sum
Y. isreplaced by an intergral. Therefore, the general
expression of electric flux is

b = [ £ ds (24

The integral in equation (2.4) must be evaluated
over the entire surface under question.

We are often interested in evaluating the flux
through a closed surface, defined as a surface that
divides space into an inside and an outside region so that
one cannot enter in one region to the other without
crossing the surface. For example, the surface ofa sphere

isa closed surface. Using the symbol (_f) torepresent an

integral over aclosed surface the net flux througha closed
surface canbe written as

As we have described above, the vector area
element is directed normal to the surface, however,
normal can be intwo directions. By convention for an

... (2.5)

area element of a closed surface, area vector AS, always

points outward. This conventionisused inFig2.2. For
this fig note that tor different area elements,

corresponding vector area elements AS, will be pointing

in difterent directions but each such vector willbe along
outward normal to its corresponding surface element.
Also the flux leaving the surface is considered to be
positive while that entering into it, is considered to be
negative. Ifthe number of tield lines leaving the surfaceis
more than those entering the net flux is position. If vice
versa fluxis negative.
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The STunit of electric fluxis N m*Cor Vmis and
it has dimensions of [MIL3 =A™ }

Example 2.1 : Find the electric flux through a
vectorarea S =5x 107 jm’ placed in electric field
- =200/ +300 jVm !

Solution : Electric flux

-

§=E-§=(2007 +300})-(5x10 ")

$=0+1500x10" =1.5Vm

Example 2.2 : Acylinderis lying in a uniform
electric field such that its axis 1s along the electric field.
Show that the net electric flux through the cylinder s zero.

Solution :

ds

A _
1_\’3 + -
y $
5 S, (‘j g 81 i
ds

Asshownin figure we can considerthe cylinder to

be consisting ofthree surfaces, two circular faces .S, and

S, and curved surfaces .S, , thus the net flux through
cylinder.

-}

Rl

ﬁ-d§+fﬁ-d§+]ﬁ-d§
3

5y

From figure it is clear that for face S, .~ and
ds are parallel (8 =0)for face S, E and d5 are
antiparallel (6‘ = 180°)and everywhere on curved

surface £ and ds are mutually perpendicular

((9 = 900) ,hence

b= j Ldscos 07 + j Lds cos180° +I Ldls cos 90°
KA

S 5,

or ¢ - EIS\‘I - E&S’z + 0

Asarea S, =5, = S(say)



$=FES—ES=0

Thisresultis expected since electric field 1s uniform
so number of field lines entering the cylinderis equal to
the number offield lines leaving.

Example 2.3 : Acircular sheet of S cmradius s

situated in auniform electric field of Sx 10" Vm™ such
that its plane makes an angle of 30° withfield. Determine
electric flux through the sheet.

Solution : The angle madeby area vector (normal
to the plane of sheet) with electric field is

8 =90"-30" or g =60°
So, electricflux ¢ = £Scosf = £ (?1'?'2 ) cos 60°

¢=5x10" ><3,'14><(5><'10-3)" x%

¢:125x3,14x%x10:1.96x103 Vm

2.2 Continuous Charge Distribution

On a microscopic scale, electric charge 1s
quantised. However, there are often situations in which
many charges are so close together that they can be
conisdered to be continuously distributed. 1fwe consider
such acharge distribution to be consiting of point charges
the number of such charges is enormously highe.g. arod
containing a small charge of only InC it contains 10"
point charges. Thus, thoughitis possible to imagine a
charge distribution to be covered by point charges and to
calculate the electric field at the desired point using
Coulomb'slaw and then vector sum of electric fields due
to all the point charges to give the net electric field, but
presence of avery large number of point charges makes
such an approach hoplessly complicated. Instead we
regard the charge distribution to be continuous, use the
concept of charge density and the method of calculus to
calculate the electric field. The use ofa continuous charge
density to describe a large number of closely spaced
charges s similar to the use of a continuous mass density
to describe air which actually consists of a large number
of discrete molecules.

Ifthe net charge on some object is g we divide the
charge distribution into many infinitesimal elements dq.
Each such element has a length, area or volume
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dependingon whether considering charges that are
respectively distributed in one, two ot three dimensions.
We express dq in terms of the size of element and the
charge density. Depending upon the number of
dimensions over which the charge is distributed we
define three types of charge densities as follows -

(i) Linear Charge density

In some situation charges are distributed along a
line in space (or along the length of an object) such as
charge onathin rod or wire or onthe circumterence ofa
ring. In such cases we express dq in terms of linear
charge density (charge per unit length) A whose STunitis
C/m . It the length of charge element dq is dx by
definition.

dq
A=—1L
”» ..(26a)
or dg = Adx ... (2.6b)

If a charge q 1s spreaded uniformly on a rod of
length L then we can write A =q/L and it is a constant,

(i) Surface Charge Density

Insome situations charge might be distributed over
atwo dimensional area such as the surface ot athin disc
or sheet or surface of a conductor. In such cases
elemental charge dqis expressed in terms ofthe surface
charge density (charge per unit area) o measured in ST
units of C/m?. Ifa charge dq is present in an elemental

areads$ then.
o=dq/ds .. (2.7a)

..(2.7b)

Itacharge qis spreaded uniformly over a surface

or dg = ods

ofareaSthen o = ¢/ § andisaconstant.
(iii) Volume Charge density

The charge also might be spread throughout the
volume of a three dimensional object. Inthis situation, we
use volume charge density (charge per unit volume) p
measured inthe STunit of C / ny’. It charge ina volument
dVisdq, then

p=dgl/dV ...(2.8a)
dg = pdV ...{2.8b)
Ifthe charge ¢1s distributed uniformly throughout

ar



the volume Vthen p = ¢/} andisaconstant.

2.2.1 Electric Field due to a continuous Charge
Distribution

Inthis subsection we discuss the determination of
electric field due to a continuous charge distribution, the
general method for whichis as follows -

1. Considerthe charge distribution to be consist ofa
large number of infintesimal elements.

Chooseanarbitrary charge element and expressits
charge dqinterms of relevent charge density given
by equations 2.6, 2.7 and 2.8 depending on
whether the charge is distributed over a line,
surface or volume.

3. Treatingthis charge element dq asa point charge
the intensity of electric field at the observation point

plsgivenby
.
dre, ¥°

here r is the distance between element dq and

point P. The direction of vector - is determined by the
sign of charge dq according to the force that dg would
exert onaunittest chargeat P,

4. Thetotal electric field at P for the entire charge
distribution is obtained by taking vector sumot'the
contributions from all the elements. In the limiting
case whenthe size of element tends to zero

dy .
1r210)

Fig(2.3) shows situations corresponding to linear,
surface and volume charge distributions, the
corresponding expressions for electric fields are as
follows -

ey — !

{a) linear charge distribution (b surtace charge distribution
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(el volume charge distribution

Fig 2.3 : Determination of electric field due to
(a) lincar charge distribution (b) surfacc charge
distribution {¢) volume charge distribution

(i) Linearcharge distribution : Here dg = Ad/
F- At

21D

4
dre, *L ¥

Here the symbol L on integral represents a line
integral. If A 1suniform

o
L ALy

L ’-2

E=

e (2.12)

(1) Surface Charge Distribution : Here dg = ods

1 ads .
;

E- :
dre, *8 ¥

... (2.13)
here the symbol s on integral suggest thatitis a
surfaceintegral. If gisuniform

1 ds
41 e,

E

(iii) Volume Charge distribution: Here dg = pdV’

e

. 1
k= EL'

L (2.15)

Here the symbol V on integral sign represents a
volume integral. If pisa constant (uniform)

| I dv ;
dr e, Pl r

L= L 2.16)

While solving various integrals it should be taken

care of that direction of dE dueto different elements

may be ditferent. Equation(2.10) infact represents a three
dimensional vector equation. It can be written is its



cartesion components as -
E, =[dE,, £, ={dE,, £ = [dE, .. (2.17)

In many situations one or more of the above
integrals may vanish or have identical values owing to
symmetry in charge distribution,

1fwe wishto determine the force ona point charge
q due to some continuous charge distribution, we can do
so by first determining f© using equation (2.10)
(according to the dimensional situation ofthe charge

distribution) and thenuse £ = g# . Inthis chapter we

shall limit our study to charge distributions tor which
corresponding charge density (A, c or p asthe case may
be)}isumform.

Example 2.4 Athinring of radius R has a positive
charque quniformly distributed overit. Determine the
electric field at a point on the axis of ring at a distance x
from the centre of the ring. Discuss the behavior of the
result for condition x >> R .

Solution : Asthe ring1s uniformly charged, the

linear charge density is constant and i1s given

di
A 4
|

cll'-,2 Sind

T 2xR

Now we consider twe diametrically opposite

elements A and B each of length ¢ onthe ring as
showninFig.
Charge oneach element

If7 1s the distance of each element from point P
thenthe electricfield at P dueto element A,

e 1 dy

dl, = PP (Indirection AP)

and electric field at P due to element B

1 dy

dl, = — irecti
*“aze, P (Indirection BP)

)

Clearly | dF, | = |dF,

Onresolving dﬁl and dﬁg as shown in fig, the

perpendicular component dF, sin@ and

dF., sin @ cancel each other being equal and opposite.

While compenent along axis dF, cos@ and dF., cosd

addup being in same direction. We candivide the entire
ring into pairs of such diametrically opposite elements.
For each such pair the axial component is along OP, so
electric field due to completering, at P.

[

—cosé
P

E= IdEcosé’ =
I

dre, s

X
FromFig. cosf = . andas dg = Ad/ andare

R, 4 constant and for a given point P, x, > and r are is
also treated as constant,

E=—"% [t
dre,ry

So jd £ = length of complete ring =2aR
I

I =
So Are, ¥

Ax2mR= q and from Flg F = (Rg i )1..-'3

e ™ kgx
are, ()" (R4

Se



Under condition x >> R the above expression
reduces to

kax kg

E=

3 2

XX

Which is identical to expression for the tield
produced by a point charge ¢ at a point at a diffence x
fromit. Thus, for distant axial point the ring behaves asif
its entire charge is concentrated at its centre.

Example 2.5 Auniformly charged ring and a
uniformly charged sphere are both of equal radius R and
each has acharge q. The centre of the sphereliesonthe

axis ofring at adistance of R 3 from the centre of ring.
Find the electric force acting between sphere and thering,

Solution : Electric field at an axial point ata
distance x from the centre of auniformly charge ring is
givenby

1 yx
(R+)”

dre,

;

given x = K NE] . hence the electric field at the
location of the centre of sphere, duetoring is

I ¢RV3 1 3¢ g

B 4z e, (41{3)3’"3 4gx e, 8R? 327 e, R

From symmerty the total charge q uniformly
distributed on the sphere can be considered to be
concentrated at its centre, hence the force between
sphere andthe ring is

_ B3¢

32re, R?

2.3 Gauss's Law
Gauss's law states that the net flux of an electric

field through an imaginary closed surfaceis 1/ €, times
the net charge enclosed by the closed surace.

2q

=g -

L {2.18)

8]

Ifthe closed surface is in some medium other than
free spaceor air, then

2q

Lo

g{fu:@gﬁ‘df: ... (2.19)
The above equation gives Gauss's law tor dielectric
media. Regarding Gauss's law following points are worth

noting
@)

Here . g, representsthealgebraic sum of charges
enclosed by the surtace.

(m)  Thefluxentering the surfaceis considered negative
and the flux leaving it is considered positive. The
net flux isthe algebraic sum of'the fluxleaving and

flux entering the system.

The closed surface considered for applying
(Gauss's law 1s called Gaussian surface. It is an
arbitrary imaginary closed surface.e. it can have
sphereical, cylindrical orany other arbitrary shape.
Itisusually chosen so that the symmetry of charge
distribution (ifany) gives, on at least part of the
surface an electric field of constant magnitude
which can then be factored out ofthe integral of
equation (2. 18) making calculations easier.

(1)

(auss's law considers only on the net charge
enclosed in the closed surface. The value of flux
does not depend on shape and size of the Gaussian
surface. It deos not depend on the location or
ditribution of chargesinside Gaussian surface. 1t
depends on amount of enclosed charges, their
nature and medium. For static charge distribution
Gauss's law and Coulomb's law are equivalent.
However Gauss'slaw is more general in that 1t is
always valid whether or not the charges are static.

(iv)

Itthe net change enclosed by a surfaceis zero the
tlux linked withit is always zero whether it is placed
in aunitorm or nonuniform electric tield. For such
asurface, flux entering is equal to the flux leaving
the surface. [see fig2.4 (a) and (b)]

v)

bl Ll , Ll —\_;
T D =
o g
» > » f
fa) th)
i'e~ ¢net = ¢i.n + ¢'Uul = O



(1) Gauss'slaw 1s valid only for those vector fields
which obeysinverse square law.

(vii) Electric field 7 at any point on the Gaussian

surfaceis the net electric field at that point, This f;

result tromall charges both those inside and those
outside the Gaussian surface, however term¢ on
the right hand side represent only the net charge
enclosed inthe Gaussian surface. In some specific
cases though the net charge enclosed in the
Gaussian surface may be zero but electric field may
not. For example if a dipole is enclosed by a
Gaussian surface than charge enclosed is zero and

¢ is zero but at some point on the surface 77 isnon
Zero,

(vi) Charges present outside the Gaussian surface do
not contribute toward the net flux through the
surface.

2.3.1 Gauss's law Derived from Coulomb’'s law

Considere a positive point charge q at point O
enclosed by anarbitrarily shaped Gaussian surface.

a5

=

’ ]
AQA

Fig.2.5:Solid Angle

Consideranareaelement ¢s, atadistancerfrom

the point charge(Fig2.5), the electric field at thislocation
18

g 1
=
4w e,

9; _
2 ...(2.21)

Sofhux inked with this area element 1s

i,,afs cos
dre, r*

di = Edscosf =

hence the total flux linked with entire closed
surface

gé:] 1 iqdicosé?: q J‘Ofs‘c?sgi
5471- E(l P 47? ED ! .
dscos
By definition — =dQ 50lid angle

subtended by the area element ds at point O.

__ 4 Ay
¢= 4 e, .[ng " ax e, [ Ldﬂ = 471'}

-9
or #=

4

which is the mathematical statement of Gauss's law:.

Example 2.6 A point charge of 7.6 uCis sitnated
at the centre of'a spherical surface of 0.03 mrads. Find
the fhux linked with the spherical surface. What will be the
change in flux ifthe radiis of surface be doubled.

Solution : As

¢,_i_ 76x10 ¢
e 885x10 "

i

=8.6x10" Nm’C™'

As Gauss law does not depend on the size of
surface it will not change on doubling the radius of
spherical surface.

Example 2.7 Acharge q is placed at the centre of
a hemispherical surface. Determine the flux of electric
field through the surface of hemisphere.

Solution : As Gauss's law deals with the electric
flux depends onthe charge enclosed by a closed surface,
s0 to enclose the charge and keeping symmetry in view
we Imagine a complete spherical surtace centred at
location of q. Flux through this surface.



Since the charge is placed at the centre, from
symmetry considerations we expect that flux through the
surface of hemisphere

é!

¢ _ 4

=3 C2e,

Example 2.8 Figure shows a closed Gaussian
surface in the shape of a cube placed ina region where

the electric fieldis givenby £ = E,)xf .Eachedge of'the
= 1 c¢m and constant
E,=25%10°NC 'm ' . Find the net electric flux

linked with cube and the net charge enclosed by the
cube.

cube has length a

Y A

C B
D E—>F

p A »X
G- a

’? {.7
Z#

Solution : Area of each face of the cube
S=d

Total flux through the cube
¢ - (E ) S;)ABEF + (E ) SE)OC'.DG + (f ) E)B[:‘DE

* (ﬁ ' lS) + (ﬁ l lS )().-'\H(T
Astoreach ofthe facesBCDE, OAFG, OABC,
and DEFG, £ isperpendicular toso corresponding flux

+ (E . S)
AT | JHECT

terms are zero.

¢ = (E')x; ) az;)_.-\m}' * (on; o (_;))

and as for the face OCDG x=0 the contribution of
thisterm toward fluxis also zero. Asfor face ABEF x=a

OCHGE
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¢ = ‘Ei]a3 -0= ‘Etlas

=(25%10")x(1x107) =0.25Nm*C”
and trom Gauss's law, the enclosed charge is
g=c,$=885x10""x0.25=221x10""C

Example 2.9 A hemispherical bodyisplacedina
uniform electric field E. What is the electric flux inked
with curved surfaceifthe electric field 1s (a) parallel to its
base Fig(a) (b) perpendicular to its base.(Fig. b)

I

S P

(a)

Solution : We can consider the hemispherical
body as a closed body with a curved surface and a flat
base (cross section), the thix linked with this body will be

zero as it does not enclose any charge. Soif ¢. and

¢, are flux be linked with curved surface and base

respectively
=0 +¢ =0
or ¢, =@

(a) For the situation of Fig (a), as the electric field is
parallel to thebase, vector area ofbase is perpendicular

to £ thus ¢, =0 andsod, =0.
(b) For the situation of Fig (b) area vector of base

isantiparallelto f

So ¢ =Fcosl80' =-FaR°

¢C'

(Inthis case the flux linked with curved surface
depends on the radius of cross section (base) and not on
the shape of curved surface)

~¢, =F-7R*



2.4 Application of Gauss's Law
2q

=

Using Gauss'slaw @ = CJSSE ds =
o

The electric field due to a highly symmetrical
charge distribution can oftenbe easily calculated. Theaim
in this type of calculation is to determine a surface
(Gaussian surface) which satisties one or more of the
following conditions -

1. The value of electric field can be argued by
symmetry to be constant over the portion of surface.

2. The area vectors of the portions of surface are

either parallel or pendicularto £ .

In following subsections we will discuss selection
of Gaussian surfaces for some symmetrical charge
distributions.

2.4.1 Electric Field Intensity due to an Infinite
Line Charge

AL, (lasl
c]l—',l Cagh

P
Lan

Fig 2.4 : Elcetric Ficld duc to an infinitc linc charge

Consider an infinite line charge of constant linear
charge density A . We wish to determine electric field ata
point P at as perpendicular distance OP=r{romthisline
charge.

Now consider two small elements 4 and 4, of

equal lengths situated symmetrically with respectto O on
this line charge (Fig 2.6). The electric field inensities at P
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dueto these elements are dﬁl and dﬁg respectively with

dF,and JF., directedalong 4 P and 4,7 . Onresolving
these electric field along OP and perpendicular to OP we

note that their perpendicular componenets 7, sin & and
dF., sin@ cancel while components along OP,

dF, cos@and dF., cos @ add. Inthis manner the infinite

line charge can be divided into such symmetrical pairs.
Resulting electric field from each such pairis along OP.
Thus we concludethat the electric field dueto infinite line
chargeis directed perpendicular to the line chargei.e. it s
inredial direction (which is redially outward or inward
depending upon whether the charge is positive or
negative). This result is expected on the basis of
symmetry. Imaginethat while you arewatching some one
rotates theline charge about its perpendicular axis. When
you look again you will not be able to detect any change.
From this symetry it can be concluded that the only
uniquely specified direction in this situationis along a
radial line.

Now congider a Gaussian surface in the form ofa
closed cylinder of length / coaxial with the line charge
such that the point P lies on the its curved surface. (Fig
2.7)

The charge enclosed in this Gaussian surtace

Yqg=Af (224
so from Gauss's law
s e g M
(ﬁsﬁ'd‘;_e_[,_e_[, (225
=1
-1
-1
—1 A
L o
£ 4=
- ;
- 5
N =

Fig 2.7 : Cylindrical Gaussian surfacc for a linc charge



This closed cylindrical surface can be subdivided
into three parts

(i) Upper circular face (cap) S,
(1)) Lower circular tace (cap) 5,

(ii1) Curved surface .S,

Sothe equation (2 25) canbe rewritten as

A

5

IE-CE-FIF:‘-CE-F
5

5

or

I Fedycos90" +

5

_ _ ¢
I Fdscos90” + I Felscos O’ = A—
A kA =

or 0+0+j£a{s:ﬁ

5 0

... (2.26)

Since the magnitude of electric tield E 1s same
everywhere onthe curved surface so E canbe taken out
ofthe integral in equation 2.26, giving

£

Ejds = AL

5 Sa

AL

FEx2rrf=— . .
or e, , bja‘.s =2xrf
o K= A ..(2.27)

2xr €,

= AL
Invectorform £ = r ...(2.28)
2re,r

Clearly the magnitude of electric field dueto an
infinite line chargeis inversely proportional to distance and
directly proportional to the charge density and
corresponding graphs are as showninfig 2.8
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. 1
ie B " and I x A ...(2.29)

T [

{b)

()

Fig 2.8 : Vanation of electric field dueto a line
charge with (a) distance (b) charge density
Example 2.10 : The linear charge density ot a

straight infinite wireis 2 pC/m . Find the magnitude of
electric field ata point 20 ¢cm from the wire in air.

Solution ;
2
2re,r dre,r
=9%10" x M
20x107
or  FE=18x10"NC”

Example 2.11: An electron s circulating on a
pathofradius 0.1 m around ainfinite line charge. 1f'the
linear charge densityis 10°cm™ thenfind the magnitude

ofthe velocity of electron, [Given m, =9.0x10 *' kg,
e=16x10"C]
Solution : Force on electron due to infinite line
charge
1 2ed

F=gk=e¢l=
dre, ¥




This force provides the electron necessary

_ 2ed
dre, ¥

. 2eAd
dre, m,
_J9x105’x2x1,6x10 10 ¢
9.0x107"

mev‘

centripetal force, 5o

or

v=v2x16x10" = 44/2 x107
=5.65x10"ms '
2.4.2 Electric Field due to an Infinite Uniformly
Charged Non Conducting Sheet

Let ABCD1s some portion of auniformly charged
non conducting sheet of infinite extension. The surface
charge density ¢ forthis surface 1suniform. We wish to
determine electric field at a point P at a normal distance
OP=rfrom the sheet. (Fig 2.9)

J—

ALty Bl daF,
0 W d g 1Tl

7 R

dJ_"..l 31l aF,

Fig 2.9 : Electric field due to an infinite non
conducting charges sheet

Consider two small area elements 4 and A4,
equidistant from O onits sides at adistance then electric

field dl- and di-, due to these elements have same
magnitude and these are directed along A7 and

A, P respectively. Onresolving these electric fields along
OP and perpendicular to it, the perpendicular
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components dF; sing and dF, sin@ cancel while
parallel components ¢/ cos& and dF., cos@ add.

In this manner we can divide the entire charge
sheet into pair of symmetrically placed area elements. For
each such pairthe net electric field 1s along OP. Thus we
can say that the net electric field due to complete sheet at
point P isalong the normal joining P to the sheet.

Now imagine a cylindrical closed surtace of cross
sectional area § and length 2# with point P at one of its
circular face (cap). The sheet dividesthis cylinder into
two equal parts (Fig 2.10).

Fig 2.10 : Construction of Gaussion surface for a non
conducting uniformly charged infinite sheet.

The net charge enclosed by this surface 1s

>qg=08 ...(2.30)
therefore the net electric flux lined with it
. A
¢=<j5£-d?=§=a— 23N
$ e

il il
We can consider this closed cylindrical surface to
be consisting of three parts (1) circular cap .S, (ii) circular

cap 5, and (iii) curved surface .S, . Thusthe equation
(2.31)canbe written as.

oS

jﬂ'-aﬁs’z -

55 D

. (232)

Rl

j.E‘dST-FIE'Q{S:-F
3z

For both surfaces S, and 8, F andds are

parallel so at these surfaces I7-ds = Fids , while for



surface S, , £ is perpendicularto oS so 2-ds =0
So fromequation (2.23)

4

ol
=

Rl

IEd5‘+IM3'+0:

o

As for surfaces .5, and §, E is same at every

point, so
E[ds+E[ds= s
s, S, So
j ds = j ds =358
oS
ES+ES =
SO c.
oS
ZEJS\‘ -
or c
o
or k=g - (2.33)
. . T .
In vector form £ = 2—n . (2.34)
c

8]

Where 7, 1saunit vector normal to the sheet. Ttis

obvious that the electric field due to aninfinite sheet of
charge does not depend on distance i.e. such a charge
distribution produces a unitorm electric tield. Thisresult
canbe extended for points in the close vicinity it a large but
finite sheet of charge provided the points are not near its
edges.

E a

 of 8 '} > G

(a) (b

Fig 2.11 : Dependence of electric field fora
Uniformly charged infinite sheet
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Example 2.12 : For auniformly charged infinite
non conducting sheet, area of 1 cm*anywhere on the
sheet contains 11 C charge. Calculate the electric field
near the sheet in air,

Solution : Surface charge density

g 17.70x107°C

o=== -
4 10 *mr®

o =1770x107* C/m*

So electric field

a 17.70x107

_ _ — :.loll) NC 1
2e, 2x885x107"

;

2.4.3 Electric Field due to an Uniformly Charged
Infinite Conducting Plate

For auniformly charged infinite conducting plate
the electric field is directed normal to the plate asin case
of anuniformly charged infinite non conducting sheet.
This can be shown by arguments based on symmetry
similar to thoseused in earlier subsection.

Fig 2.12 : Electric ficld duc to uniformly
charged conducting plate

Let the surface charge density for the conductor
plateisa. Wewish to determine the magnitude of electric
field at a perpendicular distance r from the plate. Imagine
acylindrical Gaussian surface of cross sectional area S
and length ras showninFig(2.12)



Charged enclosed by thissurface > g=c8 ...
(2.35) Form Gauss's law the flux linked with this
cylindrical surface

e

z .. (2.36)

. Zq
g=0L di=—=
(js = 0

This Gaussian surface can be considered to be

consisting of three parts. (1) Left circular cap .§, (i) right

circular cap S, (i) curved surface 3, . So the equation
(2.36) canberewritten as

-‘.E‘dg-ﬁ‘fﬁ'dsz-‘r o8 .. (2.37)
3z

Rl

jﬂ'-aﬁs’z -

55 D

Ascircular surface S, isinside conductor soE=0
forit while for S, £ and s mutually perpendicular,

thus 7-ds =0 . Also for surface S, 2 and ds are

parallel and E 1s same for every point on .5, from these
considerations equation (2.37) yields

OJrEJ.a'.«HrO:Cr*S
5 =
o LS-2
=
.
In=— ..(2.38
or - (2.38)
Invectorform
s
E=—n ...(2.39
. (2.39)

Where #, is aunit vectornormal to the surace of
conductor. Thus, the electric field due to a uniformly
charged infinite conductor plate does not depend on
distance 1.e. electric field is uniform. This result is
approximately true fora uniformly charged conducting
plate of finite dimensions for points in close vicinity of it.
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Ea

» 7

0O

Fig 2.13 : Dependence of electric field fora
uniformly charged conducting plate

Example 2.13 : The surface charge density fora
uniformly chargedinfinite conductor plate is

4%10 °Cm * . Find the magnitude of force on a charge
—2x10™ C placednearit.

Solution : Electric tield for the conducting plate

=<
E[J
Magnitude of force onq
PR g T
F:qE:E: 2x10 X4>:EO _ 3
=h 8.85x107 " 8.85
{7=0903N

2.4.4 Electric Field Intensity due to a Uniformly
Charged Spherical Shell

Fig 2.14 : electric field outside the charged
spherical shell
Suppose acharge Qs distributed uniformly on the
surtace of a spherical shell of radius R. The surtace
charge density tor this shell is then.



_Q_ ¢

A 4ri?

We wish to determine electric field at a point P
tromthe centre of the shell. The Gaussian surface for such
achargedistribution must be spherical. Dependingupen
location of P three situations are possible.

(a) When P is outside of the sphere (r> R)

For this case consider a spherical Gaussian
surface of radius r (#> 1) concentric with spherical shell
as shown in tig 2. 14. The net charge enclosed by the
Gaussian surtaceisthen

.. (2.40)

2g=0 ...(241)
Sothe net flux linked with Gaussian surface
Xq_0
I ds =
b= Lds = =2 = L (2.42)

4 4

Thentensity of electric field 77 and area element
s arebothactalongthe radial line for every point on this
Gaussian surface. Also note that as each point on this

surface is equidistant from centre the magnitude of Eis
same so from equation (2.42)

¢ = qSLd‘ gﬁms Lcj’;ds -.(2.43)

Cﬁsdf =471" = Area of spherical Gaussian
surface
50 ¢=Lﬁx4ﬂn‘2=g
ED
.0 ek
50 o ar c, 2 c, 2 ..(2.44)
- : ¢ )
{-- From equation (2.40) e oR™}
id

From equatin (2.44) it is clear that for external
points a uniformly charged spherical shell behaves as if its
entire charge is concentrated at its centre. Thusthe force
due to auniformly charged sphere having acharge Q on
another charge placed outside the shell is same as the
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force on this charge dueto a point chargeQ placed at the
centre of shell.

(b) When point Pis on the surface of shell (r=
R): For this case on substituting r= Rin equation (2.44)
we obtain

0
S Arcek

T

=

..(2.45)
8]

(c) When point P is inside the Shell (»<R) In
this case Gaussian surface is well within the spherical shell
(Fig 2.15) and as the charge is on the outer surface of
shell the net charge enclosed by the is Gaussian surface s
ZEer0.

24=0
So form Gauss's law
g _
I ds =
6=, -

- ds=0 and £ and ds are not mutually

perpendicular hence at every peint inside the spherical
shell

E =0 . (2.46)

Alsoifsome charged particle is situated inside a
charged spherical shell no force is exerted onit by the
charge onthe shell.

E

O <R =R =R

Fig 2.16 Variation with distance of electric
ficld duc to a uniformly charged spherical shell

The variation of electric field with distance for a
charged sphereisshowninFig2.16

2.4.5 Electric Field Intensity due to a Uniformly
Charged Conducting Sphere

If an excess charge is placed on an isolated
conductor that amount of charge will move entirely to the



surface of conductor. None of the excess charge can
reside within the body of conductor. This 1s logical
considering that charges of same signrepel each other.
We may consider that by moving to the surface the added
charges are getting as far away from each other as they
can. Under electrostatic condition the electric field inside
the conductormust be zero. For metallic conductors this
1s easy to explain. Ifit were not so the field would exert
forces onfree electrons and thus current would always
exists with in a conductor of course, there 13 no such
perpetual current in side a conductor and so interal
electric field must be zero. Anelectricfield doesappear
when excess charges is given to the conductor but the
added charge distributes very quickly to the outer
surface (in a time of the order of nano seconds) so the
interal electric field due to all charges both inside and
outsideis zero. Then the movement of charges cases. As
the net electric force on each charge is zero now the
conductoris said to be in electronstatic equilibrium,

As the charge resides on the surface a spherical
uniformly charged conductor behaves like a uniformly
charged spherical shell and expressions for electric fields
are exactly same as have been derived in subesction
244

2.4.6 Intensity of Electric Field due to a Uniformly
Charged Non Conducting Sphere

Consider a non conducting sphere of radius R
whichis givena charge Q whichis distributed unitormly
over its entire volume. Theretore the volume charge
density is given by

Q¢

VR

(247

We wish to determine electric field at a point Pat a
distancer tromthe centre O of the sphere. The Gaussian
surface to be considered here is spherical with radius r
centred at O. Depending upon the location of P three
situations are possible.

(A) When point P lies outside the charged
sphere (> R): Inthis situation the charged enclosed
by the Gaussian surface is same as the charge on the
sphere under consideration(Fig2.17)
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Fig 2.17: Gaussian surfacc for determination of

clectric field outside a uniformly charged non
conducting sphere

Thus X¢=0

Hence, from Gauss's law the flux linked with this
Gaussian surfaceis

...(2.48)

: Xgqg @
¢:<j}55-d§=€——— L (2.49)
0 0
O
or ¢:(ﬁs Fdszel .+ since for

8]

spherical surface ; and ds are parallel}

As from symmetry magnitude of £ is same at
every point on Gaussian surface we heve

¢
or =k} dy==
¢ is’ Ei]
;Y
or = Fxdmr == L (2.50)
i
0
F=—=
or dre, s’ ... (2.51)
. op [ K
=" —
or 3e, [rb J ...(2.52)

- . R S
{--Fromequation 247 ¢ =-7R p}
2



Invector form

o
dre, v

0
3e,

F=

R.’%
!,2

Thus we can say that for points outer to the surtace
the charged sphere behaves as if the entire charge is
concentrated at the centre.

(b) Whenthe point P is onthe surtace (r=R). In this
case on substituting r =R inequation(2.53) yields

]f" .(253)

o @ PR
dze,rt 3e, .. (2.54)
and invector form
- O . pR .
IN=————r= iz
47r EI) r;. 3 E(I P (2‘55)

{(c) When point P lies inside the sphere (r <R). In
this case spherical Gaussian surface is inside the charged
sphere (Fig 2.18) and charge enclosed by it say Q' is
givenby

Fig 2.18 : Gaussian surface for Determining
E at internal point

(__}*':pxiﬂ'r3
J
i o _
o= A O . (2.56)
3

Se the flux linked with Gaussian surface

: o o

— fds ==
gé Cﬁs g[] Ei] RJ
or

or

6= Fds=

o

{ Asat each point on Gaussiansurface £ || s +

From symmetry of charge distribution magnitude of
Eis same for every point on this surface.

, Oor’
= fds = _
So & fﬁs e, R
q 2
F= F= F
Invector form
g - p .
¢ = —F = —
4@[]!{.‘ 38 PP (2,58)

8]

as at centre of sphere r =0, so from equation
(2.57)

E centre=0

From above discussion for a spherical charge
distribution it is clear that

(i) Atthecentre E=0

(11) For the interior of the sphere, electric field 1s
directly proportional to distance (r) from centre £, oc #

(ii1) Electric field is maximum at the surtace of
sphere

(iv) For points outside the sphere electric tield is
inversely propotional to the square of distance

, 1

Lr}ux % _:

Sotor aunitormly charged non conducting sphere

the variation of electric field with distance from the centre
1s as showninFig2.19



>

?';H

O <R reR

Fig 2.19 : Variation of Elcctric Ficld ducto a uniformly
charged non conducting sphere with distance r

Example 2.14 A conducting sphere of T0m
radmsisgiven | nC charge. Determine electricfield at (a)
its centre (b) a point 5 cm from centre (¢) ata point 10
cm from centre (d) at a point15 cm from centre in air.

Solution : (a) Theelectric field at the centre of a
conducting sphereis zero.

{b) r=>5 cm wheres radius of sphere R= 14 cm,
so the point isinside the conducting sphere. Electric field
inside conductoris zero (¢) r= 10 cm, point is on the
surface of sphere.

; :%:gx']of’xL
dre, R ('|0><'|0 3)
—9x10° NC !

(d)r=15cm, point is outside the sphere, so

0 9a0"xIx10°
4z e, r’ (15x10—2)2
— 4x10° NC

Example 2. 15 : A sphere of diameter 10 cm is
uniformly charged so that electric field at its surface is

5x10° Vm™ Calculate the force on a

Sx 107 u( charge situated at a distance of 25 cm from
the centre of sphere.

Solution : Let ¢ bethe charge givento the sphere,
then at surface

__9q
T Are, R

Electric field outside the sphere at adistance rfrom
centre
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Iz 1 5
dre,r
E R
S
2 5 z C125x10°
v E=n. - O) 5y 212810
P (25)‘ 625
F=2x10"ym™

Force oncharge I” = ¢,/ =5x 107" x2x10*

=10x10*=10"N

Example 2.16 : Acharge of 0.5 uCis distributed
uniformly over anon conducting sphere ofradius 10cm,
Determine the electric field at a point (a) at the centre of
sphere (b) 8 cm from the centre (¢) 10 cm from the
centre (d)20 cmfrom the centrein air.

Solution : Atthe centre of sphere E=0
(b) Whenr =8 =8x10"m cm the point is
internal to sphere so
dre,

360

3 0x10°x05%x 10" x8x10~" 3
10—3

(1010 3)3

I£=3.6x10"V/m

(c) When = 10 cm point is on the surface of
sphere

_ 0
dr g, R*

'

_ 9x10r xO,Sﬂxzﬂ —45%10° Vim
(10><10—-')

(d) When r=20 cm, point is outside sphere so

F=—Y
dre, r



_ 0x10°x0.5x10 ¢
(20x107)

=1.125%10" V/m

2.5 Force on the surface of a charged
conductor:

Excess charge given to a surtace gets distributed
over its surtace. The charge present in any small portion
of the conductor 1s under repulsion from the charge
present inthe remaining portion of the conductor. Thusa
force of repulsion acts on every surface element of the
conductor and the net force on the surface is the vector
sum of forces acting on all such elements. Thus a charge
conductor surface experiences an outward pressure.

Let the surface charge density on a conductor
surface be . Now consider two points /] and 7}
placed symmetrically with respect to the conductorwith

P justinside and 7, just outside the conductor (Fig
2.20)

£

Fig 2.20 : Determination of foree on the
surface a charged conductor

As the electric field out side the conductor is

a/ g, sotheelectric field at point 7

Fq L (2.60)

and since the electric field inside a conductoris

zero so at point 7,

47

£, =0 ...(2.61)

Next, we consider this conductor to be consisting
of two parts (i) element AB having area ds and (ii)

remainder of the conductor, ACB. It I??l and EZ arethe

electric field dueto AB and ACB respectivelyat pointsin
their near vicinity then from fig

Fy =E+F, .. (2.62)
(/. and /., areinsamedirectionatPoint £ )

and £, =k —E, ... (2.63)
( £, and £, aredirected opposite at point 7, )
From equation(2.16)and (2.63)
I —F =0
ie. K =F,

Fromequation (2.60)(2.62)and (2.64)

. (2.64)

B+ =2

Ei]

g
E,,

or 2T .
2e,

..{2.65)

So, the electric field due to part ACB at the

. . o
location of area element AB can be considered as 2—
2e,

Ifthe total charge on element AB is dq then torce onit

di = E,dg = 2idg As ( dg = ods ) .80

o

]
Z

dl = a

e ... (2.66)

ds= L e, I-ds
2

8]

a .
— soo=¢, L}
=

{0 E=

i

Force acting onthe complete surface is then given
by

o

o’ e, I-
F = —Cf_ﬁ' = _l] dS‘
P, 2c 47973 - (267)

and the force per unit areai.e. pressure



- o 1

= —= :—E(IE;"
ds 2, 2

Vol

. {2.68)

i
this pressureis called as electrostatic pressure
2.6 Energy perunit Volume for an electric Field

We have seen that an electric force acts along
outward normal on the surface ofa charged conductor.
Forincreasing the amount of charge onthe conductor or
toncrease the volume of region in which the electric field
1s present, the work is required to be done agains this
force. This work gets stored in the form of energy in
electric field.

For the sake of simplicity we consider a spherical
shell of radius r for which surface charge densityis o (Fig
2.21)

T-dr

Fig 2.21 : Spherical Charge Distribution

Outward pressure onthe surface of shell

]
Z

a

P=
2e, ...(2.69)
So the outward force on the surface
F:PA:C’-—_><471'r3 .. .(2.70)

2¢e,
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Work done against this force in compressing the
shell by asmall amount dris

AW = Fr =2 — dzr*dr
2¢,

Reduction in volume of sphere (or increase in
volume of the region where electric field is present)
dV =4xrdr

]
Z

a
2e

aw = dv

So 27D

8]

So energy stored in electric field
UZ r 1 2T
W=U= J.Z—E)Cﬂ’ = J.E € EdV | (272)

and the energy stored per unit voume in electric
field or energy density.

]
Z

_dW_ a :le,) Ez

U, =—=
dim 2¢, 2

... (2.73)
If some other medium other then free space or air
isconsidered then

:dﬂj_ g ZLEC,EE
d 2e, 2

U,

L 2.73)

Although the above relations have been derived by
considering a spherical shell but their validity 1s general.

2.7 Equilibrium of a Charged Soap Bubble

For a soap bubble, the pressure at its internal
surface is more than the atmospheric pressure present at
its outer surface. This excess pressure is balanced by
pressure due to surtace tension. Ifthe radius of bubble is
r and surface tension is T then excess pressure.

4T

£

- (274

Ifnow the soap buble is charged with surface
charge density ¢ then an cutward electricstatic pressure
O_E

I also acts on the surface of bubble. In this case
il



})m' +i:£
T 2g, F
ar o
po="t
ar ax - 7 e . (2?5)

8]

On charging bubble in such a manner a situation
arise inwhich excess pressure becomes zero after which
the bubble bursts, so for equilibrium,

4T a’

P

v 2e,

...(2.76)

81
Equilibrium radiusof bubble 7 = U—E‘ 277

181 ¢
and surface charge density & = !—] ... (2.78)

and charge g = o x4xr’ =478T e,

Example 2.17 : The surface charge density fora
charged soap bubbleis 2.96 uC/m* The surface

. (2.79)

tension of soap solutionis 4x107™ N/m . Find the

radius of soap bubble so that excess pressureis zero and
thebubbleisin equilibrium.

Solution :

e 8/'e, 8x4x107"x885x107"°
o’ (2.96x10 “)3
=32x10"m

r=032Zm

Important Points

1. Electrictlux throughasurtaceis proportional to the net number of electric field lines passing through that area.
electric flux through a tlat area in a uniform electric tield is

¢=18cosf

Where & 1s the angle between direction of E and normal to the area. It electric field vector is denoted by

E be and area vector by S then

(é:}éxg;

2. Iftheelectricfield is nonuniform and (or) the surface 1s not flat then electric flux

4=|F-ds

Where ds isvector area of some surface element and 7 iselectric field at this element. Ifthe surfaceis

closed

=K. ds

3. Depending upontherelativeorientationof £ and § (or ds )¢ may bepositive, negative or zero.

49
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For determining electric field due to some continuous charge distribution, it is divided into small charge elements
dq and electric tield due to each such element is then integrated to obtain total electric tield. Electric field at a
distance r fromcharge element dq

1 dg

df. = =
dre, v

For complete continuous distribution

(a1 pdg
jrq_'[dﬁ_491'60-[r_2

If charge distributionis linear dg = Ad# where A 1s charge linear charge density andislength of element.
If charge distribution is superfecial diy = ods oissurface charge density and dsisarea of element.
In case of a volume charge distribution dg = pdV” where p is volume charge density and dV is volume

element.

Gauss's law is valid only for closed surfaces. According to it the the net flux through a closed surface in an
electric field

g =4
¢-_<}SL ds =~

[}
here gis the net charge enclosed bythe closed surface.
(Gauss's law 1s very helpful for finding electric field when charge distributions have a high degree of symmetry.
For an intinite line charge of linear charge density A

7= A
2re,

For aunitormly charged infinity non conducting sheet (surface charge density ¢ )

a
k= 25 (uniformelectric Field)
4]

c
For auniformly charged infinite conducting (surtace charge density) E= - (uniformelectric field)
8]

Continuous charge distribution can be classified as
(1) linear charge distribution distribution (i1) surtace cahrge distribution (iii) volume charge distribution
For auniformly charged spherical shell or spherical conductor Esurface

T _(r=R). E

‘.\'m_’,fhc:e = 471_ ED R3 “is = 0

[Here Q1sthe charge on sphere and R isitsradius]
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15.

For aunitormly charged non conducting sphere

: o
F o =—= (r=nR
surfoce 47 E[] RZ (F’ )
Or
K =— R
" Are, K (r<R)

Pressure on surface ofa charged conductor

P = 20-__ _1 e, F* thisis dueto mutual repulsion
=

between charges residing on surface.
Energy perunit volumein an electric field

> 1,
U, =2 =>¢ I
2e 2

8]

For the equilibrium of a charged soap bubble.

AT o°
P

—= e (T1is surface Tension, #is radius of soap bubble)

Questions For practice

Multiple Choice Questions

1.

(c)its surface

| |
(a) B € L

The electric field due to aunitormly charged solid
non conducting sphere is maximum at -

(a) the centre

(b)the mid point between centre and surface
(d)infinity

For free space the energy density in some region
where electric tield isE, is given by

by

OF v
]. 2 ]- 2

(c) EF o (d) 5 F

1 pC charge is present at the centre of a cube of

edge a. The flux through each tace ofthe cube will
be (in VM)

(@) 1.12x10*
(©) 1.88 < 10"

(b) 2.2 10*
(d)3.14 x 10

Two electric dipoles having charges + ¢ are placed
mutually perpendicular to each other. The net
electric flu throughthe cube1s

g 4q
(a) E__] (b) e__]

2g
(c)Zero (d) -

On charging a soap bubble withnegative chargeits
radius

(a) decreases

(b)increases

(c) remains unchanged

(d) nothing can be said due to incomplete
information



10.

A charge q 1s1n a sphere and flux through the

q
sphereis g . Onreducing the radius of sphere by

halfthe changeinthe tlux is

(a) four times its intital value

(b) one fourth ofitsinitial value
(c)half ofits nitial value

{d)unchanged

Complete tlux dueto aunit charge placed in air is
(a’) El) (b) E[]l

(c) (47 <, )_] (d) 47 €,

The radii of two conducting spheres area and b.
When these are charged with same surface charge
density theratio of electric field intensities at their
surfacesis
(Q)p o by 1:1
(Yo b (d)b:a

Theradii ot two conducting spheres area and b.
When these are given same charge the ratio of
electric tield intensities at their surfacesis

Q)b - a b1:1
() a b (d) b:a

Electric fieldintensity due to along straight charged
wire varies with 1/+as shown in

E

(a)

0

(b)

(c)

O i

o > Lir

A squareis situated in auniform horizantal electric
field such that a line drawn in the plane of square
makes angle of 30° with electric field (Fig). If side
of square s a the flux through the sphere will be

-
Erye
i

1
®

\/?: For?

OB

(c)Zero {(d)none ofthese

Very Short Answer Questions :

1.

|F¥]

When does the electric flux through an area

element placed inan electric field  iszero?

Atwhat positions the electric field intensity due to
auniformly charged sphere is zero?

Write the expression for force per unit area of a
charged conductor and give its direction.

Where does the energy due to a charge 1s stored?

A charge Q is a given to a conducting sphere of
diameter d what is the value of electric field inside
the sphere?

Suppose the Coulomb's law has a 1 / #°
dependence instead of 1/ »* dependence, is the
Gauss'slaw still valid?

Ifthe net charge enclosed by a Gaussian surfaces
positive then what 1s the nature of flux through the
surface?



10.
11.

14.

Ifthe net flux through some closed surface in an
electric field is zero what can be said about the
surface?

Ifnet charged enclosed by a Gaussian surface 1s
zero does it mean that electric field at every point
onthesurfaceis zero.

Detfine linear charge density.

What will be the change in electric field in moving
trom one sideto the other of'a charged plane sheet
having surface charge density ©.

Graph the variation of electric field with distance
foraumformly charged non conducting sheet.

What is the value of electric field at the centre ofa
uniformly charged non conducting sphere?

A charge qis at the centre of a sphere. Ifnow this
charge is placed at the centre ofacylinder of same
volume then what will be the ratio of net flux in the
tweo cases?

Short Answer Questions :

1.

|F¥]

Explainthe term electric flux. Write its STunit and
dimensions.

Explain theterm linear charge density. Writeits SI
unit.

Explain the term surface charge density, Writeits
Slunit,

Explain the term volume charge density. Write its
SLunit.

State Gauss's law for electrostatics.

The excess charge given to a conductor reside
always on its outer surface? Why?

Establish expressions for electric force and
electrostatic pressure on the surface of a charged
conductor?

Establish expression tor energy stored per unit
volume in electric tield.

Establish expression for maximum charged density
tor the equilibrium ot a charged soap bubble.

Verify Gauss's law from Coulomb's law.

Youare travellingina car. Lighting s expected what
should you do about your safety?

Consider two long straight line charges having
linear charge densities 4 and 4, . Derive
expression for the force per unit length acting
between them.

Consider two infinite parallel planes having charge
densities + and - respectively. What is the
magnitude ot electric field at some point inregion
betweenthem.

Essay type Questions

[

For a spherical conductor of radius R having a
charge ¢ determine electric field for following
situations

(A)r>R (B)yr<R
(C)atitssurtace (D)atits centre
Graph the variation of electric field with distance.

Determine the electric field due to a uniformly
charged sphere tor tollowing cases

(A) Outside the sphere

(B) At the surface of sphere
(C) Inside the sphere
(D)Atthecentre of sphere

Using Gauss's law determine the intensity of
electric field at a point near auniformly charged
infinite wire. Graph the variation of electric field
with distance.

Using Gauss's law determine the intensity of
electric field at a point near auniformly charged
infinite non conducting plane. Explain the
dependence ofelectric field.

Determine the direction ot electric field dueto a
uniformly charged infinite conducting plate for
points inits vicinity. Using Gauss's law determine
expression for its electric tield. Draw necessary
diagrams.



Answers (Multiple Choice Questions)

1.(c) 2.(d)
8.(b)9. (a)

3.(c) 4.(c)
10.(c) 11.(c)

5.(b) 6.(d) 7.(b)

Very Short Answer Questions :

1.  When g and 5 are mutually perpendicular.
2. Atitscentre and infinity
3. e and isdirected normally outward.
i
4. Intheregionofelecricfield.
Zero
6.  No, Gauss'slaw holds only forfields which obeys
inverse square law.
7. Positive and outwards
Net charged enclosed by the surfaceis zero and
¢?m1t = g’('gin
_ s .. .
9. No, from ¢ = Cﬁ F-ds = —=— =0 thissituationis
§ E[J
possiblewhen [7 but 77 isperpendicularto ds .
10.  Amount of charge per unit length.
e 2. g |2
] ] ‘ 2 E[J 2 E[J ei]
Ea
12.
0 4
13. Zero
14. 1:1
Numerical Problems

The flux entering and leaving a closed surface
are400 Nm?/ C and 800 N m?/C respectively.
What isthe net charge enclosed by this surface.
(Ans:3.54nC)

Ans: (1)

4.

The surface charge density on auniformly charged

conducting sphereis 80 uC/m-*. Calculate the

charge on sphere and net fhux through surface.
(Ans: 1.45mC, 1.63 x 108 Nm?/ C)

Consider a cube of side a, Let a charge q be placed

(1)at entre (ii) at one corner of cube

(i11) at oneface ofthe cube

Foreach of the above cases calculate the total fhux
linked with cube and flux linked with each face.

q q

4 q . 4
: Wye 16e W2e " 10,

f)gl] 680

The intensity of electric field due to a charged
sphere at a point at a distance of 20 cm from in
centreis 10 V/m. The radius of sphereis 5 cm.
Determinetheintensity of electric field at a distance
of 8 cmfromthe centre.

(Ans: 62.5V/m)
Aninfinite line charge produces on electric tield of

9% 10* N/C at2 cmiromit. Determine the linear
charge density.
(Ans: 107 C/m%)

A charge of 10 uC is placed directly above the
centre ofasquare of 10 cmside ataheight of 5cm
as shown in Fig. Determine the magnitude of
electric flux through the square?

/

(Ans ; 1.88 x 10°Nm?*/ €)

A charge of 10 pC is given to a metallic plate of arca
1072m-. Determine the intensity of electric fields at
points ncar by.

P
5cm

I
|

10 cm

Cin

10

(Ans:5.65x 10°V/m)

Two metallic plates each of area are Im?placed
parallel to cach other at a separation of 0.05 m.
Both have charges of equal magnitude but of
opposite nature. If the magnitude of clectric field in



10.

12.

spacc between them is 3.5 V/m then calculate the
magnitude of charge on each plate.

(Ans: 4.87x10'°C)

A particle of mass 9 x 10~ gmis placed at some
height above auniformly charged horizontal infinite
non conducting plate having a surface charge
density 5 x 10°>C/m?, What should be the charge
on the particle so that on releasing it will not fall
down,

(Ans: 3.12x1077 ()

Alarge uniformly charged sheet having a surface
charge density of 5x 10 C/m? liesinX-Y
plane. Calculate the electric flux through a circular
loop of radius 0.1 m, whose axis makes on angle
of 60" with Z axis.

(Ans:4.44 < 10 "Nm?/C)

An electron of 10° ¢V energy is fired from a
distance of 5Smm perpendicularly towards an
infinite charged conducting plate. What should be
the minimum charge density on plate so that
electron fails to strike the plate.

(Ans: 1.77 x 10°C/m?)

The internal and external pressures for a soap
bubble are same. The surface tension or soap
soultionis  0.04N/mand its diameteris 4 cm.
Determine the charge on soap bubble.

(Ans: 59.8nC)

th
th






Chapter - 3
Electric Potential

In previnos chapter we have studied electric field
dueto apoint charge or group ofcharges and described
itintermsofavector £ called intensity of electric field.
We have also studied continous charge distribution, force
between charges and to calculate £ using Coulomb's
law and Gauss's law. In this chapter we will see that the
electric field can also be decribed in terms of a scalar
quantity called "electrostatic potenmal” V. This is an
important concept. It 18 so because electric field vector
E and electrostatic potential V can be related to each
other. Since V i1s a scalar quantity and addition of scalars
is far easier than addition of vectors, inmany problems it
is much easier to find V first and then use it to find
E ratherthanobtaining £ from direct calculations. The
concept of potential 1s also important fromthe point of
view that potential is related to potential energy. Thus, by
using the law of conservation of energy we can solve
many problems in electrostatics without goining into the
details of forces involved like we did in study of
mechanics.

In this chapter first of all we will define electric
potential. After that we will learn to calculate electric
potential due to a point charge and system of charges.
Subsequently we will study the relation between electric
field and potential. After studying about electric potential
dueto some specific charge configurations, we will study
about electrocstatic potential energies of such systems.
Inthe end of this chapter we will learn about the work
doneinrotating an electric dipole in some external electric
field and calculate its potential energy.

3.1 Electrostatic Potential and Potential
Difference

From our understanding of conservative forces we
know that a potential energy is associated with a
conservative torce. From experiments it isknown that the
electric field (force) is conserative and thus has an
associated potential energy U called asthe electrostatic
potential energy. {Unless stated otherwise, in this chapter
and chapters to follow the term electric field refers to
electrostatic field. Inthe study related with phenomenon
of electro magnetism we shall see that a changing
magnetic tield also produced an electric tield which is not

conservative and potential energy can not be associated
with suchafield).

Consider a positive test charge g _being brought
from some point A to some point B in an electric field.
Here we are assuming that in the process the test charge
doesnot distrub source charge(s) which produce electric
field 1.e. all other charges present in the surrounding
remain at their respective places. Ifin this process the

potential energy changesby [/ —{/, thenthe potential
difference between points A and B is defined as

r _Us=U,

I;? Va4
q,

The above equation defines the electrostatic
potential difference between two points for a given
electric field. To define absolute potential (which from
now onwe call simply electric potential) at a point we can
select a reference point at which we consider both
potential energy and potential as zero. Generally we take
this reference position to be at infinity. Thus if we

AU
= NES

o

1)

considerthe point Atobeatinfinityse F, =V, =0 and
U7, =U_ =0 and thenfromequation(3.1)

V,=U,/q,

Since point B is arbitrary so in general the above
equation can be written as

V=U/q, ... (3.2)

Thus electric potential at a point is defined as
electric potential energy perunit charge. Clearly electric
potential 1s a scalar quantity and 1sindependent of test
charge. Itisa charactenstic ofelectric field only.

We know that energy and work are related with
each other so we can define potential difference and
potential in terms of work. If work done by conservative
electric field inmoving the system frominitial position to

final positionis denoted by ¥, then

All =-W

&



therefore the potential difference between points A
and Bis

-V, == b,
(:{D

So, the potential difference between two points in

an electric fieldis equal to the negative of the work done

by the electric field in bringing a unit positive charge from

initial position {A) to final position (B). Dependingupen

W,

Iy

AV =V, .(33)

the signs and magnitudes of and ¢, potential

difference between two points can be positive, negative
or zero. Ifwe assume the potential at infinity (reference
point) to be zero then from equation 3.3 we can define
potential at a point by

W

XY

4,

V=- (34

Where ¥, 15 the work done by electric field on

test charge ¢, inbringing it frominfinity (reference point)

to the point under consideration. Thus, the electric
potential at a point is equal to the negative of the work
done by electric field in bringing a unit positive charge
from infinity (reference position) to given point.

Suppose we move a particle of charge ¢, from

point Ato point B inan electric field with the help of some
external agent (force). If the motion ofthe particle does
not invelve any charge in its kinetic energy i.e

AK = Othen by the work-kinetic energy theorm
W, =W ...(3.5)

Where W refers to the work done by external
force during the move, then trom equations (3.3) and

(3.5)
W =W

et &

...(3.6)

and as assumed earlier if we take point Atobeat
infinity (reference position) then potential at a point is

W,

axt

q

AV =V, -V, =

.(3.6)

Where W, , refers to the work done by external

forcem bringing the charge ¢, from infinity to pomtunder

consideration. Accordingly the electric potential ata
pointis equal to the work done by the external agent
(without changing Kinetic energy) on a unit positive
charge inbringing it from infimty (reference position) to
the desired point.

From above discussion it is obvious that there are
many equivalent definitions forelectric potential. (In forth
coming subsection we will define electric potential asa
line integral of electric field). However , from each
defintion it isapparent that electric potential 1s a scalar
quantity.

The STunit of electric potential is volt with

1 Toule

| volt (V)= 1 Coulomb

The electric potential at a pointis 1 volt; ifinmoving
aunit charge from infinity to that point the work doneis 1
joule. Dimensions of electric potential are

Y
m{

TA }z[MLzI‘ 4]

1t1s cbviousthat unit of potential differenceis also
volt. Thisunit of electric potential allowsusto adopta
more conventional unit V/m for the electric tield E
(which till now we have described in unit of N/C )i.e

IN/C=1/m

Weleave the verification of this expression as an
excerise for readers. After defining 'volt' we can now
define an energy unit called electron volt (e V) whichis
convenient for measuring atomic and nuclear energies.
Oneelectron volt (eV) is the energy equal to the work
needed to move asingle elementary charge e (electron or
proton) througha potential difference of exactly one volt.
Fromequation

W =q(AV)
leV =e(W)=(1.6x10" C)(J/C)

=1.6x107"J
3.1.1 Electric potential Derived From Electric Field

Consider an arbitrary electric field for which
electric tield lines are as shown inFig3.1. Let a positive

test charge ¢, moveinthis field along the curved path



shown from point A to B. At any point on this path an
electric force F =g, F acts on it for a differential
displacement o ¢ here I isthe electricfield intensity at

thelocation of differential element. So the work doneby

electric force during this displacement is given by
AW =F-di =q,FE-d7 ...(3.3)

Therefore thetotal work W doneby the electric
force as the particle moves from point Ato point B is

i i
W faf-di-q[Fdi g
A A
Fromequations(3.3)and (3.9)then

E
VoV, ==L ai
q{] K

E
—fﬁ'dé‘ (3.10)
A

Fig 3.1 : Maotion of a test charge from point
A to point B in a non uniform ficld

Theintegral present inright hand side of equation
3.101s called line integral (meaning the integral along a
particular path) of £ from Ato B. However, since the
electric field 1s consvertive all paths (between Aand B)
give the same result. Thus the potential difference
between any two points A and B in an electric field 13
equal to the negative ofthe lineintgral of £ from AtoB.

Tfelectric fieldisalong & ¢ thenintegral in equation
3.101s positive and potential difference negativei.e

I, < ¥, . Electricfield tends to move a positive charge

from high potential to low potential and tend to move a
negative charge from low potential to high potential.

Inequation 3.101f we consider A tobe at infinity
(reference position)and set F', = 0 then

)
V=-[E-di NGRIY

Equation 3.11 gives us the potential at any point
realtive to zero potential at infinity (reference point).

3.2 Potential Due toa Point Charge

Forapoit charge Q electric field at a distanceris
givenby

O
= il
E—‘;—%U,_; .(3.12)
P P K dr
« R SEEEEELEE —>
+£“ ' > 44,
L J

Fig 3.2 : Determinations potential due to a point
charge here a test charge ¢, 1s being moved from

point p to infinity

IfQispositive 7 is directed radially outward from

the charge. Now we will make use of equations 3. 10 for
obtaining expression of potential at some point in this
field. To do so let us imaginethat a test charge ¢ 1s being
moved from a point P to infinity on aradial line along the

direction of £ asshowninfig 3.2. For such a path

differntial displacement d # canbewrittenas o ¢ = d7

and aspk and are in same direction

E-df=Edf=Edr Usingequation3. 10 (along with

above mentioned charges) between the limits 7, to

20 we obtain

o

V, -V, = —jJZ df = —]:err

¥ 'y



. O
V,=- = d .17
or ¥+ j.47re,) 2 " [ ¥, =0]
, O Pq‘ 1 1
I n = I ' d = ——
Oor "1 4.?r ED } N ’['rj X v
_Q JI1F
dre,Lr ],
V, :7Q
dre, r,

as P canbe any arbitrary point s in general

O
dre,r

V=

. (3.13)

Therefore the potential due to a point charge 18
inversely proptional to the distance between point charge
and the observation point. It does not depend on the
direction of observation point relative to the point
charge. This variationis shown graphicallyin fig 3.3.

N

.

polcitial —w

)

r—p
#=distance of cbservation (r) from point charge

Fig 3.3 : Graphical variation of potential dueto
a point charge with distance

Ifthe source charge is negative
_ 1 (0
4 g,

(314

For an isolated positive charge (Q > O) electric
potential is positive while for anisolated negative charge
(Q <0)itisnegative. For a given charge and a given
distance potential in some medium is less then the
potential in free space and is given by

4

Q Er

v, =

m

=

3.3 Potential due to a Group of Point Charges

Electric potentialis a scalar quantity so we can find
the net potential at a point due to a group of point
charges by algebraic sum of potentials due to individual
charges at that point. Suppose we wishto determine the
potential at a point P due to a group of point charges. Let
distance of point P from charges, ¢,,¢,.¢....g, be
r Fy 1y, respectively (Fig3 4. Then asstated above the
net potential at Pis given by

Fig 3.4 : The potential at point P ductoa
svstem of point charges

V=V, 4V, +V,+. 4V,

V= ! 4, ! 6“'—3+,,,+ L 4
dzre,  dme, r 4re, r,
1 L 4,
Vo= IR AT I ]
47; E[J rl r% rn
e .
471?6 .(3.15)

H| j

Example 3.1 : Theelectric potential at some point
i8-15 V and at some other pointis V(volt). If 150 ) of
work is needed to move a 6 coulomb charge from the
first point to the second then find the value of V.

Solution : Here| V, =—15 Volt, i, =1501
Vo=V, g¢,=6C
Ve—V,=—
4o
150



"=25-15=10volt

Example 3.2 The work done in displacing a 20 C
charge through O.2mfor moving it froma point Ato a point
B is21J. Find the potential ditference between the two
points.

Solution : Here g, =20C
W, =21

therefore, ¥, -V, = Wea % =01V

QCI

Example 3.3 Calculate the electric potential at a
distance 10 ¢m from a charge 1 1x10  (Tin air.

Solution : Here 0 =1.1x107(
r=10cm—0.1m

So electric potential
S 1 ©
dre, r

J',_9><109><],1><]O9
0.1

Example 3.4 The distance between two charges

4x107° (and =3x10 * (C'is 0.1 m. Where on the line

joining the two charges potential 1s zero?  Assume the
potential to be zero at intinity.

=99V

Solution : Refer figure shown, here ¢ and ¢.are
of opposite nature but | ¢, > ¢,|. Therefore there will
not be any point in the region left of ¢, where the poten-
tials due to ¢ and ¢, are canceling each other. Such
points can be in between ¢ and ¢, or to the right of

¢,on theline joiing. Such points are shown in Figby P
and P’

+q -4,

A P B
+—0lm ——»

—e

— ¥ —pa— (0 1-x)—»

r

v

« x

It distance of P from ¢_is x then for potential at P
to be zero

Vo4V, =0
g B 1 q,
4re, x  Are, (0.1-x)

X (0.1-x)

4x10” _ —(-3x107)

3x=04—-4x

x= % =0.057m

If P'is at distance x’ from ¢, then for potential at
P'to be zero

4%107° 3Ix107™

X' (x'-0.1)

= 3x'=4x-04

= x'=04m
Example 3.5 Two charges + q and - q are ar-

ranged as shown, the potentials at points Aand B are

17, and 1 then Calculate }', —

& & & &
L o o »

A B

+—— —pr4—F ———p4+—  —»

Solution : Potential at A due to +q

1 q

= w®—
dre, «a

60



potential at Adueto-q

1 (-9)

4z g, (a+r)

total potential at A

oo (4 4 ]
Y dze\a a+r)’

Potential at B dueto +q

| q

dre, a+r

Potential at B dueto-q

I N )
dre,\ a

total potential at B

, 1 [ q q]
Vi=—"— ——— |-
dre\a+r a

S
dre, | \a a+r a+r «
47 e, a a+r

o (a+r)-a
4z g, 2(1[ a(a+r) J

| 2qr
41 e, a(a+r)

Se

I-? _VH =

V,-V,=

3.4 Electric Potential Due to Electric Dipole

Fig 3.5 depicts an electric dipole AB. Charges at
A and B are -q and + q and separation between them is
2a. We wish to calculate potential at point P at a distnace
r from the centre O of the dipole. Line OP makes an
angle® with the axis of dipole. Potential at P due to
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charge-qat A

)

dre, &

... (3.16)

and potential at P due to charge + q at B

R |
2 471'6(,‘}"2 ... (3.17)
P(r, 6)
g
ANg ©
R(e
< 2t »

Fig 3.5 : Potential due to dipole at point P (r, 8)

So the net electric potential at P

F,

r_ 'ff l_L _ q rl_ 2
dre,\r, r dre,| nh

-
2

=

} ... (3.18)

To determine # —# and rr, we draw perpen-
diculars AC and BD respectively on line OP from points
Aand B. Ifr>>a AP~ P(C and PB~=PD . From
Fig3.5

OP =0D+DP

F=acosd+r,
' DP~BP =¥,

(97D,
r,=r—acosf | cosf =—

¢}



AP =CP=0P+0C (0D =acosb)

r=r+acost

1T

cosf = 7 or OC =acosd

So K —r =2acosé
and pi =1 —a’cos 0 =" as
¥* >>a’ substituting thesein Egn. (3.18)

., g 2acosf

V= —_—
41 e, (r‘)
As 2ag=p
- 1 pcos@

So dre, 1 .. (3.19)

Thus the electric dipole potential falls off; at large

distance, as  *, not as » !, characteristic of the po-
tential due to a point charge.

Special Cases

@

(i)

For axial points where §=0"cos& =1 , from

equation (3.19)

LI 4

dre, r
For equatorial points where 8=90° cos€ =0,
from equation (3.19) 1 =9

Dipole potential can also be expressed as

p__\ pF__1 pi
dre, ¥ Adzre, F°
Thus it is clear that

For equatorial points the electric potential due to
a dipole is zero however field is not zero.

Under indential conditions the electric potential
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. . 2a ,
due to a dipoleis —cos & times of that dueto a
P

single charge.
For a small dipole (or at large disrances) electic

potential is inversely proportional to the square of
distance.

The potential due to a dipole depends not just on
r but also on the angle between the position vec-

tor ¥ and the dipole moment vector p.

Example 3.6 Two point charges 8x 107 (" and

—8x107"" ( are separated by a distance of 2x 107" m
For such a dipole find electric potential at a point at a

distance of 4x10 °m when the point is (a) on the

dipole axis (b) on equatorial line and (c) at an
orientation of 60° from dipolemoment.

(@)

(b)
(©)

Solution : Here ¢ =8x10 (7
2a=2x10"m
F=4x10%m
So dipole moment
p=¢2a=8x10""x2x10 '
P=16x10"C-m
For axial position
1 p_9x10°x16x10 *
o (ax109)

dre, r’

y=9%x10 % Volt

For equatorial positions V=0

When g = 60°
1 &
v P c?s
dr e re

i

Vo 9% 10" x16x10 * ¢cos 60"
(4x10%)

V =45x10" Volt



3.5 Equipotential Surface

In some electric field a surface having same
potential at all points is called an equipotential surtace.
As the potential difference between any two points on
an equipotential surtace is zero, no work is done in
moving a charge from one point to other on an
equipotential surface. As the work doneis zero when
electic force (electric field) 18 perpendicular to
displacement, so electric field must be normal to an
equipotential surface.

For illustration of equipotential surfaces
following examples can be considered.

1. For a uniform electric field & equipotential sur-

faces are flat and perpendicular to field lines. According
to tig 3.6, surtaces labelled as I, I, IIT are equipotentials.

—— >

> »

—> »

Y, v, v |
I I 111

Fig 3.6 : Equipotential surfaces for a uniform
clectric ficld

2. For an isolated point charge : For an iso-
lated point charge + ¢ potential at a distance r

| g
dre, r

V=

A

Fig 3.7 : Equipotential surfaces for a point charge

63

Imagine a spherical surtace ot radius # the posi-
tion of point charge +q, is at its center it 1s cbvious that
the electric potential at all points on this surface is same.
Thus for a point charge equipotential surfaces are
spherical around point charge. For a positive point
charge with the increases in radius of spherical surface
the potential of surface decreases.

3.5.1 Properties of Equipotential Surfaces

1. Nonet work is done on a charge by an electric
tield as the charge moves between two points on
the same equipotential surface.

2. Electric field is always directed normal to
equipotential surface.

3. Two equipotential surfaces can never intersect
each other because otherwise the point of
interesection will have two potentials which is un-
acceptable.

4. Thesurface of a charged conductoris always equi-
potential. Infact the entire volume of a conductor

1s equipotential.
3.6 Relation Between Electric Field and Electric

Potential

We have already discussed that if we know elec-
tric tield in some region of space then potential ditter-
ence between two points can be found using equa-
tion (3.14) which is a relation between electric field and
electric potential. In this section our aim1is to determine
electric tield for a known potential function V.

In some arbitrary electric field 72 for a differential

displacement /¢ equation (3.10) can be written in dif-
ferential form as follows

dV =-F-di =—FEd¥cosb ... (3.20)

Where8is the angle between £ and d /

r

The quantity — Z gives rate ofloss (fall) of po-



tential with distance. From above equation it is clear
that if angle between £ and d/, @ = 0° thenthe space
rate of loss of potential will be maximum. Thus in gen-

dv
df

eral - is a scalar quantity but its maximum value

dv e :
7 _ occur for a specific direction (6 =0, ) i.e.

in direction of £ . Thus the maximum rate of loss of

potential with distance can be treated as a vector in

direction of £ . Inlanguage ot mathematics [—r:j

is called gradient of V and written as Grad V

[ dv
dt

Accordingly £

j =GradV ...{(3.22)

=—-Gradl’ - (323)

For an equipotential surface direction of Grad V
is along the normal to the surface. This can be explained

using Fig 3.8. Here two equipotential surface .5, and
S, are shown with potentials V and V —dV respec-
tively. In moving froma point A on surface S, to either

point B or C on surface S, for both the paths AB and

AC change in potential is same. However the rate of

o R | dv
change of  potential with distancei.e. 1B and e
diffe As AB<AC ar > r db
are difterent. As . S0 AR~ AC and because

AB is normal to the surtace the rate of loss of potential
18 maximum along normal.
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V-dV

Fig 3.8 : Gradient of potential

Equation (3.21) can be rewritten as

oV

Fcos@=F,

Here F, = Fcos@ |, is the compoment of E in

direction of d # . Note that here we have used partial

derivative which shows that above equation involves
only the variation of V along a specified axis (here called

| axis) and only the compoment of E along that axis. If
we take the | axis to be in turn, the x, y and z axes, we

find that the x, y and z compoments of E at any point

are
Er _ ok ? Er _ _i, Ez _ ol (3.24)
' o &y &z
In cartesian coordinates
E=Ei+Ej+Ek
. el NG | ]
so bt =— :‘8—+ ;‘C—+ki
& ooy &z
ar f— V)7 ...(3.25)

-
~ 0 ~ : ~

where  V=—17i—
ox



is called 'del operator: With the help of equation (3.25)
£ canbe determined if potential function V (x, v, z) is
known,

It the potential function is spherically symmetric
1.e. a function of radial distance r then electric field 1s
given by

(327

Example 3.7 For some electric field the electric
potential is given by the following expression

7 =3% on
¥

Determine electric field at position given by posi-

tion vector =37 + 2] — 6km

dv .
¥
dr

Solution ;: As £ = —

Here @ dr

-
2

dVd {343} 343
¥

=|r| =By + @) + -6y
Z\/E:hn

- —-343 13 .
SOE:_[ 2 j?’

SV S
i
5343
==
3;‘)2 (37+2-6k)

F=(37+2j-6k)Vim

Example 3.8 For someelectric field represented
by potential function

I’"(.’C, ¥, Z) =6x— Sxy _ 8} + 6}2

where V isin volt and x, y, z are in meters. Find

magnitude of electric field at point (1, 1, 1) m.

Solution :

PE)

3 5(6\' 8xy — 8y+6yz):(6 8y)
% é(Gx 8xy—8y+6yz)=(-8x—8+62)
ol

:—(fwc 8xy—8y+6yz)=6y
Oz

E=-[(6-8y)i +(-8x-8+62) ] +6yk]
at point (1, 1, 1)

or £ =—[ (6-8) +(-8-8+6) j+6 |

or £=(20 +10j -6k} V/m

|| = V(20" + (10)* + (-6) = V140 = 235 V/m

3.7 Calculation of Electric Potential

3.7.1 Electric Potential due to a charged spherical
shell

Consider a spherical shell ot radius R and charge
. We wish to calculate electric potential dueto such a
shell at an internal point, a point on its surface and a
point outside the shell. Let the distance of the point of
observation trom the centre of the shell be r.

(a) For points outside the charged sphere
(r>R)

From the definition of potential



Fig 3.10 : Potential at the surface of shell (r =R)

Fig 3.9 : Potential at outer point of shell (+ > K) (c) Potential at an internal point of the shell (r < R)
However, for points external to the shell For determining potential at an internal point of a
1 g charged shell we must note that in moving trom infinity
“= = F ; . oL
4z e, 1 to aninternal point, the dependence of £ is different

for parts ofthe path cutside and inside the charged shell.

Vo= —I ! (—{F.dr:
dre, ¥

o

but 7+ dF =dras Fand dF are in some direction

I’r = — q —i:|
dre, |

=+

g 11 Fig: 3.11 : Determination of potential of an
dre, | r = internal point (v < R)

Therefore for evaluation of

o g
g . ... (3.28 L
Are, r (3.28) L":—J‘E'df
We see that the potential due to uniformly charged -
shell is same as that due to a point charge q at the cen- the path ofintergration is to be considered to be
tre, for points external to shell. It is inversely proptional made of two parts :-
to of distance (r) and tends to zero as r tends to infinity. (i) From infinity to distance R from centre (i.e. up
(b) Potential at a point on the surface (r =R) to surface) and
. (11) From distance R (surface) to internal point r.
For this case " = —IE -dr Thus we can write

can be obtained by substituting r =R in equation (3.28)
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L”:—]%E‘df-‘—j;ﬁ-df
) H

First of these two integral has already been solved
and its value can be obtained from equation (3.29) and
as for internal points (r < R) electric field 1s zero for a
charged shell the second integral reduces to zero i.e.

po— ! ] 0-dr
dre, B R

1 a
dre, R

In ... (3.30)

From equation (3.30) 1t is clear that the potential
has a fixed value for all points with in the shell equal to
the value of potential at the surface. In fact it is the maxi-
mum value of potential due to a umiformly charged
spherical shell.

The variation of potential with distance from cen-
tre 18 shownin fig 3.12

Vi

potential ——p

F<R

-

> F
r=KR
Distance trom Centre

Fig 3.12 : The variation of potential for
a charged spherical shell

3.7.2 Electric Potential due to a Charged
Conducting Sphere

On charging a conductor as the charge resides on
its outer surface, the behaviour of the field intensity due
to a charged spherical conductor is same as that of a
charged spherical shell. Therefore electric potential due
to acharged conducting sphere is same as that dueto a
charged spherical shell. Thus results derived in - section
3.7.1 for spherical shell are applicable in this case.

3.7.3 Electric Potential due to a Uniformly Charged
Non Conducting Sphere

Consider a uniformly charged non conducting
sphere of radius R having a charge q. For such a sphere
expressions of the electric field at external point, point
at surface and internal points are as follows.

- 1 g .

External points £ = —"2!‘ (r>R)

dre, r
. = I g

At surface Ir= —F (r=R)
4z e, R*

internal pointsand £ =———2F  (r<R)

dr e, I

4

And the general realtion for calculating V from E
18

Now we will calculate the electric potential for
various positions of observation point.

(A) For points outside the charged sphere

(r>R)
V——[L-dF
— 1 g .
. Jo= L7
as for such points dre 1

Fig 3.13 : A uniformly charged non conducting sphere
point P is external to sphere



So, V=-f . Y
' * dre,
V=- ] J. .] dr ;
or pyp e (7-dr =dr)
)
dre, | F,
,_ g { 11 } 1
V= - —=0
dre,lr = %0
- q
I' - D
Are,r (3.31)
Thus for points external to charged sphere 17 o 1
p
(B) At the surface of Charged Sphere (r = R)

On substituting r =R in equation 3.3 1, we obtain

AL

ST ze R (3.32)
(C) Atapointinside the charged non conducting
sphere

As in moving trom infinity to a point inside the
sphere the variation of electric field with distance 18 non
uniform i.e it varies trom infinity to surface in
accordance with E 1/2while from surface upto an
internal point accodring to E r. Therefore we have to
evalute the integral by breaking it into two parts (1) from
infinity to R and (ii) fromR tor

Fig 3.14 : Inside non-conducting spharc r < R
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o 1 g 1 q;! P
dre, R Ld4rwe,r
| ,\
F= ——FF
[ dre, & J
L og 1 q(ry
or ¥ o i A
dre, R dme, KO\ 2 ),
. l g 1 g (r R
or V'~ e By A
dre, R 4dme, R\ 2 2
o] RS
or aze, \ R 2R 2R
— ] i 3_?‘_; — q 3R _3,r_
dre, 2R R dre,\ 2R

to obtain potential at the centre on putting r =0 1n equa-
tion (3.33) we obtain

ar

, 3 q
L,c:en.fre =4
247 e, R

-

or I'Tcemm = %I'S = l 5 I'S

. (334

Thus, potential at the centre of uniformly charged
solid non conducting sphere is 1.5 times the value of
potential at surface .

From above discussion we conclude that inside
such a charged sphere potential decreases from.

Centre to surface according to r * specific dependence

and  outside surface it decreases with 7~ depen-



dence to become zero a infinity. This variation is shown
graphically mFig 3.15
3q

Em= /.3 ¥y

-

b y=

q
T dmegR

Fs

potential = —

- |
Four @ T

O
. . I . - —
Distance from Centre !

Fig 3.15 : Graph between clectric potential versus the
distancc from centre of a uniformly charged
insulating sphere

Example 3.9 A solid insulating sphere ot radius

10 emisgivenachargeof 3.2x10 " C. Determine elec-
tric potential at following points from the centre (1) at 14
cm (i) at 10 cm (iii) at 4 cm.

Solution : Here R=10em=0.10m

g=32x107"(C
i) r=14em=014m
1.e. the observation point is outside the shpere
po_L g
dre, r
o 19
o V=0x10° 2220 s 0574100V
(i) »=10cm=0.10mr=R ie point is on the
surface of sphere
,_ 1 g 9x10"x3.2x10 "
4z e, R 0.10
or  }=288x10 " Volt
@iy »=4cm=0.04m je the point is inside the

sphere

P(5)
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1 g,
V= S L L
Are, 2R|” K

o Ix10"x3.2x107"
a 2%0.10

, (004 ]
(0.10)

V=144x10°] 3-8
100

J =144x10 *[2.84
[2.84]

J=4.09%10 *Volt

3.8 Potential Energy of a System of Charges

In the beginning of this chapter we have seen that
a potential energy 1s associated with a (conservative)
electrocstatic field. Now we will discuss about the po-
tential energy for a system of charges. Charges in such
system exerts electrostatic force on each other. If posi-
tions of one or more charges is changed i.e the contigu-
ration of the system is changed then work is done by
electrocstatic forces. If the system changes its configu-
ration from an initial state 1 to a ditferent final state f
electrostatic force does work W onthe particles, then
by definition the change in potential energy of the
systemis

AU =U, U, =W

[i4

i.e the change in potential energy as system
changes its configuration 1s equal to the negative of the
work done by the electrostatic force. We can also de-

fine Uinterms of, W the work done by external force.
If we assume that the kinetic energy of system in both

ntitial and final states are zero, then

AU =U,~U, =W,

!

For convenmence we normally take the reference
zero potential energy configuration of a system of
charged particles to be that in which the particle are
infinitely separated from one another. If this is so then

[/, =, = 0then final potential energy of the systemis



regarded as its potential energy; 1.¢.

U=-W

G

Where W is the work done by electric forces

on the particles during the move from infinity. If we wish
to define U in terms of work done by external forces a
change i kinetic energy, then

U=-W, =+W

e Exi

Where W _, is now work done by external force

in bringing the charges from infinity to the final
configuration.

Based on above definitions let us first determine
the potential energy of a two point charge system. Fig

3.16 depicts two point charges ¢, and ¢, of same na-

ture separated by a distance r. First we assume that
initially both the charges are infinity (for away) and at

rest. When we bring ¢, trom infinitely to its present

(final) position no work 15 done either by electrostatic
force or external force as no electric field was present.

However when we bring ¢, from infinity then worlk has
to be done by external agent because electrostatic force

acts on the charge ¢.by ¢, during the move.

The electire potential due to charge ¢ at the

location of charge ¢, 1s

oL a
dre, r

and from the detinition of potential
W, =-W, =gV
U=W, =gV

Onsubstituting g=g¢,

1 g4,
J=—="2 32
47;60 2 (.JJS)

Fig 3.16 : System of two point charges

If the charges have the same sign external agent
has to do positive work to push them together against
therr mutual repulsion. This work gets stored in the form
of potential energy of system which is positive in this
case. If the system 18 released then as the charges move
apart the potential energy of the system now changes
into the kinetic energies of the charges.

Ifthe charges ¢ and ¢. have opposite signs the

potential energy of system is negative. Note that de-
pending upon the nature of charges electrostatic po-
tential energy can either be positive or negative on the
contrary the gravitational potential energy for a pair of
particles is always negative.

3.8.1 Electrostatic Potential Energy of a System
of more than Two point Charges

The total potential energy of a system of charged
particles can be obtained by calculating potential
energy for every pair of charges and summing the terms
algebrically (with signs).

Fig 3.17 : A system of three point charges

Consider three point carges ¢,,¢, and g, fixed
at points 73, /% and 2 asshowninfig3.17, for sucha

system the potential energy can be determined as fol-
lows -

In bringing the charge ¢ from infinity to its

position £ (7 ) (while other charges are still at infinity)



no work is done as no other charge is present in the
regionie

W, =0
Then we bring charge ¢.in from infinity toits po-
sition P, (at a distance #, from P, ) then the work done

W, =(potential due toq) " ¢,

1 g4,
W, = 142
o ) 49{ ei] ’%’_’
Like wise the work done in moving charge g, from
infinity and placeit at P,
W, = (Potertticd due to g, cod ¢,) x g,
W, = ! 4 - : L X,
Ame,ny Are,n, ) o
woo_ L [ 4% %4
- dAre)\ K Fas
So the potential energy of this system of charges
is
U=W+W,+W,
=04+ 49 1 [ 499 99
e, By Are Ry Ry
=t (99 99 99
SZASNE s Py
[ = 1 (44 9% 44 (3.36)
4z e\ Ky s Ty ‘

The above equation represents the potential en-
ergy of a system of three point charges, note that this
expression contains three terms, The process can be
extended to a four charge system and expression for
potential energy can be determined by
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U=W,+W,+W,+W,

7= I (499 L4949 99 24 D4 4
dre,\

PR N O

12

.. (337)

Which contains six term corresponding to six pos-
sible pairs of charges. It there are N charges in a sys-
tem, the expression for potential energy will contain terms
and we can write

U=

S 144

e 1, ... (3.38)

1
2;1 k=1

In above equation the factor of 1/2 before the
summation sign ensures that although the pairs of charges
are appearing twice but their contribution to the sum is
effectively considered only once.

Example 3.10 Two protons are separated trom

each other by a distance of 6x10 " m . Find the elec-

trostatic potential energy of the system in electron volt
units,

Solution : Here F =6x107" m

g =4, =1 6x107°C

1 49

dge. F

As U=

4

3 0x10° x1.6x107"" x1.6x107"°

04 i
6x10 °

U/ =384x107"/

3.84x10

(f—ﬁe
1.6x10

[/ =024x10°eV=0.24MeV

Example 3.11 Three charges are arranged as
shown in Fig. Calculate the electrostatic potential en-
ergy of the system. Consider



¢=10x10"Canda=0.10m .
—4g

+q “ 2¢
Solution : Total potential energy

U=U,+U,+U,

~ (9.0410°) (rg)(-49) | (ra)(+2q) | (49)(+29)

=9.0x10"x(~10¢")/a

) 9.0x10° x10x(1x107)’

- =—90x107]
0.10

The negative potential energy means that an ex-
ternal agent would have to do 9 x10 *T of work to
disassemble this configuration completely ending with
three charges infinitely far apart.

Example 3.12 As shown in Fig four charges are
placed at the vertices of'a square of edge d. (a) calcu-
late the work done in assembling this system (b) If some

other charge ¢, is taken from infinity to the centre E of

the square and all the four remain fixed at their location,
how much additional work is to be done in the process.

tq -
A B
4,
L ]
E
D—q +qC

Solution : (a) The work done in assembling the
system 18 equal to the potential energy of the system.
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4% (4-1

Here there will be = 6 pairs of charges for

such a four charge system.

W=y -k IC0 1) | aq
AR AD | AC
J’_

(9)q , (-a)(=9) , 9(-4)
BC BD CD
AB=BC=CD=AD=d

AC=BD=d 2

dkg”

2kg’
L 2q

d d2

- Z—f [4 - \/EJ wherc k =

4r e,

(b) Potential at centre E of the square due to
charges at four corners

_+tKq  —Kq

y +Kg —Kg
" (4)

(BE) (CE) (DE)

__ K¢ K¢ Ky Ky

diN2 diz diN2 div2

Thus potential at point E is zero so no additional

work is needed to be done in moving charge ¢, from
infinity to E.

Example 3.13 Three point charges ¢, 2¢ and 8¢
are to be placed on a9 cm long straight line. Find the
position where the charge should be placed such that
the potential energy of this system is minimum?

Solution : To have minimum potential energy,
charges of greater value should be kept farthest thus
charges 2¢ and 8¢ should be farthest separated by 9
cim.

Let the charge q is placed at a distance of x cm
from 2¢ [Fig] then the potential energy of system



»B
® 8¢

A 9 cm

«—xcm—»+—— (9-x)cm —»

8gx ¢

U= 2929 :
(9-x)x107

1
CAre, {rxlo_z

U= : —q_q [er 8 +E}
4re, 107 |Lx 9-x ©

For U to be minimum ﬂ =0

N 2q><8(f
9x107"

dx

v _ 1 T2, 8 4l
dc  4re, 107 x7 (9-x)
2 8
< (9-x)

4
¥ (9-x)
(O—x)* =4x’
(9—x)==+2x
X =3cm
or x =—9¢m

here x =-9 cm1s not possible so charge ¢ should
be placed in between 2¢ and 8¢ at a distance ot 3 cm
from 2¢q .

3.9 Work Donein Rotating an Electric Dipole in

Electric Field

When a electric dipole 1s placed in an electric field
a torque acts on it. This torque has a tendency to align
the dipole along the field. So work has to be done to
rotate a dipole if it is in equilibrium under the field.

73

il

L J

/

»
Oy (04d0)
- +—» —— (E
g -
A
Fig 3.18 : Rotating a dipole in a uniform electric tield

Consider a dipole in a uniform electric field 7 as
shown in tig 3.13. Initially the dipole is in equilibrium in
position AB. Now the dipole 18 rotated to bring it into

position'AB' making angle 8, with direction of 72 .
At an angular position & the torque acting on the
dipoleis 7 = pFsin@

work done is rotating the dipole through a small
angle ¢/6 is then

dW = torque x angular displacement

dW = td6

dW = pFsin 8d6

So the work done in rotating the dipole from
angular position 8 =0 to € =6, is

0,
plisin @ do
A

[

W =

W = pFE[-coso]

W = pk(cos0 —cosf, )
W = pE(1-cos6,)

It & =0" then

W = pls(1-cosb) ... (3.39)

Alse note that



(i) Work done in rotating a dipole from angular

position &, to &, with respect to field

W = pl:(cos 8, —cosb,) ... (3.40a)

(i) T 6, = 0°and 6, = 90° thenJ¥’ = pE
... (3.40b)
(iii) If 6, = 0° and &, = 180° thenJ¥ = 2pFE.

... (3.40¢)

3.10 Potential Energy of an Electric Dipole in
Electric Field

The potential energy of a dipole in an electric field
is equal to the work done in bringing the dipole trom
infinity mto the field.

> K
g +ql
B

from intinity

.

L.
y o

Fig 3.19 : Dipole in external electric tield

In fig 3.19 an electric dipole is brought trom
infinity to its final position in a uniform electric field such

that during the move dipole moment p atways points in
direction of 7 . Dueto electric field force on charge q,

F =gk is in direction of £ and that on -q is

F = —4kF isoppositeto £ . Thusin bringing the dipole

infield £ external work is to be done on the charge +
while electric field does work on -q. In the move from
infinity to their respective final position in field,
charge -q covers a distance 2a more than charge +q.
Thus work dene by electric field is more and negative.
This work done i1s given by

W= Force on (—¢q) x additional distance cov-
ered by -q
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W =—ql.x2a=-2qal"

W =—-pk v p=2qga

So, the potential energy of dipole, aligned with
with £ is

U/, =-pk ...(3.41)

Now, the additional work done in rotating dipole

from this position to angular position &is
U, = pl:(1-cosd) ... (3.42)

Thus the potential energy of dipole placed at angle
Gwith respect to the field is

U=U,+1,

[/ =—pF+ pE(1-cos0)

{/=—plicost
which can be rewritten as
U=—pE . (3.43)

Equation (3.4 1) is the expression for the poten-
tial energy of electric dipole placed in uniform electric
field.

Special Cases

(a) Ifthedipoleis aligned with electric field

0 =0°

{/=—plicost

{/ =—pi cos(’

orl/ =—-pl .. (3.44)

In this position the electric dipole is in stable equi-
librium, as in this case potential energy is minimum.

(b) If'the dipole moment is perpendicular to electric
field
{/ =—plcos90”

=0 ... (3.45)



(c) Ifthe dipole moment makes angle & = 180"with

direction of & .

UV =—pFcosl80°

[ = pE. ... (3.46)

This position is called position of unstable equilib-
rium as in this situation potential energy of dipole is
maximum,

Example 3.14 An electric dipole consits of two
point charges +1.0x10™" and —1.0x10 © at a sepa-
ration of 2 cm. This dipoleis placed i auniform electric

field 1.0x10° V/m . Find

(a) maximumtorque onit due to electric field

(b) potential energy of dipole in position of stable
equilibrium

(c) potential energy of dipole in angular position of
180°with respect to the position of stable equilib-
rum.

(d) energy needed to rotate the dipole through 90°
with respect to the stable equilibrium position.

Solution : Here ¢ =1x107C

(a)

(b)

(©)

(d)

2a=2em=2x10"*m I =1x10° V/m
dipolemoment  p=g2a=1x10 °x2x10*
=2x10°C' —m

maximum torque 7 = pF =2x 107 x1x 10
=2x10° N —m

potential energy in stable equilibrium position
U=-pk

[/ =-2x10"x1x10° =-2x107.J

potential energy in rotated position (relative to
stable equilibrium)

[J=+pE=+2x107J

Work done in rotating dipole through angle 90°
relative to stable equilibrium position

W = pE(1-cos8)
=2x10 *x1x10° (1-cos90")

W =2x10"J

Important Points

1. Electric potential : The electric potential at a point in an electric field is equal to the work done against the
electric field in bringing a unit positive charge from  infinity to the point without changing the kinetic energy

ofthe charge. Its S.1. unit is volt

H
V:—jﬁ-df

2.  Potential difference : The potential difference between two points in an electric tield is equal to the
negative of the work done by electric field or work done by external agent (without change in kinetic
energy) in moving a unit positive charge from initial to final point. Its S.1. unit is volt

Wo?h’
C.{o

ViVy =

:f—ﬁ-dr
i

[F¥]

Potential due to a point charge
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I
dre,r

Potential due to a system of point charges
V=V +V,+V,. +F
Electric potential due to an electric dipole at position (r, 8) [r> > a]

1 pcost

= it a <<r°

dre, r

=
2

Electric potential at equatorial points of a dipole 1s zero.

Equipotential surface : An equipotential surface in an electic field is a surface at all points of which electric
potential is same.

The electric field £ is always directed perpendicular to corresponding equipotential surfaces.

E=—gradv=-VV

Electric potential due to a uniformly charged spherical shell or charged spherical conductor

1 ¢
(i) external points (r > R) V' = 4
dre, r
(i) surface (r = R) V" = ! 4
dre, R
(iii) internal point (r’ <R)V = ! ¢
P dre, R

Electric potential due to auniformly charged insulating solid sphere

1
(i) external point (r > R) V' = 9
dre, ¥

_pypo_ L 4

(ii) surtace (?' = R) V= iz, R

e ; 1 3R —
) internal point (r < &) }' =
) point ( ) Az e[[ 2R }

Electric potential energy of a system of two point charges

76



o' 99

dre, ¥

13.  Potential energy of a system of N point charges

;A f=l 1 (fj-(f,g

1
=322
=k

g
14.  Work done in rotating an electric dipole in external field
(1) from & =0 to &
W = pE(1—cos8)
(ii) from & =8 to 6 =4,
W = pE(cos 6, —cosb,)

15. Potential energy of dipole in external electic field {/ = —plscosé

Questions For Practice

Multiple Choice Questions (a) 1. remains the samebut V is changed

1. At certain distance from a point charge electric

field and potential are 50 V/m and 300 V re- (b)both 7; and V are changed
spectively, this distance is .
(¢) both 2 and V are unchanged
(a) 9m {(b) 15m
(c)6m (d)3m (d) £ is changed but V remains the same
2. Fourchargesare placed on cornersofasquare 3. The electric potential at some point in an electric
as shownin fig. Let electric field and potential at field is 200 V. The work done in moving an elec-
its centre are £ and V. Ifthe charges at Aand B tron from infinity to that point is -
are interchanged with charges placed at C and D. () —3.2x1077 ] (b) 200 J
Then
(c)-2007] (d) 1007
A+q a +qB 4. Two charged conducting spheres of radii # and
F, are at some potential. The ratio of their sur-
0 face charge densities 1s
r f
D C (a) (b)
- - 1 2



a a
s 2

¥ I8
(c) = (d)

2
s

A charge of 10 uC is located at the origin of X -
Y coordinate system. The potential ditference be-

tween points (a, 0) and &? ij 18
pots 6.0 7.
(a) 9x10* (b) Zero

9x10* 9x10*
(c) (d)

a V2

The electric potential at the surface of'a charged
spherical hollow conductor of radius 2 m1s 500
V. The potential at a distance 1.5 m{rom centre is

()375V (b) 250V
(c) Zero (d) 500 V

An o particle 18 moved from rest from a point
where potential is 70 V to another point having
potential 50 V. The kinetic energy of o particle at
the second point is

(a)20eV (b) 40 eV
(c) 20 MeV (d) 40 MeV
In some region where electric field intensity E 1s

zero, the electric potential varies with distance ac-
cording to

1

-
Ll

@V x% O o

(c)V=Zero (d) V=Constant

Two conducting spheres of radii R and R,

respectively have the same surface charge den-
sity. Ifthe electric potentials at their surface are

V.and V, respectively then ¥, / V. isequal to

d 2
(@) 7 (b) 7
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10.

12.

14.

a a
2 2

,
(d)

2

/
it
" 5

(c)

The electric potential tunction for some electric

field is defined by ¥ = —5x+ 3y + 15z . The
intensity of electric field (in S.I1. units) at point
(x,y,2)is

(a) 342
(©) 542

Aunit charge1s moved in a circular path of radius
# having a point charge ¢ at the centre. The work
done in one complete rotation is

(b) 42
(d)7

1 ¢
(a) Zero (b Az e, 2
(c)2xr.] (d) 27rg./

For a system of two electrons on bringing one
elctron nearer to other, the electrostatic potential
energy of system

(a) increases (b) decreases

(c) remains the same (d) become zero

1000 tiny water droplets each of radius r and
charge q combine to form a big drop. The elec-
tric potential of the bigger drop as comparedto a
tiny droplet is increased by a factor of

(a) 1000 (b) 100
(c) 10 (d)1
For the arrangement ot charges as shown in ad-
joining diagram, the work done in movinga 1 C
charge tromP to Q (in joule) is

P




{(a) 10
(c) infinite

(b) 5
(d) zero

64 identical mercury drops (each having a poten-
tial 10 V) are combined to form a bigger drop.
The potential at the surface of this bigger drop
will be
()80 V
(c) 640 V

(b) 160 V
(d)320V

Very Short Answer Question

1.

|F¥]

11.

12.

Mention whether electric potential is a scalar or
vector quantity.

Give definition of electric potential.

Can two equipotential surfaces intersect each
other at some point?

What will be the electric potential due to a charge,
at infinity.

Can electric potential at some point in free space
be zero though electric field may not be zero at
that point? Give exapmle.

Can electric field at some point be zero though
electric potential 1s not zero? Give example.
What will be the work done in moving a 200 puC
charge in moving it form one peint to another pont
at a distance of 10 cm on the same equipotential
surface?

What is the shape of equipotential surface for the
tollowing

(a) due to a point charge

(b) for a uniform electric field

What is the potential energy ot 'an electric dipole
placed parallel to an electric field?

The electric potential at the surface of a charged
spherical conductor of radius 10 cmis 15 V. What
1s the electric potential at its centre.

The electric potential at the surface ot 'a uniformly
charged non conducting sphere of radiis 5 cm is
10 V. What is the electric field at its centre.

The electric potential at a point (x, vy, z) (all in
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17.

20.

meters) in free space is given by ¥ = 2x” volt .
Determine electric field intensity at point (1m,
2m, 3m).

Write the expression for potential energy of'a two
point charge system.

Write the expression for potential energy tor a
system of three point charges.

Write the S.1. unit for potential gradient.

How much work is to be done in moving an
electron between two points having a potential
difference of 20 V.

The electric potential due to a point charge at
some point in free space 1s 10V. If the entire sys-
tem 1s now placed in a dielectric medium of di-
electric constant 2. What will be the potential at
the same point?

Write the expression for work donein rotating an
electric dipole from 0° to 180° ina unitorm field.

Write the value of electric potential of earth as
has been assumed?

If potential function is V = 4x + 3y volt then
calculate magnitude of electric tield intensity at
peint (2, 1) meter.

Short Answer Question

l.

L

What is meant by electric potential? Write its for-
mula and S.1. unit.

Show that the potential inside the potential inside
a charged spherical shell is same as that on its
surface.

What is meant by equipotential surface. Draw
equipotential surfaces for a point charge.

Determine the expression for potential energy for
a system of three point charges.

The electric potential in complete volume of a
charged conductor 1s same as that on its surface,
why?

Derive relation between electric potential and field.

Derive expression for work done in rotating an



10.

12.

15.

16.

electric dipole in a unitorm electric tield.

Show that nowork is done in moving a test charge
from one point to other on an equipotential sur-
face.

What is meant by electrostatic potential energy?
Derive expression tor potential energy ot a sys-
tem of point charges.

Determine expression for potential energy of an
electric dipole in external electric field.

Write expression for electrostatic potential energy

for a system of two point charges ¢, and ¢.placed

at positions given by position vectors # and 7, in
auniform electric field.
Write two properties of equipotential surface.

Show that the electric potential due to a point
charge when surrounded by some dielectric me-

diumis 1/ €, times of the electric potential when
the charge 15 1n free space.

Show that the electric potential at the centre of a
uniformly charged insulating solid sphereis 1.5
times the value of potential at its surfaces.

Two charges 10 uC and 5 pC are 1 mapart. To
decreases the separation to 0.5 m how much work
has to be done.

Define electric potential difference. Distinguish be-
tween potential difterence and potential.

Essay type Questions

Derive an expression for electric potential at a point
due to a point charge.

Derive an expression for electric potential at a point
due to an electric dipele. Show that potential is
maximum for axial point while is zero for equato-
rial line.

Derive expression for electric potential dueto a
charged spherical shell at points (i) outside, (i1) at
the surface and (1) inside the shell. Draw the graph
showing variation of potential with distance.

Derive expressions for electric potential dueto a

uniformly charged spherical non conducting solid
sphere at points (1) outside (ii) at the surface and
(iii) inside the sphere. Draw the graph showing
variation of potential with distance.

Define electrostatic potential energy. Dervie
expression for an electric dipole in a unitform
electric field. For what positions; states of stable
and unstable equilibrium are obtained?

Answers (Multiple Choice Questions)

1.(c) 2.(d)
7.(6) 8.(d) 9. (a)

3.(a) 4.(a) 5.(b) 6.(d)
10.(d) 11. (a) 12.(a)

13.(b) 14.(d) 15. (b)
Very Short Answer Questions

1.
2.

|F¥]

10.

Scalar quantity

Tt is equal to the work done by external agent in
brining a unit positive charge from infinity to the
point under consideration without changing the
kinetic energy of the charge.

No, otherwise there would be two values of elec-
tric potential which is absured.

Zero

Yes, electric potential at points on equatorial line
of on electric dipole is zero but electric field is not
zero.

Yes, (a) the electric tield at the mid point on the
line joining two identical charges is zero but elec-
tric potential is not.

(b) electric field inside a charged spherical shell is
zero but electric potential is not.

As the potential difference between any two points
on a given equipotential surface AV =20

Work W=q AV =20

(a) Spherical surfaces centred at the point charge
(b) parallel planes oriented normal to the electric
tield

U =—pl

15V

15V



12.

15.

16.

17.

20.

k. :—ﬁz—i(zﬁ)_—zu
o ox
E=FE=0
[=—4x]

L;r — 1 a9
dre, F
/= ! {%‘1’2 +‘1’2‘1’?~.+9’3%}
AT €, | Ko i3 By
Vim

W=qV=16x10 "x20=32x10 “.J

L:B:Sv
' 2

v

v, =

nr

W = pE(cos0, —cosl. )= pE(cosO“’ —coslSO"')

W =2pk joule

Zero

Lo 50 l
Ox dy

E=—4i-3;

yﬁy:,/o—4f-+(—32 — 25 =5V /m

Numberical Problems

1.

6 I of work 1s needed to move a 3 C point charge
between two points. Find the potential difference
betweenthe two points. [Ans: 2 V]

It'the electric potentials at two points Aand B are
2 V and 4 V respectively then find the work need
to move a 8 uC charge fromAto B.

[Ans:(1.6x107.7)]
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L

Four charges, 100 uC ,-50 pC , 20 uC and -60
nC respectively are placed on four corners ofa

square of edge J/2 m. Find the electric potential
at the centre of square.

[Ans: (9x10°7)]

Two point charges, 3x107™ (" and -2x107"C
are 15 cmapart. At what point(s) on the line join-
ing the charges the electric potential is zero? As-
sume the electric potential to be zero at infinity.

[Ans : 9 cm away from positive charge, and 45
cm away from it towards negative charge]

Four charges, -2 uc, +3 pc, —4 uc and +5 ue
respectively are placed on corners of a square of
edge 0.9 m. Find the electric potential at the

centre of the square. Ans: (2.8 x10* V)

A chargeof 5 puC is placed on each of'the verti-
ces of a regular hexagon of side 10 cm. Find the
electric potential at the centre of hexagon.

Ans: (2.7x10°7)
Four charges each 2 uC is placed on four corners

of a square of side 2.2 m. Find the potential at

the centre of square. Ans (36 x107V )

Three charges 1 uC, 2 pC and 3 nC respectively
are placed on the vertices of an equilateral tri-
angle of 100m c¢m side. Calculate the electric po-
tential at the centre of the triangle. [Ans : 93.6 V]

Two charges—1 pCand +1 uC at a separation of

4x10 " m forms an electic dipole. Calculate
electric potential at an axial point located at a

distance 2x 10 ¢ m from centre.
Ans: (9x10° V)

(a) Calculate eletric potential duetoa 4x 107
point charge at a point at a distance 9 cm from it.



(b)

12.

now, Find the work done in bringing another
2x10 ?  charge from infinity to this point.
A30 uC charge 1s located at the originof X - Y

coordinate system. Find the potential ditference

[ 44 o J
V27 V2

Three charges -q, + q and + q are located in X -
Y plane at points (0, -a) (0,0) and (0, a). Show
that potential at point at a distance r on a line in-
chned at angle &to the axisis given by

pod [L 2@‘“?03);- .
41 e,

between points and (a, 0).

F F

How much work has to be done in putting charges
+¢, 2¢q and +4¢ respectively at the corners of an
equilateral triangle of side 'a’.

Ans: L l4g
dre, a

No external electric field is applied on a system

of two charges 7 uC and -2 uC located at (-9
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15.

16.

17.

cm, 0,0) and (+9 cm, 0, 0). Determine the elec-
trostatic potential energy of this system.

(b) how much work is needed to make the
charges separate by infinite distance.

[Ans:=0.71,0.7J]
For some electric tield, potential at a point (x,y) is
givenas J7 =6xy+y’ —x . Determine the elec-
tric field at this point.

Ans: ' =(2x-6y)i —(6x+2y) j
A hollow metallic sphere of radius 0.2 m is given
a charge of + 15uc . Find (1) electric potential at
its surface (ii) potential at its centre (iil) electric
potential at (iv) potential at 0.3 m from centre.

Ans: (i) 8.75x10° V; (i) 8.75x10° V

(iii) 8.75x10° V; (iv) 4.5x10° V

Three charges, +¢, +2¢g and xq respectively are
placed at the vertices of an equilateral triangle of
side r. Find the value of x for which the potential
energy of system becomes zero.

Ans: (x=-2/3)






Chapter - 4
Flectrical Capacitance

In chapter third we made ourselves familiar with the
electrostatic potential energy of a system of charges. In
this chapter ourbasic aimis to study about "capacitor” a
device in which electrical energy can be stored. The
electrical energy so stored can be recovered in other
forms of energy. For example the flash attachment ina
camera uses electrical energy stored by a capacitor.
Once the capaciteris charged 1t can supply energy ata
much greater rate by discharing through the associated
circuit to provide a sudden bright flash of light, 1n
cameras. Capacitors have many uses asa circuit element
invarious electricand electronic circuits.

4.1 Conductors and Insulators

Onthebasis of their ability to conduct electricity
materials found in nature can be classitied into two broad
categories.

(a) Conductors and (b) Insulators

Conductors - The materials in which electric
charges and electric current can tlow easily for exanple
silver, copper, aluminium, iron, mercury, common salt
solution, human body and earth etc. are conductors of
electricity. Among these silver is the best conductor of
electricity.

Insulators - 1deally in such materials electrical
current cannot flow. Such materials are called insulators
or dielectrics. For example rubber, glass, plastic,
ebonite, dry wood etc are all insulators.

In addition to these, solid insulators materials can
also be semiconductors. We will learn more about
semiconductorsin chapter 16. In that chapter we will
also learn why different solid materials have different
behaviour towards electric conduction.

4.2 Freeand Bound Charges

Every material is composed of atoms. Each atom
contains a positively charged nucleus and several
electrons revoling around it. The electrons belonging to
inner orbits are subjected to a greater attractive force
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from the micleus and are tightly bound to their respective
parent atoms.

Inmetallic solids cuter electrons(valence electrons)
of each atom are only weakly bound to nucleus. These
electrons are almost free to move with in thebulk of the
material and arecalled free electrons. However such free
electrons can not escape through the surface of metal.
Atoms after loosing valence electron(s) called as positive
ionsare rigidlybound at their respective locationsin the
solid. In suchmaterials when an external electric field s
applied, these free electrons move in direction opposite
to field, consitituting an electric current. Inner electrons
are bound to nucleus and can not contribute to electric
current. The sameis true for positive1ons of metals, both
these are bound charges. Thereisno contribution from
bound chargesin current flow in solids. In electrolytic
solutions current flow is due to positive and negative
ions.

4.3 Dielectric materials and Polarization

Dielectric materials do not conduct electricity but
exhibit electrical eftect when subjected to external
electric field. In dielectric materials, eftectively there are
no tree electrons hence no electrical conduction. The
effect of external field results in a slight rearrangement of
charges in atoms or molecules ofthe dielectric material,
however, this rearrangement is enough to modity the
electric tield inside the material. The dielectric materials
can be divided into two categories(a) polar dielectrics
and (b) non olar dielectrics.

(a) Polar dielectric : For polar dielectric material,
centre of negative charge distribution do not coincide with
centre of positive charge distribution. The separation
between centres of negative and positive charge
distribution causes molecules to have a permanent dipole
moment. Such molecules are known as polar molecules.
Anionic moleculelike HCI (Fig 4. 1a) or a molecule of

water (H,O ) (Fig 4.1 b) are examples of polar
molecule.



nel
(b)d L, O Molecule

(1) 11CT Moleeuls

Fig4.1: Polar molccules

In the absence of external electric field, the
ditferent permanent dipole moments (molecules) are
randomly oriented due to their random thermal motion.
Thus in any volume containing a large number of atoms
the net dipole moment is zero (Fig 4.2 a). When such a
dielectric material is subjected to an external electric
field, theindividual dipoles experience torque due to the
electric tield and tend to align with the field as shown in
Fig 4.2 (b) onincreasing the magnitude of the applied
field the alignment becomes more complete and net
dipole moment is developed inthe material.

Polar material — E caemal ficld
% & Y s R )

(a) in absence of external
clectric field

(b)on applying external
clectric ficld

Fig 4.2 Ellcctolexternal electric ficld (a) exiernal ¢lectric figld
on polar molecules (b) on applving external field

(b) Non Polar dielectrics : Non polar dielectrics
are composed of such atoms or molecules whose centre
of the negative charges coincides with centre of
distribution of positive charges. Suchmolecules have no
permanent dipole moment and are called non polar
molecules. Examples of non polar molecules are

H,, CO,, N, and O,. In Fig 4.2 H, and CO,
molecules are shown. Inthe absence of external electric

field the net dipole moment of a non polar dielectric
materialiszero [Fig4.4a]
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{a) rzﬂz'molc};-ule-

(h) gCO2 molecule

Fig 4.3 : Non polar molecules

If a non polar dielectric material is placed in an
external electric field, the centre of negative charge
distribution is slightly shifted opposite to electric tield
while that of positive charge in direction electic tield. [Fig
4.4 (b)]. Thus atoms or molecules acquire a dipole
moment by induction. The dipole moments of different
molecules now tend to align along the electric tield and
we get a net dipole moment inthe material.

—p | entornal feld
2D D

Nonpolar material

QOO
OOBO
OOOO

(a)in abscence of external
electric field

(_

) o D

) o D

(b)on applying external
electric field
Fig 4.4 : Effect of external electric field on non polar material

Thus, in either case, whether polar or nen polar, a
dielectric acquires anet dipome moment in electric field.
This phenomena s called dielectric polarization.

The materials in which the dipole moment is
proportional to the external electric field and 1s along the
field are called linear isotropic dielectrics.

The dipole moment perunit volume of a substance
is called polarisation vector and is denoted by 2 . For
linear isotropic dielectrics the polarisation vector p is
proportional to applied electric field (F7)i.e P oc F

or P’:ZQE (4.1



Where 2, 1s a constant, characteristic of the

dielectric and 1s known as electric susceptibility of
dielectric. 1t 1sa measure of polarisation ofthe material
andis adimension less quantity.

4.4 Capacitance of a Conductor

The charge ona body is due to transfer of electrons
i.ethe body either gains or looses electrons. When some
charge is given to a body, its potential rises. This is
expected, to explain this in simple terms we may assume
that a body is given some charge Q ina number ot steps
involving atransfer of charge dq in each step. When first
such installment dq is given to the body no work is
involved, but once this charge has beentransterred a small
potential develops on the body. Thereforethe work must
be done to move next incremental charge dq through this
potential difference, Equivalently we may say that work
must be done in putting this additional charge against the
repulsion due to charge already present on the body
whereby increasing its potential energy or electric
potential. Thusit'we go on giving charge to a conductor
its potential rises in the same ratio.

Iton giving a charge Q to anisolated conductor its
potential rises by V then

Qxl or0=CV ...(4.2)

Here Cisaconstant of proportionality and is called
capacitance ofthe conductor. Further if welet V=1 then
fromequation (4.2) wehave C=Q

1.e capacitance of a conductor is numerically equal
to the charge required to raise its potential through unity.
The capacitance of a capacitor determinesits ability to
store electric charge. A conductor can store charge upto
acertain maximum value of electric potential. The graph
between the charge given to a conductor and rise n its
potential is a straight line as shown in Fig 4.3 and the
slope of this line represents the capacitance of the
conductor.

¢

9

e
o

0O V

Fig4.5 : Graph between (3 and V for a conductor

The capacitance of a conductor depends on the
shape and size of conductor, the nature of medium
surrounding it and on presence of other conductor inits
neighbourhood. However, it does not depend on the
charge giventoit orits potemal.

The Sl unit of capacitance is coulomb/velt and is
called farad (symbol F) Thus

¢
14
Capacitance of a conductor is thus said to be one

tarad if its potential rises through one volt when acharge
of one coulombis giventorit.

15

The farad s a rather large unit so its submultiples
like mili farad (mF)= 10" F, micro farad (uF)=10<F,
nano farad (nF)=107F and picofarad (pF)=10"“F
are more commonly employed.

As C= (/V the dimesional formula for Cis

_[7A]
C[MLT TA |

_ [M_1L72T4A3}
4.5 Capacitance of an Isolated Spherical

conductor

Consider anisolated spherical conductor of radius
R placed in free space. If a charge Q is given to it the
electric potential V at its surfaceis given by

Fig 4.6 : Charged spherical conductor

10
4re, R

v

..(4.3a)

~ O
Soits capacitance (- = % =4dre, R

Thus the capacitance of an 1solated spherical
conductor 18 directly proportional to its radius (i.e
85



CxR)
If the sphere is placed in a medium ot dielectric

constant €_ then its capacitance

9

C, = 7= dre,e, R (4.3b)
or (C =Cg¢
o° o

Thusthe dielectric constant of the medium is equal
to the ratio of the capactiance of conductor in the
medium and its capactiance in free space.

Example 4.1 : Considering earthto be a spherical
conductor calculate its capacitance (Radius of earth

=6.4x10%m )

_ i R
Solution ; Capacitance C =47 e, R=—7—
1/4r e,
6.4%10°
= 0 T1Ix107
9x10

C=0711mi =711ui

Tt is obvious that the capacitance of'a conductor is
not very large.

Example 4.2 : What is the radius of a spherical
capacitance of 1 F capacitance? Can you put it your
cupboard?

Solution: As C' =47 e, K

R= ¢ =9x10" m

So Az g, 4z =h

This radius is nearly 1400 times larges than the
radius of earth so it s not possible to put this capcitorina
cupboard. (The example also illustrate that Farad isa
rather largeunit of capacitance).

Example 4.3 : If the capacitances of some
spherical capacitor in air and some medmm are 2pF and
12pF respectively, what is the value of dielectric constant
ofmedmim.

Solution : Dielectric constant of medium

86

C, =4ree R=¢ (47 e, R)=¢ C,
Here C, =2pl",

C =12pl
or 12=g x2 =0

Example 4.4 : On giving same amount of charge
to two spheres of different radii the ratio of potential at
their surfacesis 1 : 2. What is the ratio of their
capacitances?

L0 G _on
Solution : C :% or (Tl = J
, v, 2
Here =0, andV, :V,=1:2 I::T
1
therefore L=—or( ., =21

4.6 Capacitor

The capacitance of aconductor can be increased
by increasingits size but from practical considertion this
1snot convinient. Thus capcitance ofa conductoris small
and limited.

A capacitor isa device whose functionis to increase
the ability of a conductor to take up charge without
increasing its size. This is done by reducing the electric

potential of the given conductor for a given amount of
charge.

A capacitor 1s a combination of two conductors
called plates placed close to each other. One of the two
plates is given a positive cahrge and other on equal
amount of negative charge. For this these plates may be
connected to the terminals of a battery (Fig 4.7). After
charging it the battery is removed the plates retain their
charge. So capaciatoris a device to store charge.

Note that the net charge on a capacitor is

QO +(-0)=0. Thus the term charge on a capacitor

does not mean the net charge on capacitor. In our
discussion of capacitor we let Q represent the magnitude
of charge on either plate. Likewise the potential
ditterence between plates is called the potential of
capacitor.



For agiven capacitor, the magintude of charge Q
stored on either plate is directly proportional to the
potential differencebetween plates.

Q=¥
Q=CV

Where the constant of proportionality is called
capacitance ofthe capacitor.

or (44

The shape of capacitor plates may be rectangular
cylinderical, spherical or of any arbitrary shape. (No
matter what their geometry, the two conductors farming
a capacitor are called plates). The capacitance of a
capacitor depends on the shape size, relative positions
and mediumbetween plates.

<
e —
]

LN

+| =
I

Fig 4.7 : Charging a capacitor

InFig4 8 the circuit symbols for capacitor used in

electric circuits are shown
| | (P4
11 A
@ (b)
Capacitor with Capacilor with
fixed capacitance variable capacitnce

Fig 4.8 : Circuit symbols for a capcitor

4.6.1 Principle of Capacitor

A A B A B
+|+ + - |+ + -
+ - |+ + -
[t + - [+ + -
+ - |+ + -
+|+
T + -] L
ot | + +-0 o= |+ +-u o~ -
(@) (b) (©

Fig 4.9 Mustration of principle of capacitor

To understand the principle of a capacitor we
consider various situations shownin fig 4.9 in sequence.
In fig 4.9 (a) an insulated metallic plate A is shown to
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which a positive charge +Q has been given. Now if an
identical uncharged metallic plate B is placed near plate
A, byinductionacharge -Q develops ontheinner side of
B and Apositive charge + Q develops onthe outer side
of B (Fig 4.9 b). The negative charge on B tends to
reduce the potential of A whereas the positive charge on
it ends to enchance the potential of A. However, as
negative charge on B is relatively closer to Athan positive
charge on B, the potential of plate Ais slightly reduced.
To make the potential of Aat its original value we can
give additional charge to plate A. Thus capacitance of A
hasincreased. If we now connect the plateto ground the
tlow ofelectrons from earth neutralize the positive charge
on B and the negative charge remains on plate B as it is
bound (Fig4.9¢). Under these condition there is nothing
toincrease potential of A. Thus the potential ofthe plate is
considerably reduced dueto induced negative charge on
inner side ofthe plate B. Therefore capacitance of system
Increases considerably.

Thus "the capacitance ofan insulated conductor is
increased appreciably by bringing a grounded (earth
connected) uncharged conductor near it".

Dependingupon the shape of conductors we come
across mainly three types of capacitors (a) parallel plate
capacitor (b) shperical capacitors and (c¢) cylindrical
capacitors. In this chapter our study islimited to parallel
plate and spherical capacitors.

4.7 Parallel Plate Capacitance

A parallel plate cpapcitor consists of two equal
plane parallel conductors separated by a small distance
seetfig4.10 (a) here we are assuming that the space
between plates contain vaccum or air.

Fig 4.10: Parallcl platc capacitor

To charge a capacitor its plates are connected to
the terminals of a battery. The plate connected to the



positive terminal of the battery looses electron and the
plate connected to the negative terminals recieves as
many electrons. Thus equal and opposite charges +Q
and - Q appears on the respective plates. As the plates
are of equal area the magmtude of surface charge density
for both the plates is same. Let +o and — & be the
charge densities on the positive and negative plates.

Since the separation between plates is much smaller
than the linear dimension of the plates, theelectric field is
uniform everywhere between the plates (fig4.10 (b).
The electric field in this region due to each plate is
/2 e, and in same direction, perpendicular to the

plates. Thus the two fields add up, giving

2 ei] 2 ei] ei]
O
o==
A
where A=area of either plate
0
F=—
So Ac, ...(4.5)

Fringing - The electric field due to charged plates
is uniform in the central region between the plates as
indicated by parallel tield lines in Fig 4.10 (b) and Fig
4.10 (¢). As at the edges the surface charge density is
relatively largetield lines repel each other and becomes
curved near the edges asin tig4.10 (¢). Thus near the
edges tield isnon uniform. This eftectis called fringing.
For sufticiently large plates fringing can be ignored and
electric tield between the plates can be assumed uniform
throughout thisregion.

Ifthe separation between capacitor platesis d then
the potential differencebetween the plates s

Od

Ae,

V="Ld= ... (4.6)

therefore, the capacity of parallel plate capacitor

00
TV 0d/Ae,
o C=Eoc-2d @)
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Thus, the capacitance of a parallel plate capacitoris
proportional to the area of plates and inversily
propertional to the separation between them, i.e

Coxdand Coxcl/d

Example 4.5 : A capacitor of capacity 20uF 18
charged to a potential difference of 10kV. Whatisthe
magnitude of charge onits each plate?

Solution :
O=CV =20x1 0 %x10x10°

=20x107=02C

Example 4.6 : Aparallel plate capacitor has plates
of'area Aand the separation between the platesd. Ifthe
area of plates is doubled while the separation is halved,
the new capacitance is how many times ot its orginal
value.

. .. . a A E(l
Selution : Initial capacitance ' =
and new capacitance
(o (ZA) € _ 44 €, v
di2 d

Hence new capacity is four times the initial capacity

Example 4.7 : On connecting a capacitor of
capacitance C to a battery of potential difference V,
charges on its plates are + 360 uC. On decreasing the
potential difference by 120V chargesbecome + 120 uC.
Find

(a) potential difference V across plates

(b) capacitance of capacitor

(c¢) magnitude of charge if the applied potential
differenceisincreased by 120 V.

Solution :
(a)

Given ¢'=C(} —120)=120x10 °C coulomb

g =CV =360x10"C coulomb

CV 360x10 ¢ |
= — :‘)

S0, C{F-120) 120x10°
or 3V -360=) or V=180V



(b) As CV=360x10"°

o 360x107°  360x107
" v 180

=210 *F* = 2ul

(¢) Onincreasing the potential differnce by 120V,
new charge

¢"=C(V +120)=2x10° (180 +120)

¢"=2x300x10 ° =600x10 °C = 600uC

Example 4.8 Calculate the capacitance of the
capacitor formed by two circular discs of radius 5 cm
each at aseparation of 1 mm.

Solution : Here, plate area

A=r* =3.14x(5x107)

=78 5x107 m"

_Aeg, 78.5x 107 x8.85% 107"

So. C ‘
© d 1%10 °

(=69.47x10"°F =69.5 pF

4.6 Effect of Dielectric medium filled between

plates of Capacitor

When the space between the capacitor plates is
filled with some dielectric material (say wax, paper, mica
etc) the molecular dipoles (polar or induced)tend to align

EJ dueto

along the direction of electric field [H =
ei]

plates (Fig 4.11). Inthis process of polarzation, in the
interior of dielectric, charges on near by molecular dipole
tends to neutralize each other, however, thisis not so for
dipoles near the edges of dielectric medium. Asaresult a

layer ofinduced negative charge density —& , 1s formed
onone edge (near positive plate) and an equal magnitude

positive charge +& , onotheredge (near negative plate).
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)
—£ s
<,
established within the dielectric medium. The direction of
this induced electric field is opposite to electric field due
to capacitor plates.

Because of this an induced electric field £,

So the net electric field in the dielectric medium
E=F-F,

. .(4.8)

=

8] 8]

By definition of dielectric constant

s, =

N

hence equation (4.8) can be rewritten as

. (4.9)

= =5

Therefore the electric field between capacitor
plates in presence of a dielectric 1s now smaller than the
field in absence of dielectric. Consequently the potential
difference between plates decrease whereby
capacitance increases.

From equation (4.9)

So, induced charge density

o, = O'[I—L]
<,

Magnitude of Polarsation vector is equal to the
magnitude ofinduced surface charge density, so

.. (4.10)

Pl =2 =,

Sy

0 =r

41D

From equations (4.10) and (4.11) following
relationis obtained between electric succesptibility and
dielectric constant of the material.

X, =5, (e,_ -1) ... (4.12)



4.8.1 Capacitance of a parallel plate capacitor
completly filled with a dielectric

+

++ ++ + + + +

F 3
v

d
Fig 4.12 : A parallel plate capacitor filled with dielectric
As shownin fig 4.12, consider a parallel plate
capacitor with space between plates completely filled
with a dielectric of dielectric constant €, let A and d

are respectively the plate area and separation between
plates. In presence of dielectric the net electric field
between the plates

_ 0

= ...(4.13)
- AeE,

So the potential ditterence between plates

V=Fd= Ud
A El'] er
SR .
and capacitance - ~ v Od/Ac,c
, Ae e .
(= #:e, C, . (4.14)

where (= &4 is capacitance with free space
- d
or air as medium betweenthe capacitor plates. Thus the

capacitance ot a capacitor is increased by a factor of

€, when the space between the plates is filled with a

dielectric of dielectric constant < . Although the result

has been derived for a parallel capacitor but is valid for
any capacitor.

g0

4.8.2 Capacitance of a parallel plate capacitor
partilly filled with a dielectric

This situationis shownin fig 4. 13 where a dielectric
slab ofthicknesst ( <d)is placed in space between the
capacitor plates. In this situation the thickness of region
between plates where free space or air is present 1s d-t.

+ “—r =
+ -
+ -
+ g, | —
+ -
+ -
d

Fig4.13 : Capacitor partially filled with diclectric

Ifthe electric field in free space or air portion of the

.. T
space is £, =—
4

S

the electric field in the

4
dielectric portion will be £ /<, and the effective
potential difference between the platesisthen given by

V = potential difference across portion containing
air + potential difference across portion containing
dielectric

V=L, (d —1) +5;
=3
or 17 :Lr:l_] |:d_j+L:| :$|:d_(+L:|
e | As, g,
So capacitance (' = % =— g
Ae, <,

A ei] A E[J

(d-t+t/€)) ) [d-1(1-1/€,)] -413)

or (=




If t=d1.ethe dielectric fills the space between

A58 =c, C

For

plates completely thenweobtain (7 =

which 1s same s in equation (4.14). Alsoif t=0we

. 4e :
obtain C :7] as expected in the absence of
dielectric medmm.

4.8.3 Capaitance of a parallel plate capaitor filled
with different dielectric materials of different
thicknesses

+
m

> ALY -

o

SN

i [ A S S
A et

&

Fig 4.14 : Capacitor filled with different diclectrics

Asshowninfig4.141fanumber of dielectric media

of dielectric constants €,,€_.€, ... €

.
T

having

thicknesses 7,,7,.1,,..f, respectively are present in
region between capacitor plates then the thickness of the
portion having free sapce or air as medium will be
[d S CR A AR rn)] . In this case the potential
difference across the capacitoris given by

V =potential difference across air portion+ sumof
potential across difterent media

o [a (e )]

Fy Fy Fy Fy
+ 0+, 2
= g, ~ € €

A a ] n

i3

e
where 15, = —=

Eo
capacitor with air or tree space.

=

iselectric field in region of
{

orV =k, [d—(}.‘] +ht.+t)

2‘l L f.; rn
=2+
S = =N =

A A £ i

V= ﬁ[d—(ﬁ L)

Ae,
/ { ‘
++ =+ 2+ 4+
E}l E?,2 E”k th
So, capacitance
c=Y 2k

g Loy f
d—(h +6,+iy+o 4 )+ + 4 24

S B Sy =

... (4.16)

If (£, +1.+1, +..+(,) =d i.e thereis no part of

the space between capacitor plates where air or free
space is present, then

C = A€, .(417)
L ‘
R R
= = = =

A 2 i fu

Example 4.9 : The plate area of a parallel plate
capacitor is 100 cm”and separation between platesis 1
mm. On connecting this capacitor across a 120 volt
battery a charge 0of 0.12 uC accumulates on the plates.
Find the dielectric constant of material present between
the capacitor plates.

Solution : Capacitance with dielectric

C _ O _Adepe,
V d
Od 0.12x10™ x1x107°

= = = =
S0 T Ade, ¥V 100x107 x8.85x107% x120

=0.001129x10"



Example 4.10 : A slab of ebonite (dielectric
constant = 3) of 6 mm thickness is placed in space
between capacitor plates of a parallel plate capacitor

having platearea 2x 107" m" and plate separation 0.01
m. What is the capacitance of this capacitor.
. - Aec
Solution : Use (' =——

{
d—1+
=

2x10 *x8.85x10 '
6x10°?

.
J

0.01-6x%10 7"+

L 17.70x10 % 17.70x10 % 17.70x10 ¥
" 001-4x107  001-0004 0006

C=295x10 " 11 =295x10 [ =295 pl

Example 4.11 The capacitance ofa capacitoris C.
The separationbetweenthe plates ofthis capacitorisd. If
the space between the plates is filled with a dielectric

material of dielectric constant € upto a distance ot 3d/4
then calculate the new capacitance.

Solution : Let new capacity be C' then

(:"!Z AE[]
a’—t+£
€,
3
vent = —d
(iven p
oo Ae, _ Ae, _ Ae,
d—£+ 3d £+ 3d d (er+3)
4 de, 4 4, 4de,
So C,:4erAel.]:4er c
d(ef +3) €, +3
=25
d
4

Hence capacity of capacitor will be r
(e +3)

¥
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times.
4.9 Capacitance of a spherical capacitors

A spherical capacitor consists of two concentric
shperical conductors of nearly equal size, one ofthe
conductor is givena positive charge Q and other an equal
and opposite charge -Q.

Larthed

Fig 4.15 : Aspherical capacitor

Fig. 4.15 shows a spherical capacitor. Inner
conducting sphere can be solid or hollow and 1s
surrounded by a concentric conducting shell A. The radii

ofAandBare #, and #, respectively. Notethat the outer

sphere B is grounded (earhted). Let a negative charge -Q
is given tothe inner sphere, induced charges +Q and -Q
appears ontheinner and outer surtaces of shell A. Since
shell Ais grounded the charge - Q on its outersurface
flowsto earth.

Potential on sphere B duetoits own charge-Q1s

1 (9)
Vy=——r—r
P e, n ...(4.18)

However, sphere B is surrounded by shell Awhich
has a positive charge Q and as for all internal points of a
charged shell the potential is same as that on its surtace,
so the potential at surface ot B dueto charge on sphere

A

1 (+0)
4r e,

o= .. (4.19)

h
So the net potential on sphere B 1s

V=V, 4+,



]'/r _ Q Q
dre, v, 4me,r
)1
b 0 [11
dre, | r

po__Q |n-n
dne| L (4.20)

As the outer sphere A is earthed its potential is
zero. Thusthe potential difference between Aand B

Vi =0V
p, o 2 i-n)
‘ dre, nrn
r Q (?1 - ;‘VE )
Vi = — -
or = e I, ... (4.21)

Soif tor free space between A and B if the

capacitance ofthis capacitoris (, then
¢

g [H-n
dre, | ne

. I
T "2
or C, =47 e,
F—t

Thus, the capacitance of a spherical capciator
depends on the size of spheres and (# -,). To have a
large capacity, two spheres of sufticient size with nearly
equal radii must be taken.

... (4.22)

Ifa dielectric medium of dielectric constant €, is
filled between the spheres, then capcitanceis given by

. e,
C, =4re—1
n-n

Kl
- 172
C, =€ 4re, [

L b

J:> C, =< C,

Fromequation4.22 it can be seen that |
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(Itr=Rand r, =2 than(, =47, R

Which is the capacitance of anisolated spherical
conductori.e aspherical conductor canbetreated asa
spherical capacitor with outer sphere at infinity.

(i1) If both#, and #, are made large but

n —r, =d iskept fixed we can write rr, ~ 47r° = A4
where risapproximatelythe radius of each sphere and A

isits area. Equation 4.22 then becomes whichis same as
the equation for a parallel plate capacitor.

Example 4.12 : The radii of inner and outer
spheres of aspherical capacitorsare2mand I mand a

dielectric mediumof dielectric constant €, = 8 fillsthe

space between them. Calculate the capacitance of the
capacitor.

Solution : For a spherical capacitor filled with
dielectric

¢ = 4re,e, 1,

L
(r-r)
Here =2m,r,=1m, g,=8

¢ = 1 8x2Zxl
79x10° (2-1)

. 16 9
(F =—x107
5 F

H

', =178x10" F =1.78nF

4.10 Combination of Capacitors

There are many situationsin electric circuit where
two or more capacitors are used. Two special methods
of combinations frequently used are series and parallel
combinations. Any combination should have two peints
which may be connected to a battery to apply a potential
difference.

4.10.1 Series Combination

Inseries combination capacitors are wired serially
one after the other and a potential difference may be
applied across thetwo ends of the series. In other words
in such a combination second plate of first capacitoris



connected to the tirst plate ot second capacitor the
second plate of the second capacitor is connected to the
first plate ofthe third and so on. The charge delivered to
each capacitor of the series combination has the same
value.

Figure 4.16 shows the series combination of three
capacitors having capacitance €, (', and

respectively. The points Pand N are end points of this
series combination and serve as the points through which
apotential ditterence may be applied. In figure point P is
connected to the positive terminal and Nto the negative
terminal of the battery. Second plate of capacitor C, is
connected to the first plate of capacitor C_ and second
plate of C_is connected the first plate of capacitor C.. In
this manner any number of capacitors can be connected
inseries.

R

+ + + +4
[
+ + + +4

—

" V,

|
v

*|
|

Fig 4.16: Series combination of capacitors

We canunderstand how the capacitorsendup with
identical charge by following reasoning. Let the battery
supply acharge+ Q to the first plate of the first capacitor
(C)). By electrostaticinduction a charge - Q appears on
the inner face of second plate of C and a charge + Q an
its outer face. This+(Q charge on the second plate of C|
flows to the first plate of second capacitor C, inducing
charge+Q enits outer faceand charge - Q on inner face.
The process 1srepeated for the third capacitor and the
charge +Q on outer plate of C, flows to the negaive
terminalofthe battery. Thus we have a positive charge +
Qontheinner side of the first plate of capacitor C anda
negative charge - Q on the inner side ofthe second plate
of capacitor C,. This compeletes the charge distribution
with each capacitor ending with same charge. Since their
capacitances are different the potential differences
acrossthe plates of each capacitor are different. Let the

potential differencesacross C,,C and C,arel’, V', and
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V. respectively then

Y
C

3

0, 0

2T and Vi =
-1 c2

V
It'the potential difference across Pand Nis V then
V=V +V,+V,
) i
V= e + g + 9

CC - (4.23)

Itthe total (equivalent ) capacity of the combination
is C , then

.0

L=(, (424

o |1 1 1

== —+—+—
So ¢ Q{ e Cj ... (4.24)
L L .(4.25)

C, ¢ ¢, C

Like wise the equivalent capacitance of n
capacitors C ,C............C_connected inseriesis given
by

#z 1‘+ 1 + 1 +ot 1 ... (4.26)

¢, ¢ C, C

It the combinationisreplaced by a single capacitor
of'this capacitance (C ) thesingle capacitor will store the
same amount of charge for a given potential difference as
the combination does.

Itis obvious that
(1)  Thereciprocal oftheequivalent capacitance of the
series combination is equal to the sum of the
reciprocals of individual capacitances of capacitors

n series combination,

The equivalent capacitance is smaller then the
smallest capcitance present in the series
combination.

Some points worth noting regarding series
combination are

(i)

Series combination of the capacitorsisused in



(i)

iy

(iv)

situations where the applied voltage is high and a
single capacitor can not sustain it or when we
require a capacitor of smaller capacitance than
that of capacitors available.

In series combination amount of chargeis same for
all capacitorsirrespective of their capacitances

O 0, Q... =1:1:1..

It n capacitors of equal capacitance C are
connected in series then their equivalnt

A

capacitanceis Cy = ; and potential difference

acrosseachis V/n.
If a number of dielectric slabs having dielectric
constants €, €, €, ... areplaced between the

plates of a capacitor parallel to plates as shown in
Fig4.17, thenthis capacitor canberegraded asa
series combination of as many capacitors,
however, the distance between plates of each such
capacitor 18 equal to the thickness of
corresponding dielectric slab.

A
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Fig 4.17 : Capacitor containing different dielectric

slab parallel to plates
Forseries combination 4. 1 7(b)

€ g, A €, e, 4
o A (“r _ LT
1 2 bz T

f f,
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. g5 A
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{3
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St et

C, ¢ C, C,

1 f 2 1,

= = +—2 4=
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4.10.2 Parallel Combination of Capacitors

Anumber of capacitors are said to be connected in
parallel if potential difference across each is the same
(and is equal to the applied voltage). In such a
combinations capacitors are arranged (wired) insuch a
manner that all right hand (first) plates of all capacitorare
connected at one common point and left hand (second)
plates are connected at another common point. One of
these common pointsis at a higher potential than other
when a battery 1s connected between these points.

Q0
+ —_—

IIII{‘JD_(-IJ

e

FFFFOFTFFFLO FHF

F 3
<0
¥

1+
[

-«

Fig 4.18 : Parallcl combination of capacitors

Figure 4. 18 shows parallel combination of three
capacitors of capacitances (|, ', and (; respectively.
Note that first plates of each capacitoris connected to



higher potential point P (positive terminal of battery)
while negative plates are connected to lower potential
point N (negative terminal of battery). Thus potential
ditference across each capacitor is same {equal to the
potential difterence across the terminals of battery).

Let the battery supplies a charge + Q whichis
distributed on the first plates of the three capacitors
according to the cpapacitance of each capacitor. Let the

charges on these platesbe (J,, (J, and (), . Dueto
electrostatie induction the charges-Q , -0, and -
{J, appears oninner faces of second plates of respective

capacitors. Positive induced charges appearing on outer
faces of these plates flows to the negative terminal of
battery. So

Q=CV,Q.,=CJF and Q, =C
and totalcharge 0 = O, + (J, +(J,

or O=CV+CF+CF

or O=(C +C,+C)V .(427)

If the equivalent capacitance of the parallel
combinationisdenoted by C_then

o=0CV ...(4.28)
From equation (4.27)mand (4.28)
CV =(C+C,+ ) V

or C,=0C+C,+(; ... (4.29)

Like wise for a parallel combination of n different
capacitors

C,=C+C+C +..+C . (4.30)

Ttisobviousthat

(a) Forparallel combination of capacitors, equivalent
capacitanceisequal to the sum ofhe capacitances
ofindividual capacitors.

(b) In a parallel combination the equivalent
capacitance is always greater then the largest
capacitance present in the combination.

Following points are worth noting regarding the
parallel combination of capacitors.

() Sucha combination is used when a large
capacitance required for a given working voltage
or a capacitor of large capacitance is to be
obtained from given capacitors having smaller
capacitances.

()  Inparallel combination potential difference across
each capacitoris some

but the charge on each capacitor is proportional to
its capacitance

(u1) Ifnidentical capacitorseach ofcapacitance C are
connected in parallel the equivalent capacitance of
the combination is n times the individual
capacitance

C,=nC

(tv) Ifnanumber of dielectric slabs each of some
thickness d having dielectric constants
€., €, €, ... areplaced inthe space between a

capacitor (of plate area A) asshowninfig 4. 19 then
these can be considered equivalent to a parallel
combination ot as may capators for the capacitor
with three dielectric placed as infig4.19 (a), the
equivlalent parallel combination is shown in

tig4.19(B)

P

TN S (T

. X XU X
d '.81]' R ==

X xR ]

IR I ) N—
Nl

0]
Fig. 4.19 : Parallel combination for different media
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here A, A and A_ are areas corresponding
dielectric slabs respectively.

Capacitance of parallel combination

Cp=C+C, +C,

.5
o Cp= ;[Al e, th e, +4 €, |

Example 4.13 : For the capacitor combination
shown in Fig find the equivalent capacitance between
points Pand N

10 pF
C, -
| | 30 uF
P [ 1 _Q | N
|1 M
C1|| C,
" 20 pF

Solution : Inthe circuit shown capacitorsof 10 pF
and 20 pFare connected in parallel and their equivalent
capacitance ('=10+20=30x/ so these can be
replaced by a 30 uF capacitor, whichisnowin series with
another 30 uF (C,) capacitor already present in the
circuit so the capacitance of the given combination.

C'=30puF 30 uF
P e N
|| | |
C,
+H =
||
11
— =4
C ¢ q
t_ 1 1 2
C 30 30 30
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C=15ul

Example 4.14 An infinite circuit is formed by the
repetition of same link consisting ot two identical
capacitors each of capacitance C. Find the etfective
capacitance between points Aand B.

Solution : Astheladder shownin figof question is
infinity long the capacitance of ladder to the right of
points P and Q (say C) is same as that between Aand B.
The ladder shown above can then be replaced by the
circuit showninFig below

o8

Fom this figure equivalent capacitance between A
and B

CC,

C+C

(;..'1 =+

C(C+C)+CC,
(C+C)

¢

Cl-CC, -C*=0

_C= VO +4C° _C+ NEToe
2 2

¢
: :(*(u\/g)
2
Cl :M or (1 = (1_\/5)('
2 2



butas C, cannot negative we have to choose

('l + ﬁ) ¢

C = —
as correct value cut of the two values calculated
above.

4,11 Energy storedin a capacitor

As has been mentioned earlier a capacitorisa
device to store electrical energy. In this section we
discuss about thisaspect.

We have seen In previous chapter that
electrostatic potential energy is associated with any
charge configuration whichis equal to the work done by
extenral force in assembling this configuration by bringing
the constituent charges frominfinity (where charges are
assumed at rest) to their respective locations in
contiguration under condsideration. As work must be
done by anexternal agent in charging a capacitor whichis
stored in the torm of electrostatic potnetial energy in the
electric field between capacitor plates. To understand the
process of charging we imagine that some external agent
istranstering electrons from one plate to other plate ofa
capacitor. The plate from which electrons are removed s
becoming positively cahrged while the plate recieving
electrons is becoming negative, thus a charge separation
takes plate inthe process. Asthe charge accumlates on
the capacitor plates this external agent has to do
increasingly large amount of work to transfer more
electrons. In practice this work is done by a battery at the
cost of chemical energy stored init.

g dg L

+ + + + + +

A B

Fig. 4.20 ; Imagination of charge transfer
from one plate of a capacitor to other

Suppose that a certain instant a charge q' 1s
already present one plate of capacitor during the charging
process. Atthat instant the potential difference V between
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capacitor platesis q'/C ifnow anincrement of charge dq
is to be transferred to this plate the increment of work
neededis given by

dW=V'dq .43
the total work required to charge the capcitor from

o
W= (v dg
il
qu
W=1=d
!C !
.IQ
W—=—]qg'de
C;[q q

1 12 &
o Lla”
¢ 2

8]

10°
o1
2 C
This work is stored as potential energy U in the
capceitor

W

2 C

On substituting Q = CV in equation (4.32) we
obtain

SolU= ...(432)

(I
U=zCr L .(433)

and if we substitute V=0Q/Cinequation (4.32)

Ly
L=EQI {434
thus we can express the energy stored in a charged
capacitor as
101

=V’ =
2C 2

{

l .
—OV
2£

Thisresult applies to any capcitor regardless of its
geometry. These equations, however, do not tell us
where thisenergyis stored. By following argument we
can explain that this energy is stored in capacitorin



electric field between the plates. Consider two parallel
plate capacitors 1 and 2 having same plate area A but
the plate separation for capacitor 1 1s double of that tor
capacitor 2. Thus the capacitance of capacitor 1 is half
the capacitance of capacitor 2. It both the capacitors are
given same amount of charge q then electric field

between the plates givenby 7« = is same for both

i

the capacitors. Because of the (above mentioned)
difference in capacitance, from equation 4.33 we note
that the energy stored in capacitor 1 1s twice that 1n
capacitor 2. Also note that for the volume between
capacitor plates capacitor 1 has twice the volume than
capacitor 2. So for same value of ¢ for both capacitors,
one with twice volume has twice the stored energy.
However as the electric field is present in the entire
volume between the capacitor plates it 1s logical to
associate electrostatic potential energy with electric field
present inthis region,

4.11.1 Energy Density of Electric Field between
Plates for a parallel Capacitor

For a parallel plate capaciotor having plate area A
and charge Q the electric field between capacitor plates
is given by

-9 _ o
e, €, 4
Q =&, LA
The electrostatic energy of a charged capacitor
T
2 C
, g, d
but € = [7
So 1l (€, L:4)
2 (g, 4
d
U=Le 124d

but Ad=V (Volume between capacitor plates)
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not to contuse with potential difference.

Soenergy density, u, 1.e energy per unit volume

U

] . -

u=g - 2 Iy E
Although the equation 4.35 is derived for the
special case ofa parallel plate capacitor, ithas a general
validity. Thus wherever electric field E is present the

... (4.35)

energy per unit volume u is given by 1/2 i[ EZ In

general E varies with position, so u is a function of
coordinates. For the special case of the parallel plate
capacitor E andu do not vary with positionin the region
between capacitor plates.

Example 4.15 : The area ot each plate fora
parallel plate capacitor is 90 em® and plate separation is
2.5 mm. It is charged by connecting across a 400V
supply. Find the electrostatic energy stored in the
capacitor.

Solution : Here 4 =90¢cm? =90x 107~ m*

d=25mm=25%x10"m

V=400V
U r=Lep
se S =56
. &, 4 885x10 2yo0x10*
Here = =

d 2.5x107

(' =3.18x10" F =318 pF

{ Z%X3,18><10 8 ><(400)2 =2.54%10°J

4.11.2 Energy stored in combination of capacitors
(a) Series Combination : Consider n
capacitances (|, (', C,,....,C, connectedin series, the
equivalent capacitance of the combinationis given by
1 1 1 1 1
_:T+T+T+‘”+ S
O G O ¢

1 2 k) !

Here charge Q on each capacitoris same,



]
Z

Energy stored inequivalent capacitor {/ = 1 (2
e

041 1 1 1
/== —F+—+—+...+
21¢ ¢ C,
)A )3 2 2
rU_( +("_'+Q_'+ +Q‘
2, 20¢, 20, 2C,

or{/ =0/ +U,+U, +. .+l

(b) Parallel combination : For n capacitors

having capacitances (), (', (,....,(C connected in

parallel the equivalent capacitance is given by

C,=C+C,+C, +..+C,

Here potential difference V across each capacitor
is same energy stored in equivalent capacitor
{ V?

%CP
]. oy + - x - x rz
orU :5[(_.l +C,+C+ 4+ C P

(P I B 1 .. s
==CV - +=CV " +=CV +. . +=CF~
2 2 2 2

or{/ =/ +U/,+U, +. .+,

Therefore, for both series and parallel combination
of capacitor the total energy stored inthe combination is
equal to the sum of energies stored in individual
capacitors.

4.12 Redistribution of Charge and Loss of energy
on sharing of Charges

When two conductors charged to ditferent
potential are connected through, a conducting wire or
brought in contact with each other, charge flows fromthe
conductor at higher potential to the conductor at lower
potential till both acquire a common potential. Thereisa
lossin energy inthis process of redistribution of charges.
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Wire of negligible capacliance

{u) Belore vonecling

(b} Aller vonecling

Fig4.21 : (a) Before conecting (b) After conecting
Considertwoisolated spherical conductors A and

B ofradii R and R, charged to potentials }| and V,
[Fig4.21 a]. If capacitances of the conductors are |

and (, and charges on them are {J, and (J,

respectively.
Then O =V, .. (4.36)
and @, =CV, . (4.37)

So total charge on the system before the two
conductor are brought into contact

Q=0 +¢,

O=CV +C.V, L {4.38)

Itthe two conductors are now connected through
a conducting wire of negligble capacitance then the
charge will tlow from the conductor at higher potential to
other at lower potential till both acquire same potential
V(say). Inthis case treating both condcutorsas one the
capacity of the combined systemis C, + C, asthe two
conductors are at same potential can be treated in a
parallel combination.

After the redistribution of charges if Q.and Q, are
the cahrges onC and C,

O'=CV .. (4.39)

and Q,'=CF . (4.40)

From conservation of charge, total charge before
redistribution must equal the total charge after
redistribution i.e

Q=0 '+Q2':(C1 +(?2)V



or  CV+CF,=(C+C)V
therefore the common potential is
OV +CF
o= ¥z _
C1C, (44D

and ratio of charges after redistribution

o' Y
00 Cr C ... (4.42)

Z

thus after redistribution charge is shared in
proportion to capacity

ItV =V,

then V=V =V,

the change in potential of first conductoris
AV, =V -V

. . [ CF O
AIH:IH_[ 1(11 T HJ
1 "2

V‘ — (1'_‘ (]'/1 - Vvl)

A
or 1 C+C. ...(4.43)

The change in potential of second conductor

AV, =V -T,
CF+CF,
AV, =| =11 22 |
o . [ ¢+, J .
¢V -7)
AV, =—— 22
or T o L (4.44)
AV, C,
O AY,

Thus atter redistributionthe magnitudes of change
in potential ofthe two conductors are ininverse ratio of
their capacitances. The above discussion isalso true for
sharing of charge between two charged capacitors
initially at different potentials.

4.13 Energy loss

Initially before contact the total electrostaic

potential energy ofthe systemis

-1
2
After the conductors are joined through a
conducting wire, total electrostatic potential energy ofthe
systemis

1172 ]- L
Ch +5('3I'2 ... (4.45)

1 ~ ~ 72
(= +C)

CVaCy, Y
C+C,

N P

L _CH GV,
¢, +C,

(CF +C 1LY

1
U=
S0 2 C+C,

... (4.46)

Soenergyloss Al/ =0/ -1/"

. N H{CF Y
Al = [l(ﬂf +l(1_V;]—lM
2 2 -

© 2 (4G,

—

Aol CF(C +C)+CF(C +C) = (CF +C)
or 2 C +C,

fAU:l
2C

1

e

el .. (4.47)

Since (¥, -V, )2 is always positive so AL/ =0

thus there is always a loss of electrostatic potential
energy, when two conductors or two capacitors charged
at different potentials are connected in parallel. Thisloss
of energy 1smainly in the form ocfheat when charge flows
from one conductor to other through the conducting wire
having some finite resistance and also m form of light and
sound 1f sparking takes place. In sharing thereisno loss of

energy
If V,=V.,s0 that A{/ =0

In process of charging a capacitor by a battery of
emf'V halfofthe energy QV supplied by battery gets



stored in capacitor { {/ = % ) and remaining half(

QV/2)1s dissipated in form ofheat in connecting wires.

Example 4.16 A 600 pF capacitoris charged to
200V using a battery. Now thebattery is disconnected
and the plates of this capacitor are connected n parallel
to aninitially uncharged capacitor of 600 pF. Find the
loss of electric potential energy in the process.

Solution : Here CC, = (', = 600 pi-
=600x10 “17=6x10 " 1

V, =2001, 7, =0

1 CC 2
: =— —(, =V,
lossin energy 2(--'1+(3( 1 )
: 1 : la
:lxéle 36_>1<[]10 (200—0)“
2 12x10
=6x10°7

Example 4.17 A900 pF capacitor is charged to
200 V (a) Find the electrostatic potential energy stored in
the capacitor (b) It now the capacitoris disconnected
from battery and joined in parallel with another uncharged
900 pF capacitor then calculate the electrostatic potential
energy stored in the combination.

Selution : (a) Given (" =900 pF =9x107""F
IV =100F

energy stored
] - ] 2
U, ==CV*=—=(9x10 " ){100)

U, =45x10°J

(b) When given charged capacitoris connected in
parallel to anidentical uncharged capacitor the charge on
firstisnow divided equally on the two. Let the final charge
oneach capacitoris Q! and common potential be V.

@, |18
O== V=—
L=3 and >

In this case both capacitors have same value of
stored energy so thetotal energy of system

i, = 2[lQV]
= "2

{7, :2xlxgx£:l(.)l"
) 2 2 4~

U, = %x 45x10" =2.25%10"°])

Z

and rest halfof'the energy is spent isthe form otheat
and EM radiations.

Important Points

1.  Dielectric Materials : These materials are non conductor of electricity they get polarised when placed in

external electric field.

2. Capacitane The electric potential V of'a conductoris proportional to charge Q giventoiti.e Q=CV herethe
constant of proportionality C is called capacitance of conductor. Numberically the capacitance of a conductor
18 the amount of charge given to aconductor to raise its electric potential by unity.

[F¥]

A capacitorisa devicethat consists of two closely spaced conductors (plates) with charges + Q and - Q. Its

capacitanceis also given by Q =CV where V is the potential difference between the plates.

4. Thecapacitance ofa capacitor depends on area of plates, plate separation and dielectric constant of medium

present between plates.

5.  Foranisolated spherical conductor radius R' placed in air or vacuum the capacitance is given by

C,=4mre, R.




10.

Theradms ofa spherical conductor of 1 F is greater even than the radius of earth.
On filling the space between the plates of'a capacitor completely witha of medium of dielectric constant <, its

capacitanceincreases €, times,

ei]

Capacitance for a parallel plate capacitor C =<, having amedmim between the plates.

g, 4

with free space as medium €, = 7

withmedium of dielectric constance <,

For a capacitor partially filled with a dielectric (dielectric constant €_, and thickness t)

g 4

{
d—t+
=

r

_dxe, nry

C, = —(”1 —n) ; withmedium of dielectric

Capacitance for a spherical capacitor with free space medium

c 4z g, nr
constant €, , “m =% (r )
: K —F

In series combination of capacitor charge on each capacitor 1s same and equivalent capacitance ofthe
combination isgiven by

| | | | |
— = —+—+..+

c, ¢ ¢ ¢ T cC

L
For parallel combination of capacitor potential difference across each capacitor is same and equivalent
capacitanceisgivenby C, =, +C, +C, +.. .+,

In charging a capacitor some work has tobe done. This work is stored in capacitor in electric field between
the plates inthe form of electrostatic potential energy . This energy s given by

)? 5 i
U = l(’— = lCV" = lQV
2C 2 2
When two conductors charged to different potentials are connected, the redistribution of charge takes place

0'_G

inratio oftheir capacitancei.e ? e and their common potential (after charge redistribution)is given by

,_CH Gl
C,+C,

103
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The energy lossin above redistribution of chargesis given by

1 CC
20, +C,

AU (V,-v.) J

Questions for Practice

Multiple Choice Questions

1.

|F¥]

The correct relation for the capacitance ot a parallel
plate capacitor is

(a) Cx R (b) Cx R

(d) C =< R

For the figure shown equivalent capaitance
between points Aand Bis

(c) Cx R~

(a)2puF (b)4uF
(c)25uF (d)3uF

On connectingthe two plates ofa charged cpacitor
by a conducting wire

(a) potential difference across the plates will
become infinite

{(b) charge on capacitor will become infinite

(¢) charge on capacitor will become double ofits
nmtial value

(d) Capacitor will be discharged

For the figure shown the equivalent capacitance

between positionAand B
5uF
|
5pF 5 uF
| | | | | | |
il all | | | —B
3 uF 3 uF [
I
5 uF
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(a) SuF (b)2.5uF
(c) 10 pF (d)20uF

Theradii of two spherical conductersareinratio |
: 2 theratio of their capacitanes is

(a)4:1 bHl:4
(©)1:2 (@21
AsshowninFig. a dielectric slab of dielectric
constant €_ is slided in half the space between

capacitor plates. Ifthe initial capacitance of the
capacitor is C itsnew value will be

C _ 1 ('
(@) 5 (= +1) ® 7 )
('I+ e?,) .
(c) 30 (d) C(l+¢))

Eight drops of mercury of equal radii and each
possessing the same charge combine to form a
big drop. The capacitance ot this big drop as com-
pared to that of each smaller drop is

(a) 2 times (b)8 times

(c)4times (d) 16 times

A capacitor has capacitance C. [t1scharged toa
potential difference V. It now be is connected

across aresitor R then amount of heat dissippated
willbe



1.
_ —CP?
(a) ) ®) 3

| R 1 ...,
© 7 (@ 50
3 2

On giving a charge Q to a capacitor its stored
energy 1s W. On doubling the charge stored energy
will be

(a)2 W (b)4 W

(c)8W (dyw/2

Two spherical conductors of 3 pF and 5 puF are
charged to 300 V and 500 V and then connected
together. The common potential will be

(a)400V (b)375V
(c)425V (d)350V
The potential energy stored in the region between
plates of'a capacitoris [/, . If adielectric slab of

e, now fills the space between the plates
completely then new potential energy will be

i, .
(@ b U, &
U’U
() == @ U,

¥

Forthe circuit shown infigthe potential difference
across 4.5 uF capcitoris

3 pF
4.5 uF I I
| | |
[
6 uF
+ =
| I
12V
8
(a) 3F b4y
J
(c)6v (DY

105

13.  For the circuit shown in fig the equivalent
capacitance between Aand B willbe

SuF 4uF
12 uF I I I I 16 uF
v
4|j,1|F
(a) 1uF (b)OuF
(c) 1.5uF (d) 1/3uF

Very Short Answer Questions

1. Ifareaofoneplate of a parallel plate capacitoris
halved then can the device be called a capacitor.

2. What will be the maximum and minimum
capacitance obtainable with three capacitors each
of 6 pF capacitance.

Mention the factors atfecting capacitance of' a
conductor.

L

4. Onassuming earthasa spherical conductor what
will beits capacitance?

5. Whatistheelectric field between the plates of a
charged parallel plate capacitor with surface
charge density G nplates.

6. Ifncapacitors of equal capacitance C are
concepted in series what will be the equivalent
capacitance.

7. Write expression for energy density for electric
tield between plates of a parallel plate capacitor.

8. Writeunmt of energy density.

9. Two capacitors of capacitance (| and (, are
given equal charge write the ratio of electrostatic
potential energy stored in them.

10.  Mention a conductor which can be given nearly

infinite amount of charge.

11.  Whereand in what form does the energy is stored
Inacapacitor.

12.

13.  Onfilling the space between the plates ofa parallel

What is the net charge on a charged capcitor?



14,
15.

16.

19.

20.

plate capacitor with some dielectricits capacitance
increases five times. Whatis th dielectric constant
ofthis materials?

What 1s the basicuse of a capacitor?

The plate separation of a parallel plate capacitor is
d. Ifa metalic plate of thickness d/2 isplaced inthe
space between plates not touching any plate, then
what will be effect on its capacitance?

How much work hastobe doneincharginga25
uF capacitor it potential differece acrossitis S00'V.

How will you obtain a capacitance of higher value
if you have been provided with capacitors of
relarvely low capacitance.

What is the equivalent capacitance of two 2 pF
capacitors connected in series.

Onimmersing a parllel plate capacitor in oil what
will bethe effect onits capactiance. The dielectric
constant of oil 1s 2.

The radius ota circular plate for a circular parallel
plate capactorisr. Ifits capacitance is equal to that
ofa spherical conductor ot radius R then find the
plate separation.

Short Answer Questions

Explain terms conductor and insulator with
examples.

Distinguish between polar and non polar
dielectrics,

Derive expression for capacitance of a spherical
conductor.

What will be the effect onthe potential difference
across the plates of a capacitor ifits plates are
brought nearer keeping the charge constant?
Explain.

A parallel plate capacitor with air as medium is
charged to a potential difference V using a source
(battery). Without disconnecting the battery air
medium is replaced by a dielectric medium of

dielectric constant <, . Explain with reasons the
changes observed in the following -
(1) potential difference

(i1) electric field between plates
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10.

(1) capacitance

(iv)charge

(v)energy

A parallel plate capacitor with air as medium is
chargedto apotential difference }/, usinga voltage

supply. Ater it is disconnected trom the voltage
supply the space between plates is completely
filled by a dielectric. Explain with reasons the
changes observed in the following

(1)charge (1) potential difference

(i11) capacitance  (1v)electric field

(v)energy
Derive expression for energy stored in a charged
capacitor.

Three capacitors of capcitance C each are
connected first in series and then in parallel.
Calculate the ratio ot equivalent capacitances in
these two situations.

n capactors of capaitance C each when
connected in series yields an equivalent
capacitance 'y and when in parallel yields

equivalent capacitance C .

b
—£
(“1' .

&

Find the value of

Define electric capacitance and mentioned its ST
unit.

What will happen to the capacitance of a spherical
conductor ontrippling charge onit? Givereason .

Onfilling the space between a 2 uF air capacitor
by mica its capacitance becomes SuF. Calculate
the dielectric constant of mica.

Two spherical conductors ofradii K and R, have
capacitance | and(’, and charges (), and 0,
and potential difference F and ¥, respectively

(¥, >7¥,) . Theseconductorsare now connected

by a conducting wire of negligilbe capacitance then
show that theratio of chages intheir potential is



14.

AV, C,

AV, C

Whatisa capacitor? Explain.
Three capacitor having capacitance (|, ', and

(', are connected in series. Derive expression for

equivalent capacitance.
Three capacitors having capactiances (|, C, and

(’; are connected in parallel. Derive expression
for equivalent capacitance.

Essay Type Questions

1.

|F¥]

Discussthe principal of a capacitor and derive the
expression for the capacitance ofa parallel plate
capacitor.

Obtain an expression for the capacitance of a
partially filled capacitor.

Derive an expression for energy density of electric
field between the plates of a parallel plate
capacitor.

What is a spherical capacitor? Derive an
expression for the capcitance of spherical
capacitor.

Explain the charge redistribution when two
charged conductors are connected together.
Determine the ratio of charges atter redistribution
and expressiontor energy loss.

Answer (Multiple Choice Questions)
1.{(A) 2.(B) 3.(D) 4.(B) 5.(C) 6.(A)
7.(A) 8.(B) 9.(B) 10.(C)11.(A)
12.(D) 13.(A)

Short Answer Question

1. No

2. C . =18uF and € =2uF

3. The capacitance ot a conductor depends on its
geometry and nature of surrounding medium.

4. C,=4r¢, Rhere

R = 6400km = 6400x10°m. Co =711 uF
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10.
11.

12.

14.

15.

16.

20.

L=—
E(.
c -
£
i . — E2
% Lor =—g,
Jim®
%
U 26 ¢,
U, 1¢0° ¢
2C,

Earth, becauseits capacitanceisvery large.

Intform of'electrostatic potential energy in electric
tield between capacitor plates.

Zero as plates have equal and opposite charges.

To store electric charge and electric energy.

o EDA: g, A :2[ﬂ]:2(,
 (d-1) (d-d/2) d "

1.e capacitanceis doubled

W=QV=(CV\y=Cy°

=24x10 ° x500x500=617
By joining given capacitorsis parallel.

1 1 1
=t
OV O

From '~ thisgives € =1uF

('=e, C, =2C, 1.edoubled

C=dre, R —4zrec Rod=—
d 4R



Numberical Problems

|F¥]

Calculate the radius of a spherical conductor of 1
pF capacitance. [Ans: 9mm]

The area of each plate of a parallel capacitor is 100
cmr and the intensity of electric field in between the
plates is 100 N/C. What is the charge on each
plate.

[Ans +8.85 x 10 12C, -8.85 x 10 12C]

A parallel plate capacitor is kept at a certain
potential difference. Keeping this potential
difference constant to put a dielectric slab of 3 mm
thickness between the plates the plate separationis
to beincreased by 2.4 mm. Calculate the dielectric

constant of slab. [Ans: g,=5]

Two capacitors are of 2uF and 4pF capacitance
respectively. Compare the ratio of equivalent
capacitances of their series and parallel
combinations.

[Ans:2:9]
Consider two metallic spheres ofradii 0.05 mand
0.10 m, each having a 75 pF charge. On

connecting these spheres by a conducting wire tind
(i) common potential (i) amount of charge flown.

[Ans: 9% 10°V,25 u(]
Aspherical conductor of capacitance 2 F, charged
at 150 volt is connected to an 1uFuncharged and
conducting sphere. Find common potential, charge
on each capacitor after joining,

[Ans.: V=100V, Q,'=200uC, Q, " '=100uC ]
125 droplets are charged to 200 V potential.
These droplets are combined to make a single
drop. Calculate the potential of big drop and
change in potential energy.

|Ans:V, =500V, U, =25U

In fig shown each capacitoris of 1 pF capacitance.
Find equivalent capacitance between points Aand
B.

1uF 1
| | |

|
1 ul Tpl”  1pF

HHHHF

1l
II | |
[ I

§ capacitors

A B
[Ans: 2 uF]
9. Infigshownthe equivalent capacitance between
points Aand B is 5. Calculate the capacitance of
capacitor C.
2 uF
. [ |
A
1 1 1
Tt 1"
4uF —— —_ 4 pF

« B

[Ans: C=8 nuF]

10. For capacitors shown in tig (a) and (b) find
capacitances Area of each plate 1s Aand the plate

Y —=— %
= ZziZ

(a) (b}

A ZEfiEfiEI)A
[Ans: (a){ (s, +<, )} O 4fe. +<,) |



A —

12.

14.

Determine equivalent capacitance between points
Aand B for the Fig shown

8 uF 4 puF
|

12 uF 16 uF

s

I
4 pF

~ 1 .
[Ans; C=—ul"]
31
Anisolated spherical conductoris surrounded by
another concentric conductingsphere whose outer

surfaceis earthed. the ratio of the radii of these two

P

spheres is . Prove that due to this

arrangment the capacitance of spherical conductor
increases #rtimes.

The energy density of a parallel plate condensoris
4.43x107 J/m* . Find electric field intensity
between theplates. ,=8.86x10 “F/m

[Ans: E=10N/C]

Determine the equivalent capacitance of the
systems showninfig(a)and (b) between Aand B.
Area ot each plate is Aand the separation between
adjancent platesisd.
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[Ans ¢ 2e, A 3, A
ns:(a

) d d
Let equivalent capacitances for n indentical
capacitors each of capacitance C in series and
parallel arrangements are Cs and Cp . Prove that

(b) ]

(x 1)
C -C =——C

n
The radus of plateused in a parallel plate capaitor
1s 10 cm. If the plate separationis 10 cm,
determine the capacitance of this capacitor for air
medium,

[Ans:C=2.78 pF]






Chapter - 5
Electric Current

Up tillnow, our discussion regarding the electrical
phenomenon was concentrated only on electrostatics,
1.e. charges areat rest. Now, we will discuss the situations
in which the charges are in motion. The word electric
current 1sused to explain the flow of chargesin space. A
large number of electrical applications are based on
electric current. For example the electric equipment like
bulbs, fansin houses. In study of electric currentis also
important in other areas of science. For example
geophysists have interest in charge 1n atomsphere
whereasbiolosists study the neuro current in humans that
controlsmuscles .

Inthis chapter, we define electric current, after that
we will discussits principles. For flow of electric current
in a conductor, potential difference 1s necessary and the
device whichisused mitis called a cell orbattery. So, in
this chapter, we will also study regarding cells.

5.1 Electric Current

Net charge flowing per second from any area of
cross section is called electric current. If AQ 18 the net
charge flowing throughthe area of cross section in time
At, thenaverage current, is given by -

_AQ

v .. (5.1)

1f the rate of flow of charge does not remain
constant over interval of time, then, we define the
instantaneous current [ as the limit of the preceding
equations (5.1) as At tendsto zero.

A0 _do
dt

F=1lim

. (5.2)

For defining the current, we must use the word net
charge. Even though the current is due to the tlow of
charges, but all the moving charges do not produce
electric current. Inthe absence of externalfield, thereis
no net current, because the motion of free electron is
random and net effect in any particular directionis zero.

STunit of'electric current s ampere (A), whichisa
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fundamental unit.

1 coulomb

1A= 1 second

=1C/s

(From 20 May 2019 in SI system of unit 1 ampere
is redefined and given in terms of a the fundamental
constant e (the electronic charge). It can be searched at
http://physics.nist. gov.

According to convention, the direction of current is
given by the direction of tlow ot +ve charge. Hence, it is
assumed that the direction of current is in the opposite
direction, i.e. in the direction of flow ot -ve charge.
Moving charges are called charge carriers. In different
cases, the current will be due to flow of ditterent type of
charges. Hence,

(1)  Inconductors, the current is dueto the flow of free
electrons.

() Inelectrolysis (electrolytes), current flowis dueto
the flow of +ve and -ve ions.

(i) Insemi-conductors,the current is duetothe flow
of electrons and holes.

(iv) Indischarge tube, the current is due to the flow of

+veions ofthe gas and electrons.

The current can also flow in vacuum, e.g. in picture
tube of TV, electrons flow in vacuum and hence the
current flows. Although, directionis considered in the
flow of electric current, yet it is a scalar quantity, because
itis defined in terms of charge and time which are scalar
quantities. Current does not follow the law of vector
addition, which is explained in the figure 5.1. Here the
junction is shown by three wires. The flow does not
depend on the shape and direction of wires. Hence, the
current is not a vector quantity.

Fig 5.1 The current is represented



by 7 =1 +17, . whaleverbe the valucof &

Inthis chapterwewill confine ourselves to the flow
of current in conductors. Simultanecusly, we will
concentrate our study on steady current, which does not
depend ontime.

12 5.2 The current [ Mowing through all planes 1.2 and 3 s same.

Insteady state, the current in any section of the
conductor willremain same, whatever be the position of
cross section as shown in the fig (5.2). The current /
flowing through all planes 1, 2 and 3 is same. Itis also the
outcomes of principle of conservation of charge.

5.2 Current Density

In certain cases we are interested in studying the
flow of charge from any point on the cross section of the
conductor. In this situation we use current density, a
vector quantity. Atany point P, to define this quantity we
consider a small area dS at point P. Which is
perpendicular to the direction of flow of current. Fig
(5.3A). If Al1sthe current passes through a small area
AS. Then average current density

AT .
ToTre 3(a)
and the current density at point
/= lim AL _ dI 53 (b
SEMOST e 5 (b)

Here, ./= Current density at pointP. Ttisa
vector quantity.

If current flows due to positive charges, then
directionof j willbesame asthat of+ve charge. Ifthe
current tlow is due to negative charges then direction of
J willbe opposite. Hence, directionof j atthat point

or area will be in the direction of current, If current 18
uniformly distributed and perpendicular to point, then

sl

S ... 5.3(¢)
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Fig 5.3 Understanding of current density

[farea AS is not normal, we canuse a unit vector
n which is perpendicular to it and makes an angle &
withthedirectionofcurrent. Then thecurrent density will
be,

J = 7&( 54
AScos# - (34a)
I =JAScosf
A =T -AS ... (5.4b)
) _ . ampere A
Unit of current density 1s 2 -2
m m

Here, we have to note that current density is a
vector quantity whereas electric current is a scalar
quantity.

In a conductor of non-uniform area, current
tlowing will be same but current density will be different.
For afinite area

r:jj’-a{f ... (5.4¢)

5.3 Flow of Electric Charge in Metallic
Conductors:

In atoms of metallic conductor, attractive force
between nucleus and valance electrons is very weak due
to which, the valance electrons are weakly bound with
nucleus and a few of them get free to move randomly
within metal. These electrons are called free electrons or
conduction electrons. In conductors, number of free
electrons are very large. e.g. in copper where every atom
release one free electron, their free electron density is
nearly 8.49 x 10#/ m*, In conductors free electrons
move randomly in whole volume just as gas molecules
move in gas chamber. In the absence of electric field,
these electrons move randemly due to collisions of
electrons withions of conductor the direction of electron
will suddenly change. Asinmolecular theory of gases this
random motion of electrons can berelated to free path A



which mean free path between two succesive collisions.
The time between two succesive collisions is T (tisalso
called relaxation time this 1s average time between two
succesive collision. Due to collisions, the directions of
electron will change as zig-zag path). In metals, the
electrons are inrandommotion atlarge. Sowithina given
time interval and given area AS, number of electrons
through transverse section 15 equal to the number of
electrons crossing opposite to the direction. Therefore,
resultant currentis zero. When external electric field 1s
applied on the conductor. A force (F = —eF) actsin
oppositedirection to the field. Dueto this electric field,
electrons drift in direction opposite to the direction of
electric field. The electron gain a velocity. This type of
velocity s called drift velocity.

5.4 Drift Velocity and Mobility
5.4.1 Drift Velocity

Inthe presence of electric tield, random motion of
electrons ismodified such that these electrons move with
average slow speed (drift) in opposite direction of electric
field. This speedis known as dritt speed. To represent in
formotvectorthe dritt ofelectronis expressed informof
drifts velocity v, . The drift velocity. ¥, is always
oppositeindirection to applied electric field 7 .

The value of'this drift speed is veryless then the
random average speed between the collisions of
electrons. (approximately less than 10'” times). Figure
5.4 helps usinunderstanding the drift velocity. In this
figure, the path followed by the electronsis shown in the
presence of electric field and without electric field. The
continuous lines represent the path ofelectrons in the
absence of electric field and the dotted line represent the
path of electrons in the presence of electric field.

Fig 5.4: The continuous lines represent the path ol electrons in
the absence of clectric ficld and the doticd linc represent the
path of electrons in the presence of electric field.
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Intheabsence of electric field, electrons start from
A, after some collisionit reaches point 5. Whereasinthe
presence ofelectric field, after samenumber of collisions
the electron reaches B' instead of B. In this way after
drift, electron reaches B' in place of B in the direction
opposite to the direction of electric field. (1t can be
compared with still air and slow-motion wind or air). In
still air every molecule will move randomly with thermal
velocity and then will be no velocity in particular
direction. In caseof slow-motion in aireverymolecule has
random motion as well as small velocity inthe direction of
airflow.

Now we will find the relation between the drift
velocity and electricfield. Inthe presence of electric field
the force on every free electron of metal willbe eE. Due
to this the acceleration of electron will be,

ek

m

o=

In vector representation,

eft

m

a=

Forgivenvalueof 17 , g willbeconstant.

Here it isimportant that electrons are accelerated
in time interval between two successive collisions. Its
reason is that due to collisions with vibration ions its
drifting nature stops momentarily and its velocity
becomes randomin any direction.

Ifthe velocity of melectronis # and after time#

its velocity just before the next collisionis v , then

V=l
el
or V=u-— .. (5.5)
i

Ifwe takethe average over the all free electrons of
metal, then,

(7=

els

m

")

)=—)

.. .(5.6)

Here, the quantity (fi ) = 0 because for electrons

average ofrandom velocities is zero and just immediately
atter collision electron will not acquire any energy from



electric field.
Simultaneously, tis the time oftravel between two
successive collisions. Hence (r) Isthe average of time

intervals between two successive collisions of all the
electronsanditisequalto 7.

In this situation, if {¥}=v, . Here ¥, isthe

average drift velocity,
Then, v, = <L, 5.7
en, V;=—_ (57
And average drift speed
v, = ¢k T 5.8
=z ... (5.8)

In general, it the charge is ¢ which is moving in
electric tield. Then drift velocity of this charge will be

o7
L
[

Hig

V

If the charge 18 positive then ¥, will bein the
directionof £ , ifthe charge is negative then v, willbein
the directionopposite of £ .

5.4.2 Mobility

Inthe equation for drift velocity, v =(¢"/,,)) 7 ,in
the right-hand term €7/, . ¢ and m are constants and
therelaxationtime ( 7 ) isthe characteristic property of
material ofthe conductor. Therefore, the drift velocity is
constant for thematerial of the conductor. Thisconstant is
called the mobility of the conductor (p), and it 18
represented by the following equations,

.. (5.9A)
...(5.9B)

v, =—uk
v, =uk

From these relations it is clear that for any
conductor v, c & | hence drift velocity (v )is
proportional to applied electric field (%).

v,

_er
I

u .(5.10)

i

gt
(Ingeneral for any chargeg, 4 = ﬁ )
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Hence, according to equation (5.10), mobility can
be defined as drift velocity perunit electric field. Itis a
positive quantity having the unit

miy

Fim

]
Z

= ms IV'I

For two given metals, when the electric tield is
same,
H_Ya

7R

dZ

From this relation, it is clear that mobility of
electronina conductor is moreitthe drift velocity ismore.
We shall study the mobility in semiconductorsin chapter
16 ot'this book.

5.4.3 Relation between drift velocity and electric
current

Afterunderstanding the concept of drift velocity,
now we can use it to find the electric currentin a
conductor. Let #2be the free electrons per unit volume
(free electron density) inside a metallic conductor. A isthe
area of cross section of this conductor. If electric field 1s
applied across a conductor, the free electronsinside the
conductor will move with drift velocity, oppositeto the
direction of electric field. All the free electrons in the
conductor can be assumed to be moving with the same

dnift velocity v, . Now, letus think of a small element AL

of this conductor as shown in the figure (5.5). The
number of charge carriers in this small element will be
nAAl and the net charge on these charge carriers will be

(nAAL)e .

Therefore, AQ =(nAAL)e

O v O
@’@-;A
O O

p AL >
T

|—

Fig 5.5 Drift velocity in a conductor
Because, all the charge carriers (free electrons) in

the wire are moving withthe same drift velocity v,. Then,



the time taken by these charge carriers in crossing this
element of conductoris,

Al

Vy

Al =

By the definition, the current is the free charge
passing through any area of cross section of the
conductor per second.

B A_Q B (szAL)e
- ALLlv,

At
L (5.11)

Equation(5.11) representsthe relation between
the current and drift velocity. By equation (5.9B),
v, = uk  Therefore Eq. (5.11)canbe written as,

or I =ndev,

I =nAeul: ... (5.12)

The equation (5.12) shows the relation between
the current and mobility of the charge carriers. From
equation (5.11) foraconstant electric current,

nAdev, =constant.

Here, e is constant and for a given metallic
conductor, nis also constant. Hence for a given
conductor, for constant current,

Av, = constant

or Av, = Ay, = constant ... (5.13)

Thus, us for a given conducting wire of non-
uniform cross section area, the drift velocity (v, ) of
electron will be more where the area of cross sectionis
small and the drift velocity (v, ) of electron will be small
where the area of cross section is more.

5.4.4 Relation between drift velocity and
potential difference

According to section 5.4.3, electricfield inside the
conductor of length 7 will be,

F= (514

£

So, the drift velocity of electron according to the
equation (5. 7)will be,
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By putting the value of /v tromthe Eq. (5.14),

el
mi

erT

v 14

— ..(5.15)

i

Fromthe equation (5.15)itis clear that the drift
velocity (v ) of the free electron in a conductor is
proportional to potential difterence ().

Hence, v, oc V7

The drift velocity (v ) of the free electronina
conductor does not depend on the length of the
conductor.

Example 5.1 : The dependence of charge (0
crossing a surface In time £1s given as,
Q=4 +5t+6

Then calculate the instantaneous current from the
surfaceat 1=1 sec.

Solution : Instantanous current,

_do

i
At =1 sec,

d 3 2
] :Z(4t'+5r+6):(']21‘+5)A

I=12(1¥ +5=174

Example 5.2 : Estimate the average drift speed of
electrons in a copper wire of cross-sectional area
1.0 x 10~"m* carrying acurrent of 1.5 A, Assumingthat
each copper atom contributes roughly one conduction
electron. The density of copperis 9.0 10° kg/m® and its
atomic massis63.5a.m.u.

Solution : Theformula for drift speed is given by,

7
v, =
neAd
Given, /=15A
e=1.6x10"C.
A=10x10"m?

#= the number of electrons per unit volume in
copper



=N,=6.0x10* atoms per mole

(iven that atomic mass of copperis 63.5 amu
and each copper atom contributes roughly one
conduction electron to the current flow.

Number of atoms in 63.5 amu copper =
(N, =6.0x10% Avogadro number).

number of atoms in 1 gram copper

6 107
63.5

number of tree electrons per unit volume

602" 107 -
p=———"9"10"=85"10"m"’
635" 10
Hence, drift speed will be,
1.5
vd = 23 19 7
8.5x10° x1.6x10 " x1.0x10
=1.10x10*m/s

Note : Ifthis speedis compared with the speed of
electric field (electromagnetic wave, i.e. 3x10%m/sec,
then it was found that drift velocity 1s veryless than the
velocity ofe.m. wave. Simultaneously the drift velocityis
also very much less than the thermal velocity (~10° m/s)
of'electrons. The time taken by an electron in travelling
the length of 1 m with drift velocity 10 "m/s ina
conductor is about 15 minutes. Now the question arises
how an electric bulb lights up instantaneously atter the
circuit 1s switched on even though the bulb is few meters
from the electric switch. Here one simple example can
simplity our problem. If one end of a very long pipe s
connected to tap and the other end to the tank, then
water will take some time to reach the otherend. But, if
the pipe is already filled with water, then water will not
take much time to reach the tank.

Example 5.3 : Theelectronrevolvesinanorbit of
radius 5.3x10 "'m of hydrogen atom with speed of
2.2x10°m/s. Calculate the average electric current.

Solution : Given,

Radius of orbit, F=53x10"m
v=22x10°m/s

e=1.6x1071C

Speed of electron,

Charge onelectron,

Therefore, the time period of orbital motion of
electron

2r B 2x3.14x53%x107"
v 2.2x10°
=15.13 x 10 " sec

T =

So, the average current produced due to orbital
motion of electronis,

_q_e_ 16x10°7
T T 1513x107"
=1.06%x 107 A=1.06 mA
5.5 Ohm’s Law:

Inthe year 1828, German scientist G.S. Ohm,
after performing so many experiments, enunciated alaw

regarding the flow of current in aconductor. To honour
him, the lawis named after him.

According to this law, when the physical
conditions of the conductor remains same (length,
temperature, natureof material of the conductor and area
of cross section), then the current flowing through the
conductor will be proportional to the potential drop
acrossitsends.

Vo I
V' =Ri ...(5.16)
Where, the constant of proportionality is called the
resistance ofthe conductor.
— I'T
7

R (517

The S.1. unit of resistance i1s ohm and is
represented by the Greek symbol €. If on applying a
potential difference of one volt across the ends of a
conductor a current of 1 ampere flows through the

conductor, then resistance of the conductorissaid to be
oneohm (€2).

By knowing the values of electric current (/) for the
potential difference (F) applied across the terminals of
the conducting wire a graph can be plotted between |7
and /. This graph will be a straight line as shown in the
fig5.6.



>

Fig: 3.6 Graph between Vand Taccording to Ohm’s Law

Slope of this straight line curve willbe equal to the
reciprocal of resistance of the wire.

slope ofthe curve=
i 1
tang )= —= — '
(tang )= == — . (5.18)

5.5.1 Deduction of Ohm’s Law

In section 5.4.3 of this chapter regarding tree
electron model, we have seen expression for electron
current related to drift speed. According to equation
(5.11), wehave -

I =ndev,

Thus, the current density will be,

J=—=nev, ...(5.19)
But we have seen in equation (5.8)
Vv, = TE
m
ne'r .
Thus, =1 L (5.20)
m

2
2

Inthis equation, the terms of right side .

and e are constant and terms »# and 7 are the
characteristics of the conductor. For anisotropic

et

homogeneous conductor, the quantity , canbe

m
considered as a constant. It is called as conductivity and
represented by the symbolo.

Hence the conductivity

_ne'r

(5.21)

m
Now equation (5.20) can be written as,

J=ckF

Since J and £ are vector quantities, thereforein

vector notation the above equation canbe rewritten as,

J=cF .(5.22)

According to these equations, the conductivity (G)
of any conductor does not depend onelectric field (£).

Whereas the current density (/ )inthe conductor is

proportional to the electric field ( £ ). Equation(5.22)is

called Ohm’s Law in microscopic form. For so many
conductorsit is applicable tor long range ot electric tield.
Now we seethe tormal definition of ohm’s law which is
equivalent to equation(5.16)

Now letus consider a conductor oflength /and
area of cross section A connected to a battery of potential
difference " as shown in the figure 5.7. The field

produced inside the conductor is = " and current

densityis J =7/A4 . Now putthese valuesof /-and./
inequation(5.22), we get,

! 4
— =g —
A ¢
|
| S —
or !
pf
_[£E 1y
[‘A j L (5.23)
_Ll_m 524
p_cr_nezr o (3:24)
—»t

fa +—— i —»

Fig: 5.7 Currenl Nowin a.conductor



£ 1s called the resistivity of the material of the
conductor. For any given material ot length /and area of
cross section A are constant and the resistivity (o )isthe
characteristic property of the material of the conductor.

£

Thus, the quantity —— isa constant known as
the resistance of the conductor (K).

V =IR

pr
where R y
We see that the equation (5.24) 1s same as that of
Ohm’s Law. Equation, F'—/R is sometimes also called
macroscopic torm of Ohm’s Law. The macroscopic
quantities ¥, / and R can be measured directly with the
help of meters. When we are interested to know the
fundamental electrical properties, then quantities £, ¢
and ./ are useful.

...(5.25)

5.5.2 Resistivity

After performing so many experiments it was
found that resistance of isotropic and homogenous
conductor is directly propertional to length / and
inversely proportional to area of cross section 4 ofthe
conductor. 1.e.

Roc£

A

Pt

R=""

ar A

Here, the constant of proportionality o iscalled
the resistivity of the material of conductor. Here, it 18
essential to note the difference between resistivity and
resistance. The resistivity is a property of the material of
the substance whereas the resistance ot the material is the
property related to the material and the geometric
parameters such aslength and area of cross section. Two
wires of same material can have different resistance but
their resistivity will be same. Similarly, two wires of
different material will have ditterent resistivity but may
have same resistance. This we have already seen in the

117

derivation of Ohm’s law. There we have also seen the
formula forresistivity as, in equation (5.24).

i

- 2
He v

... (5.26)

Because the quantities 7 and 7 are the
characteristics of the substance, theretore resistivity
depends on the nature of the substance as well as the
temperature ofthe substance. Resistivity ofthe material is
also known as specific resistance. Fromequation (5.25),

RA

p= I ... (5.27)
o

Unit of resistivity is —— =Qm and the

H
dimensionsare M'L'T A~
Ifthe conductor is in the form of a cylinder of
radiust, then A= 77" . Then,

3}
P ¢

In the above equation, if we take, 4=1m" and
f=1m,then p=R .

Thus, the resistivity of a material will be numerically
equal to the resistance of a sample whose length isunity
and area of cross sectionis also unity.

Reciprocal of resistivity of any substance is known
asconductivity.

The unit of conductivity is ohm 'meter ' and the
dimensions of conductivityare M 'L *T°A*.

The table 5.1 shows the resistivity of some
common materials. It is clear from the table that the
resistivity of a conductor lies between 10 *Q x m to

10 °Q x m . Atthe other end areinsulators like ceramic,
rubber and plastic having resistivity of the order of
10" Q2 x m . Inbetween the two are semiconductors like
Germanium and Silicon, which behave asaninsulatorsat
0 K. On increasing the temperature the resistivity of
semiconductors decreases.



Table 5.1 Resistivity of some common materials

Material Resistivity o at0°
(In €2 X #7 units)
Conductor
Silver 1.6 x 1078
Copper 1.7x10 %
Aluminium 2.7x10°*
Tungsten 5.6x107°F
Iron 10x107
Platinum 11x10*
Mangnin 48x10 *
Mercury 98 x 10°F
Nichrome 100x10-%
Semiconductor
Carbon (Graphite) 3.5x10°
Germanium 0.60
Silicon 2300
Insulators
Pure water 2.5%10°
Glass 10— 10+
Hard rubber 1ot
Dry wood 10° to 10™

5.6 ElectricResistance

The property of conductor which creates obstacle
inthe flow of electric current is called electric resistance.
We know that in every conductor there are free
electrons. On applying potential acrossits ends, electrons
flow from one end to the other by doing random motion.
This causes the flow of electric current in the conductor.
During the motion electrons keep on colliding withions
and atoms. Inthis way obstacle is created in the flow of
electric current and it is called electric resistance,
Resistance of a specimen of a substance not only
depends on the nature ofthe substance but also onthe
length and area of cross secticn of the wire. Inaddition to
this the resistance ofany conductor also depends on the
faces of the conductor across which the potential
differenceisapplied. The resistance also depends onthe
temperature of the conductor. The resistances which are
prepared for a particular value are called resisters.
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5.6.1 Ohmic and Non Ohmic Resistance

The conductors (or devices) obeying Ohm’slaw,
1.e. for which, the graph between potential difference V
and the current 1 is a straight line and passing from origin
are called Ohmic conductors (or devices). In such
devices the current flow does not depend on the polarity
of the applied potential difference.

There are several devices or substances used in
electric circuits which do not obey ohm’s law. i.e. the
graphbetween potential difference V and the current I is
not a straight line but a curve. These typesof devices or
substances are known as non-ohmic.

Inaddition to this there are certain substances in
which the flow of electric current depends on the polarity
of'the applied voltage. The examples of such devices are
vacuum tube, semi-conductor diode, liquid electrolyte,
transistor etc.

—_

Electrolyte

Incandseent Diode
bulb
N—r V—r N>

{a) () (=)

Fig 5.8 Non-ohniic behaviour

Figure (5.8A)isa -/ curve foratorchbulb. Itis
clear from the graph that Ohm’s law is not obeyed. The
reason is that when current tlow increases in the tilament
ofthe bulb, the temperature of the filament increases. The
resistance of the filament will increase. Theretore, the
ratio of V and I will not remain constant. Graph (5.8B)is
drawn tor semi-conductor diode device and graph
(5.8C)isdrawntor a liquid electrolyte. From the graphs
it 1s evident that these devices do not obey Ohm’s law.

5.7 Carbon Resistance and colour codes for
Carbon Resistance

Commercially produced resistances for domestic
use or laboratoryuse are of two major types: wire wound
resistors and carbon resisters. Wire wound resisters are
made by winding the wires of an alloy, viz. magainin,
constantan, nichrome etc. The temperature coeflicient of
resistance of these alloys 1s very small due to this the
conductivity 1s least affected by temperature. Resisters of

(h)



very high value cannot be made using these materials
because it will need very long length of wire which s
inconvenient. On the other hand, the resisters of very high
value are made up of Carbon resisters, which are
inexpensive and compact, therefore they are extensively
used in electronic circuits. Carbon resisters are moulded
into the cylindrical shape by using a binding agent and
wire leads (for connecting the carbon resister in any
electric circuit) are attached to the ends.

The value of carbon resister inindicated by four
coloured bands. Every coloured band (strip) has a
special coded meaning. Every colour hasa special colour
code. Key to these colour codes are1s givenin the table
5.2.

Table 5.2 Colour code for resistances

Colour digit multiple Tolerance
(%)

Black 0 1

Brown 1 10!

Red 2 10°

Orange 3 10°

Yellow 4 107

Green 5 10°

Blue 6 10°

Violet 7 107

Grey 8 10%

White 9 10°

Golden 107! 5
Silver 102 10

No colour 20

l ]_[ HI v

)

Connecling leed

(O

Connecting lecd

Fig 5.9 Carbon resistance colour code
Identification of the value of a carbon resister:

Heold the Carbon resister such that the tolerance
ring (Silver or Golden Celour)isonthe right side.

(i)
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()  Thefirsttwo coloured rings indicate the first two
significant digitsofthe value of carbon resistance as
per colour code. The colour of the third ring
indicates the decimal multiplier and the fourth ring
indicates the tolerance percentage. Sometimesthe
fourth ring 1s absent, and it indicates that the

tolerance 18 20%. It indicates =% inthe value of

— T

Silver

Red Red
Gireen

(a)

Orange Brown Groalden

Ycllov&\. \ /

)) )

ROE

—

For carbonresistance showninthe Fig 5.10 (a)
and (b},

Fig 3.10 Carbon resisiance

the value ofresistance (a)is 22 x 10° Q+10% and
thatof (b)is (43 x10' )+ 5% respectively.

Example 5.4 : Awire oflength /and cross
sectional area of A has a resistance R. Find the
percentage changein the resistance, whenit s stretched
to double ofitslength,

Solution : Given, the length ot the wire 1s1 and its

cross sectional areais A, then the resistance of wire will
be,

R= !
P A
On stretching the wire to double the length, its
cross sectional area decreases, because the mass and
volume of the substance remains constant.

Abd = AQ20)d
a=A
2



Hence the new resistance of'the substance,

£ £ 14

A A/2 4
Therefore, percentage change in resistance,
- RER 00%
4R-R

x100% =300%

Example 5.5 : The value of a carbon resistance

is 62 x10° Q) . The percentage tolerance is 5%. Write
downthe colour code in sequence.

Solution : Given,
R=(62x10°Q)+5%

According tothe colour code, the colour of strips
on the carbon resistance are Blue, Red, Orange and
Golden.

Example 5.6 : It the length oftwo conductors,
Y =40 and ¥ — 4810 *Q«xm reduced to
halt, then write down the corresponding value of X and Y.

Solution : In the question, the X isresistance of
the wire and Y is resistivity of the material of wire.
Theretore, by changing the length the resistance will
change whereas the resistivity remains unaltered.

Therefore X'=2Q and Y remains same,
ieY'=48x10°'Qm .

Example 5.7 : Apotential difference of 0.9V is
applied across theends ofa tungsten wire oflength 1.5m
and cross-sectional area 0.60x10m?. Find the current
flowing through the wire. Specific resistance (7 ) of

Tungstenis 5.6x 107" Qxm .

Solution : Given,
f=15m
A=060x10*m’

F=56"10"W m
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Therefore, resistance ofthe wire,
R= ¢
R 5.6x107 ><'l’,5 )
0.60x10 °
R=014Q
Thus, the current through the wire,
= I— = 0.90 =0.43A
R 014

5.8 Effect of temperature on Resistance and
Resistivity

The resistivity of various materials changes with
temperature in different manner according to their nature.
(A) For conductors

Previously we have seen that the resistivity ofa
conductor is given as,

i

- 2
He v

Where, m 1s the mass and ¢ 1s the charge of an
electron and #21sthe free electron number density of the
conductor. All these quantities are constant. On
increasing temperature, the amplitude of vibration in the
conductor and the frequency of collision of free electrons
increase due to which the relaxation time 7 decreases.
Thus, the resistivity of the conductor increases and

thereby the conductivity decreases. If o, and p, arethe

resistivity of a conductor at 0°C and t"C, then a close
relation between these quantities s,

o, = p,(Il+at) ... (5.28)

Where, ¢ is a constant known as temperature
coeflicient of resistivity. ¢ depends on the nature of
material. The value of some common materialsis givenin
thetable(5.3). For some substances 1s positive, whereas
for othersit is negative.



Table 5.3 Temperature coefficient of Resistivity

Material Temperature coefficient
of Resistivity (°C)'
A. Conductor
(4) Metals
Silver 4.1x107
Copper 3.9x10°
Aluminium 43x107?
Tungsten 4.5%10°%
lron 6.5x107
Platinum 3.9x10 7
Mercury 0.9x10~
(b) Afloys
Nichrome 0.4x107
Mangnin 0.002x10 *
Constantan 0.001x10?
B. Semiconductor
Carbon — 0.0005
Germanium — 0.05
Silicon — 007

According to the above equation (5.28), the
temperature coeflicient of resistivity will be given by,

22 — A_p
;?O(’_l'r

p{lr

&= ...(5.29)
The dimensions of ¢ inthe equation (5.29) will

be &'. Thus, for aunit change intemperature { p =1),

the ratio of change in resistivity to the resistivity at 0°C,

alry 6
ie. §r 5 is equal to the temperature coefficient of
8]

resistivity. Theunit oftemperature coeflicient of resistivity
is “C1,

Similarly, the dependence of resistance on
temperature canbe written as,

R =R,(1+at) .(5.30)

Itthe change in temperature of a conductor is Az,
then, equivalent value of resistivity and resistance willbe
given by,

p,, = p, 1+ahs) (53D
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R =R (1+aAf) ...(5.32)

Here, 7 and 7, arethe initial and final temperature
ofthe conductor.
Here At = (.- 1,

If a graph is plotted between the resistivity and
temperature for metals, then it will be more or less a
straight line. But at low temperature it is curved, 1.e
deviation fromthe straight line.

!

p

T

Fig 5.11 Resistivity of a conductor at low temperature

Some materials like Nichrome, which is an alloy
(Nickel 80 % and Chromium 20%) exhibits very weak
dependence of resistivity ontemperature. Such materials
are widely used in wire wound standard resisters. Figure

(5.12) showsa graph between p, andT.

!

2

7
Fig 5.12 Resistivily ola conductor at high temperature

(B) For insulators

The resistivity of insulating material decreases
exponentially on increasing temperature and increases on
decreasing temperature. At absolute zero temperature,
the resistivity becomes very high and tends to infinite
value. Thus, the conductivity of insulators at absolute
zero temperature becomes zero. The variation of
resistivity ofinsulator with temperature is given in the
tollowing relation,

B

p=p,e ..(5.33)
Where,

K, = Boltzmann constant

= Temperature of thematerial inkelvin

L = Energy gap between valance band and



conductionband.
(C) For semi-conductors:

On increasing the temperature of semi-
conductors, the bonds of semi-conductors break up
rapidly. Then the number of electron-hole pairs increase
exponentially. Thus, the resistivity of semi-conductors
decreases exponentially astemperature increases. The
temperature coetticient of resistivity in this case will be
—ve. Figure (5.13) shows a graph between ¥ and 7.

P

» 1
Fig 3. 13 Conductivity of scmi-conduciors

Example 5.8 : Theresistance of a platinum wire
of a platinum resistance thermometer at theice point is
5 Q) and at steam pointis 5.23 Q. Whenthe thermometer
is inserted in hot bath, the resistance of platinum wire is
5.795 Q. Calculate the temperature ofthe hot bath.

Solution : Given,
R, =502, R,, =5230Q
and R =57950

We know the formula for the resistance ofa wire at
temperature £,

R =R (1+af)

Therefore, theresistance R ,, = R,[1+a100] 1s,

R,,—R,=R o x 100 A1)
R-R =Rat .. (i)
Diving eq (2)byeqn(l),

IZMXIOO

100~ o

523-5
= 0.795 x100=345.65°C

0.23
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Example 5.9 : A platinum resistance
thermometer, a device used to measure the change in
temperature, has aresistance of 50} at atemperature
of 20°C. When this thermometer is placed inside a
container filled with silver at its melting point the resistance
increases to 80 €2, Assuming that thereislinear changein
the resistance of platinum in this temperature range,
calculate the melting point of silver. Given

a =3.8x107°C™ forsilver,

Solution : For limited temperature range, the

resistance at 7,°C’ isgivenby,
R, =R (1+ahl)
Where,

At =1nitial temperature, ¢,°C = final temperature

and /= increaseintemperature

Given @ =38x107°C",
R =80Q), R, =500
R -1 80-50
Af(: 3 e{] — : :
a K, 3.8x10 7 x50
_3x10°
T
or L= =1579°C
or t,=1,+157.9°C
or 1, =20°C+1579°C=1779%

- melting point of sitver =t, =177.9°C
5.8.1 Super conductivity

It was found in some metals or composite metals
that at particular very low temperature their resistivity
decreases abnormally or rapidlyand becomes zero. Such
substances are called Super conductors and this
propertyis called Superconductivity. The temperature at
which this phenomenon cccurs is called critical
temperature,

The phenomenon of Superconductivity was first
observed by the physicist Heike Kamerlingh Onnesin the
year 1911 by cocling mercury to 4.2 K. In the state of



supercenductivity, magnetic field inside the conductor will
also be zero. This effectis called Meissner Effect.

The phenomencn of superconductivity 1s exhibrted
at verylowtemperature (10 K to 0.1 K). Althcugh now
some materials havebeen found to exhibit the property of
superconductivity at higher temperature of the order of
90K. Now adays scientists are putting great efforts to
search superconductors at normal temperature so to get
rid of the energy lossproblem during transmission.

Uses of Superconductors: To construct magnets
known as Superconducting magnets which can create
high magnetic fields (of the order of 10 tesla), small and
very efficient transtormers, motor electric generators,
energy transmission and super computers etc.

5.9 Series and Parallel Combination of Resistances:

According to the requirement of certain electric
current in any electric circuit, we must have definite
resistance in that circuit. Suppose this resistance is not
available with us. Then we use the combination of the
resistances available with us so that the resistance of
desired valueis obtained. Thereare two ways in which
the combinationis carried out.

5.9.1 Series Combination

Two or more than two resistances are said to be
connected in series if same current is passed through all
the resistances. In series combination, second end of
every resistance is connected to first end of the next
resistance.

Infig. (5.14),three resistance R, R and R_ are
connected between two ends. A& B in series and a
current [ is tlowing in this. The potential difterence at
resistanceare V, V, and V_ respectively than according
toohm'slaw V, =TR , V_=IR_, V =IR,

+

B
V
Fig 3. 14 Serics Combination ol resisiances

Ifthe potential difference between points 4 and
15 I, then,
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V=V +V,+V,
V=IR+IR +IR,
V=I(R+R +R) . (534)

It the equivalent resistance of the series
combination ist, Then,

V=IR .. (5.34A)
By combining equation (5.34) and (5.34A)
IR =I(R+R+R)

& 2 3

or

or

or Req :R1+R2+R3 (535)

1.e. the equivalent resistance will be the sum ofaall
individual resisters. Ifthere are nresisters then,

Ifall the resistances are identical and equal to R,
then,
,,,,,,, upton
or

Important points for series combination of
resistances :

(a) Inallthe resistances the current flowing will be
same.

(b) Resultant potential difference will be sum of
potential difference across each resistance.

(c) Equivalent resistance will be greater than any ofthe

resistance connected in series.
5.9.2 Parallel Combination:

Two or more than two resistances are said to be
connected in parallel it same potential difference exists
across each of the resisters. InParallel combination, one
end of all resistances is connected at one point and other
end of all resistances are connected to another point. In
tigure 5.15 three resistances of value £, R, and R,
connected in parallel.

Fig 5.15 Parallel Conibination of resistances.



The parallel combination of resistances have two
end points A and B. One end of each resistance 1s
connected to A and the other end of each resistance is
connected to B. Points A and B of the parallel
combinationisconnected to abattery of e m.f. Fvolt.

Inthis combination, the potential difference across
eachresistance will be same and equal to I, In this circuit
main current, 1 at point Ais divided among the resistances
such that the potential difference across each resistance s
same and equalto potential difterence V ofthe battery. It
1.1 and[_ arethe currentsthroughtheresistances X,
£ and R, thentotal current Iis given by,

I=I+I+1 ... (537
According to Ohm’s law,
V=IR =1 R=IR
14 |2 V
I =—, =—, ] = —
Hence, /1 R 2 2 3 2
Put these valuesin Eq (5.37),
=V . + : + :

Ifequivalant resistance of combinationisR_

1= Vv
thus, I —
: ch
Compare this equation with Eq (5.38)
158 ] { 1 1 1 ]
L g I T T
Req Rl R2 R3
RSN
o RUR B R 539

Inthis way, the reciprocal of equivalent resistance
will be sum ot reciprocal of individual resistances.

If nresistances are connected in parallel, then,

1 1

1

R,

1

R

H

R, & .. (5.40)

If mdentical resistances are connected in parallel,
then,
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11 :
— ==ttt = uplton

R, R R R R

Ifall resistances connected in parallel are equal,

then,

R

i)

il 541

. ... (5.41)
Important points for parallel combination of

resistances :

(a)

Potential difference acrosseach resistance will be
same.

(b)

IfR , R, and R arevaluesofresistances connected
inseriesand if R > R, > R, >
current flowing in these resistances will be /7, /)
and /,where/ <7 </ <...</]

In parallel combination, equivalent resistance will
be lesser than the least.

(©)

Example 5.10 : In the given electric circuit.
Calculate the equivalent resistance between terminals A
and (.

Solution : In the given figure, R and R arein
parallel across 7 and (', therefore this parallel
combination canbe replaced by,

Re(|33 R2 R3
LRy
EECE IR
B444 8
Now, the simplified circuit can be redrawn as,
R=20Q R, =20

> AMAMAN——ANANMNA——s

A 7 S i C

In this simplified circuit, R, and Req,, arein
series.



Req]_n, = Rl + Re(m =20+20

=40

el

Example 5.11: Calculate the equivalent resistance
of'the given circuit between terminals A and 5.

B

A B A
503 70 502 50 % 1202
40 “ 9]
6L

Solution : Insuchtype of problems, it is usetul to
start with the smallest identifiable series or parallel sub-
combination ofthe given circuit.

Y

502

402

Step I: The equivalent resistance of 3 QL and 6 (2
resisters connected in parallel 1s,

1t 1
R, R R
Ix6
or (?(32216:2Q

Step 11 : Thus, these two resisters are equivalent
to2 Q3. Whenthis 2 Q resister isconnected in series to
4 02 resistance we obtain 6 () registance.

Step I11: This 6€21snow connected in parallel to
1202 (a series combination of 7(2 and 52). Combining
there resistances in parallel we get,

6x12
= o= 40
6-+12

Step IV : Now, this 4Q)is connected in series to
5Q and the total resistance 92 is obtained.

Example 5.12 : Find the equivalent resistance of
the electric circuit between terminals A and B in the
following two cases.

(a) when switch S is open

(b) when switch S 1s closed

10 €2 1082 10 2 10 €2

8

10 02 100 10 0 100
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Solution :

(a)  Whenswitch Sis open, thentheresistancesinthe
upper branch of the circuit will be in series
combination for which the equivalent resistance
willbe 2002, Similarly the resistances in the lower
branch of the circuit will also be in series
combination for which the equivalent resistance

will alsobe 2002,

These two resistances (2002 each) are connected
inparallel. Hence the equivalent resistance will be,

_ RlRZ
“TR TR,

20% 20
vy = ——— =100
20+20

(b) Whenswitch Sisclosed, then the resistancesin the
two branches can be simplified as shown in the
figure. The left circuit will be the parallel
combination for which the equivalent resistance
will be 5€2. Similarly the resistances in the right
circuit will also be in parallel combination forwhich

equivalent resistance will be 5€2.

Now left and right circuit are connected in series
combination. And equivalent series resistance will be
5Q+50Q=100Q.

Example 5.13 : Abattery ofe.m.f. 16 Vand
internal resistance 1Q2 is connected to the network of
resistances shown inthe figure. Calculate,

(a) Equivalent resistance of network between
points Aand D.

(b) Currentin each resistance.

(c) Potential drop V. V.

and V.

JEIn

Solution : Case(a):

Step I : Two 4€2 resistances are connected in



parallel between the terminals A and B. Hence the
equivalent resistance R, will be,

_4x4
4+4
Step II: GivenR, =10,

Step III : Two resistances 12€2 and 6Q2 are
connected between the terminals C and D. Hence the
equivalent resistance R ., will be,

2Q)

A8

12x6

=—— =40
12+6

Rep

Step IV : Now the resistancesR | R, .andR

LN
are all connected in series between the points A and D.

Theretore,
R=R +R +1R
=20+1Q+4Q
=7Q
Case (b): Total current in the circuit,
_ Total em. f.
fotal resistan ce

__ & _ lo¥ Yy
R+r (7+1H)Q2

Step [: Potential difference between the points
Aand BwillbeV, =/ R - R,

dx1 =4x1],
Hence, /. =/, But [, +1, =24,
or 21, =24
I, =14 T=2A

Step 11 : Current in the wire between B and Cwill
be 24.

Step IIT : Totalcurrent inthe wires between (”and
Dwillbe 24.

ie. L+1=24 (1)
Now, V[Z‘D: 13 R3 - 14 R4
1,x12=1,%6
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or  1=2I, e

On Solving equation (1)and (2), we get,

2 4
]3:[5114 and ]4:[7]‘4
: 3

Case (c): Potential difference between A& B=
V:m =1x JR.'JB =2x2=4V
Similarly,

V.= XR,=2x1=2V
V. =I*R =2x4=8Y

A\ =2x1=2V
Total e.m.f. inthe circuit /-,
k= I':IB_ I'TB’C_ /T[Z‘D_ IT»
F—4-2+8-2-16V

5.10: Cell, Electro Motive Force, Terminal Voltage
and Internal Resistance

=Ixr

Electric Cellis a device which maintains the steady
electric current inan electric circuit or it is a simple device
which converts chemical energy into electrical energy.

NPT Y VY Y N
\

i, 8

L
1
Fledrolyls o

(h)

Fig3.16 (a) & (b)Electriccell

Basically, an electric cell has two electrodes as
shown in the fig (5.16), which are immersed in an
electrolyte. These electrodes are shownas 1 ve electrode
(P)and -ve electrode (N). These electrodes, immersed in
electrolyte exchange charges withthe electrolyte. Dueto
this reason, +ve electrode P develops a +ve potential
V_(V, > 0)withrespect to its adjacent electrolyte
marked A. Similarly, the -ve electrode N developsa -ve
potential V_ (V_< 0 )with respect to its adjacent
electrolyte marked 8. Whenno current tlows through the
cell, the electrolyte has the same potential difference
throughout, so that the potential ditterence between the



two electrodes 7 and NVis,
V- (F)=F 4T

Whencellisin open circuit i.e. no current is drawn
fromthe cell, then the potential ditference across its
electrodesis known as Electro Motive Force (EMF) and
isrepresentedas g .

It is to be remembered that g is actually a
potential ditference and not a torce. The terme.m.tis
however used due to historical reasons and this name
was given at a time when this phenomenon was not
understood properly. When current is flowing through
external resistance R from the cell, then electric current
will flow in the electrolyte from -ve electrode to +ve
electrode.

The electrolyte through whicha current flowshasa
finite resistance, called internal resistance ofthe cell, i.e.
internal resistance is the hinderance produced by the
electrolyte of the cell in the flow of electric current.

Internal resistance of an ideal cell is zero, but
practically all cells have a finite internal resistance,

It current is flowing in an external resistance due to
acell, 1.e. cellisin closed circuit, then potential difterence
across two electrodes will be known as terminal voltage.
Thisterminal voltage isrepresented by Fand V- £ . In
a closed circuit, the value of (¢ -}") will be equal to

voltage drop across the internal resistance of the cell.
-V =1Ir ...(5.42)
here, 71s the electric current from the cell.

Hence, terminal voltage,

V=g—1Ir ...(5.43)
But, from Ohm's law,
V=IR (549

Combining Eq 5.43 and Eq5.44, we get

I(R+r)=¢
=_F 5.45
R+r - 549)
eV eV
l VIR
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Fig 5.17 Charging ofacell

Note : It a cell is being charged as shown in the
figure 5.17, then, the current enters from the +ve
electrode. Theretore, the terminal voltage inthis case will
be,

V=g+1r
V=g
5.11 Combination of Cells :
In general, cells can be connected in two manners;
(a) Series combination
(b) Parallel combination
5.11.1 Series Combination of Cells :
A e Lo ani s

\ L. . L. I o
Iy !
R
A

Fig 5.18 Series combination of cells

I

An arrangement oftwo or more than two cells, in
which cellsare connected such that the negative terminal
ot one cell is connected to the positive terminal of the
next cellis called series combination. The end points of
the combination are of opposite polarities across which
an external resistance is connected.

Suppose two cells having emf ¢, & &, and

internal resistance r & r, are connected in series as
shownin thefigure 5.18. End peints of the combination
are connected to external resistance K. We want to find
the equivalent emfand equivalent internal resistance and
current in the circuit.

According to ochm’slaw, the potential difference
across theresistance K.

V=IR=V, -V,

Potential difterence between the end points A and
Bwillbe,



Vie=F,—
= (¢,

:(51 +82)_‘I(r1 'H’Q)

Va)t (5 —1e)
-I)+(e,—Ir)
(5.47)

lfg and r,_are the equivalent emf and
equivalent mtema] resistance of the combination then,
Vie =6, =14, ..(5.48)
By comparing Eq 5.47 & 5.48
&, =& t&, .. (5.49)
= HTH .. (5.50)
The value ofterminal voltage =

potential drop across the external resistance K

Therefore, using equation 5.44 and the Ohim’s law,

V,~V.=IR=g —Ir+¢,~Ir,
g +& £,
_! = 1 2 — e ]
o Rir+r, R+r (551

euf

Fromthe above expression it is clear that in series
combination,

(i) Netemtofcells will be the sum ofthe emt of cells.
() Ifncellsofequal emfand internal resistance are
connected in series, then
§=&=86=..6,=§
and r=r=r=..=r=r 84l
ne g
TR riRln (3:32)
g, =he .(5.53)
r, =nr (5.54)
(i) Ifthe polarity of either of the cells in the

combination is reversed, the value of equivalent

emfwilbe & —&, or g,—¢,,

But r, =7 +r,+r,+..7, wilremainsame,
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5.11.2 Parallel Combination of Cells ;

An arrangement of two or more cells are
connected in such a way that all the terminals of same
polarity are joined together is known as the parallel
combination of cells.

Infigure 5.19 a parallel combination oftwo cellsis

shown. Let theemfoftwo cellsare g, and &, and their

respective internal resistances r, and r.. External
resistance 2 isconnected tothe end terminal 4 and B
asshowninthe figure.

fl g I I"1

HAWWAWWA—e— -
A B A et B
FAWVAA—

i 6, ¥, _|
1y b w4 1Y 4
a1

Fig 5.19: Parallel combination of cells.

If, and [ arethe current througheachcelland /
isthe total current inthe external circuit.

I=71+1I .. (5.55)
Itterminal voltage betweenthe terminals Aand B

fortwocellsis ", and /, eachequalto }, then

V=g-1r .. (5.56)

V=g -1k . (5.57)

Solving above equations,

and

Putting these values ot/ and /, ineq. (5.55)

1:&—V+%—V
" 8

]: 8_] i _V l_i_l
LA L



J :[81:"2 +8,F, J_V{r; HE] (5.58)
hr, hn o
Onsolving
&F, +&F FE
o Sz Teh | | Al

If £,, and #, aretheequivalent emtand internal

resistance respectively of the cell combination, then
terminal voltage will be,
V=e,-1r, ...(5.60)

After comparing equation (5.59) and (5.60),

_&h &
Ty, ...(5.61)
o= _ih

“ i) ... (5.62)

And the value of current through the external
resistanceis,

= Fey
Rar

euf

. (5.63)

Inthe above equation, the values ot ¢, and r,,
are given by eqs(5.61) and (5.62).

Itisclear from the parallel combination of cells,
that,
(1) Ifg=g,=cand n=r,=r .1.e twocellsof
same emf and same internal resistance then

g,=¢ and #,, = 5

#n cells of same emfand same internal resistance
are connected in parallel then, ¢, =& and

(ii)

b

be,

¥ . . .
= " and current inthe external resistance will

¢
R+rin

... (5.64)

(i) Equations(5.61)and (5.62) can also be writtenas
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follows,

... (5.65)

... (5.66)

Example 5.14 : The circuit shown in the figure
consists of two ideal batteries connected in series through
two resistances. Find the value of current in the circuit

(a).

=90V £,=6.0V
a b C d
—— —— W ——
20
IA v/
AVWAMN
40
(al
20
b——mwwwwn—— ¢
&=90VT TE=60V
al— AWM — d
40

()

Solution : The simplified equivalent circuit of the
given circuit (a) is redrawn in figure (b). Let I be the
current flowing through the circuit, then the terminal
voltage acrossthe ends a and d will be,

Saq = lS'I

g, =90-60=3.0/

—&, (g <s)
Effective resistance of the circuit,
R=20+40Q =60

Hence Electnic current in the circuit,

geq

R

X
==

0.54

5.12 Electric Energy

Total work done (or the energy supplied) by the
sourceofemf(i.e. cell) in maintaining an electric current in
a circuit for a given time is called electric energy



consumed in the circuit. If 1 current is flowing ina
resistance R forthe timet, then charge flowing in time t will
be

g=Ixt

If V' potential difference is applied across the ends
ofa wirethen, by the definition of potential difference,
work done by electric sourcein taking a charge ¢ from
one end to the other end of wire will be,

W=qV =Vit ... (5.07)
But according to Ohm’s law, F'—IR
hence, W = >Rt ...(5.68)
Wt (5.69)
or =— (5.
R

STunit of electric energy is joule.
Here, 1joule=1watt x second

Commercial unit of electric energy 1s kilo watt
hour (kWh). Thisunit1s also called Board of Trade Unit
(B.O.TU)

Therefore,
1 electric Unit = 1kWh
=1kWx1h
=1000Wx3600 second
=1kWh=3.6 x 10° watt second or joule
Important Note :

Using joule’s law we can find equivalence between
work and heat.

W=JH
g WV PR VR
J J J RJ

Here, H= heat generated and J=mechanical
equivalent ofheat.

Thevalueof .J = 4,2i
cal

5.13 Electric Power

In any electric circuit, work done per second by
electric source tothe flow of electric current or loss of
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energy per second 1s known as power of electric circuit.
It1s generally represented by the symbol P.

Inelectric circuit, loss of energy intimet for current
flowie. work doneis W.

Thenpower,

P=—

{ . {(5.70)

We have studied in the earlier section that,

-7
ra

W:I'Tr:IERr:L—r
R

)

Therefore, £ =VI =1’R = ? (5.7

Slunit of electric power is watt.

1 joule

Here, 1watt=

second

In practice electric power 1s measured in kilo watt
or megawatt.

1 kilowatt = 10" watt
| megawatt=10° watt

There is another unit used to measure electric
power known as Horse Power (HP).

1 HP =746 watt

72

The equations =} and £ = — haveimportant

role inelectric power loss in electric power transmission.
The electric power 1s transmitted from power station to
homes / factories through the cable even thousands of
miles away from the power station. We want such an
arrangement in which the transmission power loss would
be minimum. IfP power is transmitted to adevice of V
volt through a cable of resistance R, then, power lossin
connecting wire will be,

— pZR(_'.'

F.

&

V‘ 2

This power loss is inversely proportional to }~.
Due to this reason, to reduce electric power loss in



electric powercircuit, current is passed at high voltage.

o 2 Ve 220%220
Due to this high voltage danger, the transmission power R=—= #
lines are away from residential areas. Near homes, this r 100
high voltageisagain converted to low voltageby means ~ Of R =484Q

ofelectric transformers.

Newvoltage ofthe source, ' =110V

Example 5.15: ABulbof220 Vand 110 Watt
1s connected with a source of 110 Volt, calculate the
value of the power consumed by the bulb.

Therefore, the power consumed by the bulb,
when bulb is connected to new voltage of the source,

yr=110¥,

Solution :

According tothe questi 7y i
ccording tothe question, P = ¢) :w:%W

V=220V, P=100W R 484

So, the resistance of the bulb,

Important Points
The flow of charge per unit time is known as electric current.
When an electric field is applied across a conductor, then the average velocity by which free electrons of
that conductor move is called its dritt velocity.
—eF,
m

Drift velocity = v, = T

Mobility is numerically equal to dritt velocity per unit electric tield. Hence mobility () is given by :

Vi

7

)uf:

The S.Lunit of mobility is —

=

The relation between electric current and drift velocity is /= neAv . The relation between the current

24

density J=nev, drift velocity and potential differenceis v, = —7

ml

According to ohm’s law, when physical conditions of the conductor remains same, the electric current
flowing through the conductor is proportional to the applied potential ditference acrossits ends. 1.e.

I”oc [ or |7 = Ri , where R is the resistance of the conductor. The unit of Risohm Q=) 4 '.

7703

The resistance of conductoris R = . Onincreasing the temperature, relaxation time decreases,

ne At

hence R will increase.

: 1 £ : L ) :
The resistance R oc ¢ and K Ve hence £2=p L where p s the resistivity or specific resistance of

the conductor. The resistivity ¢ of the conductor depends on the material of the conductor and temperature,
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10.

12.

14.
15.

whereas it does not depend on the length and area of cross section.

The relation between electric field E and resistivity, /2 = p./ and the relation between current density and
conductivity, .J = g J; are the microscopic forms of Ohm'’s law.

Many substances and devices do not obey ohm’s law, such devises are called non-ohmic devises. For

these devises the graph between V and I is no longer a straight line.

Dependence of resistance on temperature is givenas 2, = R, (1+af) . On increasing the temperature of

the conductor, its resistivity as well as resistance increases whereas for semiconductors and insulators on
increasing the temperature their resistivity as well as resistance decreases.

The equivalent resistance in series combinationis X, = K, + R, +...+ K, and the equivalent resistance in

1 1 1
parallel combination is E = E + % +

When the cell is in open circuit, then the potential difference across its electrodes is called its e.m.f.

When the cell is in closed circuit, i.e. the current is flowing through the cell and the external circuit then the
potential ditterence across its electrodes is called the terminal voltage.

The relation between the terminal voltage (at the time of discharging of the cell) and em.f willbe £ =V +1r .
The relation between the terminal voltage (at the time of charging of the cell) and e.m.f. will be V=E+ir. i.e.

Vo= F.

Questions for Practice

Multiple Choice Questions

The product of resistivity and conductivity of a
conductor dependson -

.
J.

Aconducting resistance is connected to a battery.
The temperature of the conductor decreases due
to cooling. The current flowing through the
resistance will -

(a) Areaof cross section _
(a)increase (b) decrease
{(b) Temperature ,
(c) remain constant {(d) become zero
(c)Length . : . :
4. Acellofemt2.1 volt givesa current o 0.2 A. This
(d)Noneof the above current passes through a 10 Q resistance. Internal
Two similar wires of same size of resistivity p, and resistance of the cell will be.
02Q 05Q
p, are connected inseries. Equivalent resistivity of (&) ®) _
the combination will be - (€)0.80 (d)1.0Q
5. The voltage current graph ot'a conductor at two
(@) yo.0, (b) 2(p, + p,) ditferent temperature are shown intheFigure. Ifthe

Pt P,

(c) >

(d) p,+p,
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resistances corresponding to these temperatures
are/? and %, then whichofthe following statement
sistrue.



7 1
1
> ]
@L=2  B)L>1)
(c) 1, <1, {d)None of the above

Electric power is transmitted from on city to
another city through copper wire, situated 150km
apart. The voltage drop per km is 8 V and the
registance per kmis 0.5 Q, then the powerlossin
the transmission line will be-

(a) 192 W (b) 19.2 kW
(c)19.27 (d)12.2kW

There are 5 resistances each of R ). First three
resistances are connected in parallel, after that
remaining two are connected in series, then the
equivalent resistance ofthe combination will be -

@IRQ (2RO

7 3
—RO RO
© 3 (@ =

From which ofthe following relations between the
drift velocity v and electricfield E, obeys ohm’s
law.

(a) v, o k" (b) v,aF

(c) v,ak"? (d) v, = constant

In a carbon resistance there are 4 rings in order
blue, yellow red and silver. The resistance of'the
resister willbe -

(a) 64x10°Q
(b) (64x10° £10%) O
(c) 642x 10" Q

(d) (26x10° £5%)Q

10. Whenawire connected to a battery gets heated,

then which of the following quantity will not
change -

(a) Driftvelocity (b) Resistivity

(c) Resistance  (d) No. oftree electrons

Very Short Answer Questions

1.

L

Fromthe following graphbetween }' & 7, calculate
the resistance ofthe resister.

A
)
4
2

010203 !

Write downthe S.I. unit of current density.

Write down the relation between conductivity and
current density of a conductor.

Give two examples of non-ohmic devices.

Give the dependence of registivity on temperature
ofaconductor.

Write the names of two materials whose resistivity
decreases onincreasing the temperature.

Write down the value of current flowing through a
bulb of40 W 220 V.

Short Answer Questions

l.
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How much charge will be there when a current is
tlowing througha conductor.

In the given tigure, the resistivity of some

conductor are p, and p,{)x . What is the ratio

of pr, p,
| |
lg
||
lg
VA i Al
R
—AMWWWA—



In the given figure, there are two similar cells
whose emfs are same and internal resistances are
negligible. These cells are connected in parallel.
What is the value of current flowing through the
resistance R ?

|F¥]

4. Explainthe differencebetween terminal voltage
and emfofa cell.

5. Detinedrift velocity.

6. A resistance wire of 8R is bent in the form of a
circle, then what is its equivalent resistance across
the ends of diameter.

7. Whentheshape ofa conductoris deformed then
what is the effect on itsresistance and resistivity?

8.  Cantheterminal voltage ofa cell be greater than
theemfofa cell?

Essay Type Questions
1. Detine drift velocity. On the basis of drift velocity
derive Ohm’slaw j = o £ 7.

2. Dernvetherelation between the drift velocity and
electric field. What is mobility? Explain
dependence of drift velocity and mobility.

3. Deriverelation betweenresistance and resistivity of
any conductor. Explain temperature dependence
ontheresistance of a material. Explaininreference
to a conductor, insulator and semi-conductor.

4. Therearetwocells ofemtf & and v and internal

resistance r, and r, respectively connected in
parallel. Then find out the equivalent emt and
equivalent internal resistance of this combination. If
external resistance R in connected to this
combination, then find out the value of electric
current flowingthroughR.

Answer Key (Multiple Choice Questions)
1.(d) 2.(c) 3.(a) 4. (b)

5(c) 6.(b) 7.(b) 8 (b) 9. (b) 10.(d)
Answer Key (Very Short Answer Questions)
1. 20Q

2. A/m?

3. _}::JE

4. diode, electrolytes

5. p=p,(1+arr)
6.  Germanmm and Silicon
7. 0.18A
Numerical Questions

1. Apotential of 120 Vis applied across theends ofa
cylindrical copper rod oflength 1 cm and radius
2.0mm. Find the value of the current through the

rod. (The resistivity of copperis | 7« 107 Qe .)
Ans. [6.85x10 A |

2. Find theequivalent resistance betweenaand bin

the given circuit diagram.
30
302 30
a 30 b

[Ans. 20Q]

3. Findtheequivalent resistance between points of'an
infinite ladder network circuit as shown in the

figure.

4.  (a) Three resisters 1€), 20 and 3Q are
connected in series. What is the total
resistance of'the combination?

(b) Ifthis series combination is connected to a
battery ofe.m.f. 12 V and negligible internal
resistance, obtain the potential drop across
eachresistance.

[Ans. 6, 2V,4 Vand 6V]



Atroom temperature (27°C), the resistance ofa
heating elementis 100 €2, Whatisthetemperature
of the element if the resistance is found to be
117 €Y, giventhat the temperature coefticientofthe
material of resistanceis1.70x107°C,

[Ans.1027°C ]

A negligibly small current passes through a wire of
length 15 m and uniform cross section 6.0x 10 'm?
and its resistance ismeasured tobe 5.0 2. What is
the resistivity ofthe material at the temperature of
the experiment?

[Ans. 2.0x10 "Qm ]

A Copper wire of cross section area 1.0 mm?is
carrying a current of 0.5 A_ Ifthe density of free
electrons is 8.5x10% ¢m~, Calculate the drift
velocity of free electrons.

[Ans. 3.7x10m/s]

Find the temperature at which the resistance ofa
material is doubled that of the resistance at (0°C).
The temperature coetficient of the material of

resistanceis4.0x10- °C™
[Ans. 250°C]

The storage battery ofacarhasane.m.t. of 12'V.
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10.

1.

12.

Ifthe internal resistance of the batteryi1s 0.4 Q).
What 18 the maximum current that can be drawn
from the battery?

[Ans. 30A]

Acoll ofresistance 4.2 Qisimmersed in water. A
current of 2A passes through it for adurationot 10
minutes. How many calories of heat will be
produced inthe coil? [J=4.2T/cal]

[Ans. 2400 cal]

A cylindrical tube oflength / hasinner and outer
radii aand 4. The resistivity ofthe materialis o,
then calculate the resistance between the two end
of the cylindrical tube.

Pt
Ans Lr(cf —bﬁ)}

Inahouse 4 bulbs of 100 W and 4 bulbs of 40 W
glow every day for 4 hours and 6 hours
respectively. Two tans of 60 W are also used 8
hours every day. Calculate the electrical energy
consumed ina month of 30 days. Also calculate the
electricity bill tor the month at the rate of Rs. 5 per

unit.
[(Ans. Electricy consumed: 105.6units,
Billamount Rs. 528)]






Chapter - 6
Electric

In previous Chapter we studied Ohm’s law and
series and parallel combination of resistors. In simple
electric circuit, electric current and potential difference
can be calculated by using Ohm’slaw. In complicated
electric circuits (in which so many resistors and cells are
connected ina complex way) to calculate electric current
and potential difference, German scientist Robert
Kirchhoff gave two laws. In this chapter we will study
Kirchhoft’s Laws and theiruses, Wheatstone bridge and
potentiometer is a device used to measure potential
difference accurately and its applications.

6.1 Kirchhoff’s laws

Junction s a point where three or more than three
branches of acircuit meet. In anetwork of electric circuit
in which electric current remains constant 1s called a
branch. A closed circuit consisting of different
conductors, resistances and other elements is called a
loop ormesh. For complex electric circuits, Kirchhoft's
laws are as follows.

6.1.1 Kirchhoff’s first law or junction law

According to thislaw, the algebraic sum of electric
currents meeting at ajunction is zero.

21=0

Thus, we can say that the sum of electric currents
cntering at the junction is cqual to the sum of clectric
currents leaving the junction, This law is known as
Kirchhoff's first law or junction law.

lLe.

This law is bascd on the conservation of charge. In
electric circuits, at any junction charge can not be
accumulated or generated. Thus, at junctions, the rate of
entering charge is equal to rate of leaving charge.

Fig 6.1 KirchholT'sjunction law
InFig (6.1) at junction O, according to this law,
L+l -1 -1+ =0
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Circuit

or L+, +0 =1 +1,

6.1.2 Kirchhoff’s second law orloop law:

(6.1

Kirchhott’s loop law is applicable for closed
electric circuits. Hence, it is called loop rule. According
to this rule, for a circuit consisting of resistances and cells.
The agebraic sum of voltagesin a circuit is zero.

SV =0 ...(6.2)

Thislaw canbe represented in a different form as
follows.

In any closed loop algebraic sum of potential
difference across resistors will be equal to the algebraic
sum of emt ot cells used.

Thus, 2IR=X¢ ...(6.3)

While using equation (6.3) following sign
conventions are used.

1. Inany circuitit we moveinthedirection of current
potential ditference acrossresistance is considered
tobe positive. [f we move inthe opposite direction
of current, potential differences are considered to

be negative.

Ifwe movein the circuit in assigned direction of
current and move from negative electrode to the
positive electrode of a cell, thenemfis considered
to be positive. Similarly, in the circuitifwe move
from positive electrode to negative electrode of the
cellis considered to be negative.

Kirchhott’s loop rule is based on the law of
conservation of energy. Loop rule can be explained by
the example givenin Fig 6.2

a [ b
- [ YWYV ———

I 1,
Iy c >

€, R,
d F——AWAN———(C

I 1,

Ly C j I WA
: R, :
e Lp—AWN——f

Fig6.2 Aclosed circuit



Inthe given figure, apply junctionrule at junction
'd". Current inresistance R, willbe,

I,=1+1, ...(6.4)
Applyinglooprulefor'adcba'loop,

IR -1R =¢ —¢,

or LR —-IR=¢-¢g ...{6.5)
Applyingloopruleforde fcdloop,
LR +IR =g, ... (6.6)

On simplifying equations (6.4), (6.5)and (6.6), we
can calculate current in different branches and potential
difference across different resistances. We will
understand these rules by few solved examples.

Example 6.1 : Find the value ot Tinthe network as
showninthe figure,

Solution : Let the current through the branches AB
and BC arex and y respectively. Using Kirchhoff’s
junctionlaw, we have,

Atjunction3-1.5-x=0

or x=154

Atjunction B, 1.5-y-1=0

or y=054

Similarly, at junction C,
05-025-7=0

or I1=0254

Example 6.2 : Find the values of currents in the
circuit using Kirchhoft’s law in the network are given
below,
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200
Solution : Inthe givencircuiti i, andi;arethree
unknown currents. For calculating these unknowns, we
need three equations.

Using junction law at junction C we have,

i, =i +1, .. (i)
Using loop law inloop 'acdba’we have,
+2i, + 6, = +10
or 6f +2i =10
Putting the valueof | ; fromequation (1)
8i +2i, =10 . (i)
Using loop law inloop 'cd fec” we have,
6i —4i,=10+14
or 6i —4i, =24 .. (1ii)
By solving equation (i1) and (i11)
=24, i, =-34
By putting the value of 1 jand i, from equation (i)
weget, I, =—14

Note : Negative sign of i ,andi,in the solution

indicates that their directions will be opposite to the
directions showninthe figure 6 2.

Example 6.3 : Abattery of emf 10V and
negligible internal resistance is connected across the
diagonally opposite corners of a cubical network
consisting ot 12 resistors each of resistance 1 Q.
Determine the equivalent resistance of the network and
the current along each wire of the cube,
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Solution : The paths AE, AB and AD are obviously
symmetrically placed in the network. Thus, the current in
each of these wires must be same. Further, at the corners
E, D and B the incoming current I must divide equally into
the outgoing branches. Inthis manner, the current inall
the 12 wires ofthe cube can easily be writtenin terms of
I using Kirchhoffs first law and the symmetry of the
problem.

Next, take a closed loop ABCHA and apply
Kirchhoft’s second law.

IR+%+!R:5

5
OT'S:EHQ (])

Here, cistheemfofthe cell and R is the resistance
of'each edge of the cube.

Total current drawn from the batteryis 31, therefore
the equivalent resistance ofthe Cubical network is,

R _£
37

Putthevalueof ¢ from(1)toeq. (i),

)

_3R
6

R

e
Accordingtothe questiong = 10,

5
—-Q

Therefi
erefore, G

Re:g =

Emf otf'the cell is given as = = 10F", therefore,
using equation (1),
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Therefore, the current through each edge of the
cube canbe calculated from the given tigure.

6.2 Wheatstone Bridge:

In 1942, English scientist Prof. C.F. Wheatstone,
joined fourresistances, one cell and one galvanometer to
make a special type of circuit as showninthe figure 6.3. It
1s known as Wheatstone Bridge. This circuitisused to
determine the value of some unknown resistance.

B

fﬁ:(ll_-{g)

Iy

Fig 6.3 Wheatstonc Bridge
Construction :

Arrangement of Wheatstone Bridgeis showninthe
figure (6.3). In this circuit two resistances Pand Q are
connected in series and remaining two resistances
R and sarealso connected in series. These two series
combinations are connected in parallel. In this way a
quadrilateral arrangement isformed between 4 and C.
A cell of emf's is connected between these terminals
along with a key K whereas a galvanometer is
connected between theterminals B and D along with
key K. Keys K and K areused to allow current inthe
circuit.

Resistance arms P and Q are called ratio arms and
the arm ADinwhich known resistance R is connected is
called known resistance arm. The arm CD in which
unknown resistances is connected is called unknown
resistance arm. Arm AC in which cell is connected is
called cell arm. Arm BD in which galvanometer is
connected is called galvanometer arm.



6.2.1 Principle of Wheatstone Bridge and

condition of Balance :

Whenkey K, is closed, current 7 is tlowing and it
divides into two parts at junction 4. Current through
branch 45 is 1, and current throughbranch 4D is f,.
Whenkey K, 1s closed, galvanometer gives deflection.
Whenv, = I, ,thenthe current in galvanometer flows
from B to D. Potentials at points B and D are
Vyand 17,. The values of 7 and I depends on the
values of resistances ot the arms. Now we select the
resistances in Wheatstone’s bridge such that

galvanometer gives no deflection and this is called
balanced condition. Inthis condition, potentialsat B and

Dareequalie. [, =/, and /. =/, . Inthis condition
(refer tofigure 6.3)

7=, (1,=0) - (6.7)
or Viy=Ve=V,=V,
Accordingto Ohm'slaw /[ P=7,R . . (6.38)

r

Similarly, ¥V, —V,. =V, -V, (fromeq.6.7)
Accordingto Ohm'slaw, 7,0 =718
10=18 (I,=1, and I, =1} .. .(6.9)
Dividing cquations (6.8) and (6.9)

1P _ LR
10 LS

P R

0" s
Equation (6.10) is the condition of balanced
Wheatstone bridge. 1t1s clear from this equation that in
the balanced condition the ratio of resistances in ratio
arms is same,

or ...(6.10)

From equation (6.10), unknownresistance canbe
calculated,

" Q o
S=2PR
2 L (6.11)

To determine the value of unknown resistance we
connectitin 4th arm ofthebridge. Known resistances P
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and Q are connected in 1st and 2nd arm of'the bridge.
Known resistance R isadjusted such that galvanometer
gives no deflection. Thus, balanced condition is obtained
for Wheatstonebridge.

For Wheatstone bridge to be sensitive resistances
ofall the four branches must be of same order.
6.2.2 Balancing Condition of Wheatstone Bridge

using Kirchhoff's Laws

Using Fig (6.4) we can derive the condition of

balance of Wheatstone bridge using Kirchhoft’s laws.

Let the current in the galvanometerbe /, and the its

resistance be Rg )

|
I

L
I
-
Fig 6.4 Whcaisionc Bridge

Apply Kirchhoff s loop rule (Voltage law) in the
loop ‘abda’.
LP+1,R ~1,R=0 . (6.12)

Similarly, apply Kirchhofl’s loop rule ( Voltage law)
intheloop ‘hcd b’

(1,-1)0-(1,+T,)S~T.R =0 .. (6.13)

Inthebalancing condition ofthe bridge, 7, =0,
Hence from the equations (6.12) and (6.13) we

get,

IP-I,R=0

IP=LR . (6.14)
and  1QO-1,5=0

10=1S ... {6.15)

From equations (6. 14)and (6. 15), we get,



PR
0" s

Which is the condition ot balanced Wheatstone
bridge.

6.3 Meter bridge:

Meter bridge is based on the principle of
Wheatstone bridge. Meter bridge 1s a device which
consists of a one-meter long resitance wire with uniform
cross section. Itisused to determine unknown resistance.
Qutline of the meter bridge is shown inthe figure (6.5).

... (6.16)

RE.
- -@-
G | | T G H
o] P [o [ o] O
d Meter Seale
| I I N N nl | I |
10 20 30 40 50 60 |70 80 90 100
b
O -
e 100-1 —>
R K

Fig. 6.5 Meter bridge

Construction : Aone-meter long constantan or
magainin resistance wire is stretched between two
screws @ and ¢. A meter scale is also fixed over the
woodenboard along the length of wire. Two L shaped
copper strips Gand H are also joined to the screws aand
¢. Another copper strip Lis also placed between the strips
(G and H such that a proper gap exists between Gand H
with . Anunknownresistance S is connected across the
gap between [ and H strip. Aknown resistance R 18
connected across the gap between Gand 1. Jis a sliding
keythat canbe slided onthe wire ac, the point of contact
of'the key, b on the wire divides the wire into arms ab
and be.

Working Principle : In the gaps of meter bridge a
resistance box is connected in the left gap and unknown
resistance is connected between the right gap with the
help of nuts (A nut isa fastened with athreaded hole). In
between the points A and C, aleclanche cell, arheostat
and key K are connected. In between d and sliding
jockey J, a galvanometer is connected. In this position,
meter bridge works as Wheatstone bridge. Now,
remove certain plug from the resistance box. To check
the correctness of connections, hold thejockey first near
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the end ‘a’ of the meter bridge wire and then near the end
‘¢’ ofthe wire. If the galvanometer shows opposite
deflection at the ‘a’ and ‘¢’ ends of the wire then the
connection 1 said to be correct. Otherwise, choose
appropriate resistance R from the resistance box to get
this condition. Once we are sure about the correctness of
the connections, then slide the jockey over the meter
bridge wire and tind the null point. Suppose the
galvanometer shows the null point when thejockeyisat
the position b. This is the balanced condition of
Wheatstone bridge. At pointbifit shows zero deflection,
then the part of wire ab works as resistance P and the part
'be’ works asresistance Q.
P R

07 L A{6.17)

Let point bisat a distance ¢ fromthe point a. Let
R_ betheresistance per unit length of the wire then the
resistance of section P of the wire willbe R ¢ and that
of the section Q ofthe wire willbe R__ (100 - ¢ ). Ifthe
resistance ofthese sectionsis Pand Q then,

P=resistance of sectionabofwire=R_ s AndQ
= resistance of section bc of wire=R__(100-¢). By
substituting the values of P and Q mequation (6.17) we
get,

ﬁ _ JRc:m {I
S R

, (100—¢)

. (1004
o[

Knowing the values of / and R we can get the
value of unknown resistance. Meter bridge will be
sensitive if the null point is obtained near the middle point
ofthewire.

. {6.18)

Limitations of meter bridge :
(i)  Inthederivation of the formula for meter bridge
we have considered the resistance of copper
plates(G, Hand I) as negligible. But actually, these
copper plates do have some resistance due to
which there will be error in the result. To eliminate
this error, we interchange the position of resistance
boxand unknown resistance S and then calculate
the value of unknown resistance and take the mean
ofthese valuesto minimise the error.



(i) Duetotheresistance of end points of the meter
bridge wire, the sensitivity of the experiment 13
attected. To eliminate this etfect we use, Carey
Foster’s bridge.

(i) Do not passelectric current in the meter bridge for
along time otherwise the wire will be heated up due
to which theresistance of meter bridge wire will get
changed.

(v) Weshouldnot slide the jockey by rubbing over the
meter bridge wire, otherwise the unitormity of the
area of cross section of wire (and there by the
resotance perunitlength ofthemeter bridge wire)
will be attected.

Example 6.4 : In anexperiment of meterbridge, a
resistance of 8Q2is taken out from theresistance box to
get a null deflection position at 45.5 cm. Calculate (a)
value ofunknown resistance, (b) New balance length on
interchanging the positions of resistance box and
unknown resistance.

Solution : Using meter bridge principle,

S_R[]OO f]
¢

Here, R=8Q, f=455cm

. 100—-45.5
s

45.5

545
x—
45.5

5 =9.580

(b) Oninterchanging the positions of resistance box
and unknown resistance, the new balance point will
be(100-45.5)=54.5cm

6.4 Potentiometer:

Potentiometer is an ideal experimental device or
arrangement whichis used to measure the emf'ofa cell or
potential difference between any two pointsinacircuit. In
no deflection conditionno current will be drawn from the
circuit. Therefore, its measurement will be accurate.
Potentiometer works asa voltmeter of infinite resistance
(1.e. 1deal voltmeter). It can be understood by the
following fig (6.6)

Fig: 6.6 Measurement of potential difference

Infigure (6.6), a voltmeter is connected across a
current carrying resistance for measuring potential
difference. Afractionofcurrentis drawn by the voltmeter
due to its own resistance. As a result, the potential
difterence across the ends a and b of the resistance is
observed slightly less than the actual potential difterence.
Dueto thismeasured potential difference willbeless than
actual potential difference.

This error in potential difference canbe reduced to
zero if weuse anideal voltmeter ofinfinite resistance. But
inrealistic situation it is not possible at all.

In case of balanced conditicn, no current is drawn
by the potentiometer from the circuit. In state of no
deflection, it works as a voltmeter ofinfinite resistance.
So, we cansay, that potentiometer is anideal device to
measure potential differencein comparison to veltmeter.

6.4.1 Construction of Potentiometer

Fig 6.7 shows a potentiometer. Mainly
potentiometer wire is made up of magainin, eureka,
constantan like alloys. The specific resistance of these
materials is very high and the temperature coefficient 1s
very low.

1t consists of'a 10-meter-long resistance wire of
uniform cross section area spread over a wooden plank
in 10 equal parts each with alength of one meter. The
ends of wire are connected across the connecting
terminals A and B. Ameter scaleis also fixed over the
wooden plank parallel to the length of the wire. Asliding
jockey Jis also capable to slide along the wire with the
help ofarod which is fixed over the wooden plank. By
pressing the jockey, we can establish the electric
connection to any wire of the potentiometer wire
(Remember, there are 10 wires). The position ofthe
jockey can be determined with the help of meter scale.

meler scale

60 70

/ o 10 20 30
FrX Yy}

||||m‘|‘|‘ITn1T‘

Fi

A

Wooden board base

Fig: 6.7 Construction of potentiometer



6.4.2 Principle of Potentiometer

The principle of'a potentiometer isthat the potential
dropped across a segment of a wire of uniform cross-
section carrying a constant current is directly
proportional to its length. To determine an unknown
potential difference (oremf)it is compared with aknown
potential difterence distributed uniformly over the
poteniometer wire. In condition of no deflection the
unknown potential difference is equal to the known
potential difference. Thisis known as the principle of
potentiometer.

To understand this, an electric circuit is made as
shown inthe tigure (6.8). Now we connect a battery of

emf £, ,akey K, and arheostat 2, in series with the

potentiometer wire AB. This circuit 1s called primary
circult of potentiometer. Inthe secondary circuit, positive
terminal of cell & of emt /- is connected to positive

terminal 4 ofthe potentiometer and negative terminal of
the cellis connected to jockey through a galvanometer.

4 p—b‘ Rh K .

[ (o)

il [
Primary circuit;

F 3

f 2

J

Secondary circuil

+Il-
IIF:

Cell ol unknown eml™

*

G

Fig. 6.8 Polentiomeler circuit

Here, it is essential that the emfot cell in secondary
circuit must be less than the emf of batteryin the primary
circuit. Itin the primary circuit resistance ofthe rheostat is
very low or zero then whole emf ¢, of the battery is
uniformly distributed over the potentiometer wire AB.
Here, it is considered that potentiometer wire AB has
uniform area of cross section. Itlength of potentiometer
wire ABisL, emtofthebatteryis €, thenitis uniformly

distributed all over the length of potentiometer wire. This
fall of potential per unit lengthis called potential gradient,
it is represented by x, thus,

X=—

L

The Slunit of potential gradient is volt/m,

.. (6.19)
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Hence.‘a gp = V'?.l’i = xL

Ifthe resistance of potentiometer wire1s R and the
current flowing inthe potentiometer wireis I, then,

Ve=IR ...{(6.20)
From Eq(6.19) we get
R
x=/— '
: ...(6.21)
or x =R ...(6.22)
R ) , .
Here, R, = 7 = is the resistance per unit length ot
the potentiometer wire.

Now we consider some point on the potentiometer
wire at a distance / from terminal 4, then the potential
difference between A and C will be given by.

V. =xf . .(6.23)

Here we know the value of xand ¢ | therefore,
V.. 1s known potential ditference, the value of # is

variable, theretore V. oc £ . Nowby placing jockey at
point (’ on potentiometer wire. 1f galvanometer gives
zero deflection whichis called null deflection point and its

length frompoint A, AC = # iscalled balancing length

on potentiometer wire for emt & In this situation,
unknown emf £ will be equal to known potential

difference V.. onpotentiometer wire.
e=V,. =xt ...(6.24)

Thisis known as principle of potentiometer.

Note : We get two situations if we press jockey )

atpoints (', and C, showninthe figure (6.9)

o

R|1 Kl
3 R VYV (%)
I b \*)
¥
L\ ty >
e | > R
Ll i ...(:1 2
A - 1 Ll
& AT
Joraon QG
+ | - ’

Fig 6.9 Working principlcolpotentiometer



(1) If, jockeyiskeptat (| and AC| = £ inthis
situation V. < &, due to which the resultant
current flowsinsense AC , G ¢ A .e. clockwise.
Thus, the galvanometer shows deflection.

() IfwepressjockeyJatpoint C, then AC, =€,

at this condition V. > ¢ . Dueto this resultant
tlow inthe secondary circuit is anticlockwise i.e.
opposite to what in case (i) ( Ae(G(",4 ). From
equation (6.22) .

Someimportant relations for potential gradient,
x=1IR, ...(6.25)

Ifin the primary circuit of potentiometer, R'isthe
external resistance and r is the internal resistance of cell
then,

g_.\

/=L
TR ...(6.26)
Using Eq. (6.25)and (6.26) we get,
&p R R
x=| —2— |=—|""R =—
[K+R‘+r]L [ "L - (6.27)

If, r=0,1"=0, then from eq (6.22) we get the
same value asin eq(6.19)

\’_S—P 0.28
Y= ...(6.28)
X:IE

L

Ifspecific resistance of potentiometer wire1s p and
area of cross sectionis A, then,

et

1p
X=—r ... (6.29
y (6.29)
Ifristhe radms of potentiometer wire, then,
X = Ip o 6.30
7[}"’2 ( . A =T ) . ( . )
Thus, we conclude that,
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Potential gradient isdirectly proportional to current
I and specific resistance p and inversely
proportional to area of cross section 4 ofthe
wire.

()  Apparently, the value of potential gradient (x)
depends on theemfof the battery connected in the
primary circuit, length of the wire and internal
resistance ofthe battery,

(i) If ¥=0 and R'=0, then the potential gradient x
does not depend on the area of cross section,

material of wire and resistance of wire.

6.4.3 Precautions with Potentiometer:
(i)  Theemfofcell used in primary circuit should be
greater than the emfof cell inthe secondary circuit
otherwise we will not get the situation of null

deflection.

Positive terminals of all the cells must be connected
topoint A.

(i)
(i)

Balanced length is always measured from point A
whichisat higher potential.

The potentiometer wire must be of unitorm cross
section otherwise the value of potential gradient x

will not be same at all positions.

(iv)

(v) Inpotentiometer wire, current should not be
passed overa long-time otherwise wire will get heat
up whichwill change the resistance ofthe wire and
therefore potential gradient will not remain

constant.
6.4.4 Standardisation of Potentiometer

In previous section, we studied that potential
gradient of potentiometer depends on the emfofcellin
primary circuit and its internal resistance and other
resistances connected in series with potentiometer wire.
Ingeneral, the values ofthese resistances are not known.
Hence, potential gradient can be calculated by indirect
method. The procedure offinding the exact potential
gradient of potentiometer is called standardisation.

For standardisation of'a potentiometer a standard
cell ofknown emfis connected in the secondary circuit of
potentiometer as shownin the fig (6.10). Standard cell is
that cell whose emf remains constant for along time and
1t can be known precisely. For standardisation we use
Cadmium Cell or Danial Cell as standard cell. The
values of emf of Cadmium Cell and Danial Cell are
1.0186Vand 1.08 Vrespectively.
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Fig6.10 Standardisation of Potentiometer
To tind the potential gradient of potentiometer with
the help of a standard cell by placing a sliding jockey on
the potentiometer wire and the balancing length £ is
determined at this time, (Galvanometer shows zero
deflection). Ifemfofstandard cellis &, then, according

to the principle of potentiometer

g =xf,
— 8-5' .

Here, it is to be kept in mind that after
standardisation, there should not be any change in
primary circuit otherwise x will change.

6.4.5 Sensitivity of potentiometer

By sensitivity of potentiometer we mean, its ability
to measure accurately small value of emt or small value of
potential difference. The sensitivity of potentiometer
depends on the tall of potential per unit length on the
potentiometer wire or potential gradient. Smaller the
value of potential gradient, larger will be the sensitivity of
potentiometer.

Because balancinglength ¢ is measured directly
with the help of potentiometer hence. Ifthe value of ¢ is
larger then the percentage error in its measurment will be
less. Hence, potentiometer 1s more sensitive ifxis small.

(- £ = xt)

We canincrease the sensitivity of potentionmeter
(or decrease x).

(i)
(i)

Byincreasing thelength (L) of potentiometer wire.
By decreasing electric current in primary circuit.

By decreasing electric current in primary circuit,
potential difference across potentiometer wire will also
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decrease.

Thus, it is better to enhance the sensitivity of
potentiometer by increasing the length rather than
decreasing the current in primary circuit, Due to this
reason the length of potentiometer wire 1s taken very
large.

Example 6.5 : In the primary circuit ofa
potentiometer experiment, a battery of emf2.2 Vand
internal resistance r= 12 is connected. Ifthe resistance
ofrheostat in the primary circuit lies in the range (O-
20€2)and length and resistance of potentiometer wire are
10 m and 20 Q respectively. Find the minimum and
maximum values ofthe potential gradient.

Solution :
g
x=—-—>= % E
R+r+ 1" L
Here,

¢, = emfot'the battery in primary circuit=2.2'V
R=Resistance of the potentiometer wire=20£)
r=internal resistance of battery=1.0 {)

I.= Length of potentiometer wire=10m

R’ —Range ofrheostat (0-20Q2)

For minimum value of x, the value of R' should be
maximum. Hence R'=20Q)

2.2 20
Xoin = | An 1 A 15T A
2041420, 10
zgxg:ﬁzo.ll V/im
41 1 41
Similarly,
X, = _ 22 xgzﬁ:&ﬂ\ﬂ’m
’ 20+1+0,; 10 21

Example 6.6 : The area of cross section of
potentiometer wireis 0.8 x 10 ® #° and it has specitic

resistance 40x 107" Qm _ Ifthe current through the wire
is0.2 A. Calculate the value of potential gradient.

Solution : The potential gradient is,

7
x:_p
A

Here, 7=02A4,



£ = specific resitance of wire

=40x 107 Qm
A=08x10°m*
Onsubstituting values
; 108
w2 0240407 g,
08x10°
6.5 Uses of Potentiometer :
6.5.1 Determination of Internal Resistance of a
Primary Cell
S K ‘L
| () MWW
R,
Y A
A ‘L__:) B

Fig 6.11 Deicrminaiion ol Tnicrnal Resistance ofa Cell

Circuit Arrangements : Acircuit isarranged as
showninthe figure 6.11. Primary circuit is made up by

joining abattery ofemf € ,, arheostat &, andaplugkey

K, in series with the potentiometer wire. To make

secondary circuit, positive terminal of cell whose internal
resistance 1s to be measured is connected to the higher
potential point A of the potentiometer wire and the
negative terminal ofthe cell is connected to the shiding
jockey JTthrough the galvanometer. Aresistance box and

aplugkey K. isconnected parallel tothe cell.

Working Principle : First of all, by keeping
primary cell of emf £in open circuit (i.e. Keeping plug

key K, open) balance point is obtained by sliding the

jockey. Let the balancing length in this casebe £, . Ifthe

potential gradient isx, then according to the principle of

potentiometer,
& =xt ...(6.32)

Next, without changing the configuration of the

primary circuit, plug key K, is closed, and some
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resistance R is inserted in the resistance box. The
potential dropV across the registance box is balanced on
the potentiometer wire. And balancing length £, is
obtained with the help of sliding jockey J.

1

=xf, ... (6.33)

We know, if T is the internal resistance of the cell
and I isthe current through the resistance R, then,

e=V+1ir

-
1

or
eV
or b= 7

Fromeq. (6.32), (6.33) mand (6.34) we get,

J

_ _ ¢t
orinternal resitance = :{ 1 P -

Yoy

jze (cV=IR) L (639)

—x£

y e x£,
xf£,

]R ... (6.35)

By substituting the values of £, and £, internal
resistance of the primary cell can be determined. For
varying the values of R, different values of 7, are

recorded and corresponding values of # are calculated.
We seethatin all observations the value of r1s different.
1.e. internal resistance depends onthe current drawn from
the cell. Thus, while measuring theinternal resistance, we
should not take the average of the values of r. We must
state that, the internal resistance varies between minimum
value to maximum vahie.

Example 6.7 : Abattery ofemf2.0 V and internal
resistance 2.0 £2 is connected in the primary circuit of
the potentiometer of wire of length 10 mand resistance
10 Q2. Theemtof primary cell is balanced at 5.0 m length
of potentiometer wire. Whena current of 0.1 Ais drawn
from the cell then terminal voltage of the cellisbalanced at
alength of 4.0 m of potentiometer wire. Find the internal
resistance ofthe cell.

]x

Solution :

|

Sp

R+r

R

L




L=10m

e, =2V

r=20

X= 2 ]xE:Ol?me
10+2/ 10

Internal resistance of cell,
eV xtf —xt,
! 1

x(£,-£,)

=

!
£,=5.0m, £,=40m, I=0.14

or

Here,
After putting the values, we get,
0.17(5.0-4.0) 0.17x1
F= =

=1.7Q
0.1 0.1
6.5.2 Comparison of Electro Motive Forces of Two
Cells
£ (o) AFw— |
A
W Rh
AT ]
B
8]
] =
I I
£
iz

Two wavkey

t?‘“

Fig. 6.12 Comparisonolcmloltwocells

Circuit Arrangements : Circuit iscompleted as
given in the Figure 6.12. Primary circuit is made as
explained in previous section. For preparing secondary
circuit positive terminal of both cells whoseemfs are to
be compared are connected to the higher voltage end
(1.e. A)ofthe potentiometer wire. Ifnegative ternnals of
these cells are connected to terminal 1 and 3 oftwo-way
key. Terminal 2 of the two-way key is connected to
sliding jockey through galvanometer.

Working : First ofall, switch onthe primary circuit
by inserting the plug of key K. Now insert the plug
between terminals 1 and 2 of the two-way key and
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determine the balancing length /| by slidingjockey over
the potentiometer wire, for the cellofemf &, .

g =xf ...(6.36)

Here risthe potential gradient.

Without disturbing the primary circuit remove the
plug between | and 2 and insert the plug between
terminals 2 and 3 of the two-way key and determine the

balancing length £, by sliding jockey over the
potentiometer wire, for the other cell of emf g,
g, =xf, ...(6.37)
Ondividingeq. (6.36) by eq.(6.37), we get

& _ xf
g, xt,
a4
8’\ _.(:i" ‘77(6‘38)

Hence, ratio of emfofcells is equal to the ratio of
the corresponding balancing lengths. By changing the
value of resistance of rheostat inthe primary circuit (i.e.

changing the value of potential gradient ), various values
ofbalancing lengths £, and ., are obtained. Inthis way
variousratios g, /e, are calculated and the mean value
isreported.

Inthis experiment standardisationis not necessary.

Inlaboratory, Leclanche cell is taken as first celland the
Denial cell is taken as the second cell.

Ifone of'the cellsis standard cell, thenthe emfof

the second cell can be calculated by using the tollowing
formula,

... (6.39)

6.5.3 Measurement of Small resistance :

The essential circuit for measurement of small
resistanceis as shownin the figure(6.13). The primary
circuit of potentiometer is completed in accordance with
the previous sectionas shown in the figure. Anunknown
low resistance ris connected in series with known high

resistance i, Rheostat R, the battery of emf &' and

key K, is connected in secondary circuit of the



potentiometer. Higher potential point of potential
difference across resistance R 1s connected to higher
potential point A of potentiometer wire. The low
potential ends ofthe resistances R and rare connected to
the terminals 1 and 3 ofthe two-way key. The terminal 2
{middle terminal) of the two-way key 1s connected to
jockey through a galvanometer.

3 K,
+ I Lo '
I \.) A
W Ry,
A N i T3
| i
—
2
A
. T% —
AARARA ARAARA AR
YYYYY . YYyy L
H R, v
uall CRY SR
| \*%
KZ

liig. 6.13 Measurement ol small resistance with the help ol

potenliomeler
Working : First of all, we complete the primary
circuit by inserting the plug inkey X, and similarly in
secondary circuit by inserting the plug inkey X, Inthis
condition potentiometer measures potential ditterence V

across the known resistance R. 1f the current in
secondary circuit 1s I and the balancing length for

potential difference Vis £ according tothe principle of

potentiometer,

V =xt ...(6.40)
as V' = [R (Ohm’slaw)
SO IR =x¢, ... (6.41)

Now disconnect the connections between the
terminals 1 and 2and join terminals 2 and 3. In this case
series combination of resistance R and rwill be in the
cireuit of potentiometer.

Let the potential drop across (R +r) is balanced
onthe potentiometerwireat alength £, and this potential
ditferenceis V , then

Vi =xt,

Vi=1(R+r)

147

I(R+r)=xf, ... {(6.42)
From equations(6,41)and (6.42)
I(R-i-?‘) 3 x€2
IR xf
L4
| +—=22
R £
=2
Rf
£ -4
rEl = K .. (6.43)
"1

By substituting the valuesof R,rand £ and £ ,in
equation (6,43) we get the value of #.

Example 6.8 : For findinga low resistancer, it is
connected with ahigh resistance R and constant current
is allowed to pass throughit. If the balancing lengths for
potential drop across the high resistance R and across
the two resistances combined in series are 3.2 m and
3.6 mrespectively, then find the ratic of R andr.

Solution : Let the current passing through the
resistances be I. Balancing length for the potential drop

acrosstheresistance Ris £, , then,

IR=xt, (D

Balancing length for the potential drop across the

resistance (R+r)is £, then,

I(R+r)=xt, (2)
R+r £,
R 4
yof,
R
Here, ¢ =3.20m and £, =3.60m
T [ _3:60-320_040 ]
"R 3200 320 8
Thus, R:r=8:1

6.5.4 Calibration of Voltmeter:
The voltmeter readings are not accurate due to



certain reasons like mechanical faults, non-uniformities in
the spacing of marking on the scale, m the spring constant
etc. The potentiometer gives the correct value of
potentioal difference. 4 merhod to check the
correciness of voltmeler reading with the help of
poientiomeler is called calibration of volimeter.

N
\ Ry,
¢ 1 oy
A B
J
dw— |
o Riy W
& Kg
] = (e}
1’ \°/
Fig: 6.14 Calibration of voltmeter with the help
ol polentiometer

The required circuit diagram for voltmeter
calibration is shown in the fig 6.14. Primary circuit is

completed by joining abattery ofemf's,,, arheostat R,

and aplugkey K, inseries with the potentiometer wire. In
secondary circuit positive terminal of standard cell of emt
£ 1s connected to higher potential point (A) of the
potentiometer wire AB.

Another cell ofemf ¢, arheostat R, and a plug

key K, andresistance box (R B.) are connected in series.
Higher potential point of R B. 1s connected to the higher
potential point (A) of the potentiometer wire and the low
potential point is connected to terminal 3 of the two-way
key as shown in the figure. Voltmeter whichis to be
calibrated is connected in parallel to the resistance box.
The middle point (2) of the two-way keyis connected to
sliding jockey through galvanometer.

Working : First ofall, primary circuit is completed
as explained in earlier experiments. By inserting plug-in
between terminal 1 and 2 of the two-way key, balancing
length ¢, is obtained, forthe emfof standard cell , then

g =xf

H 0

148

... (6.44)

Here xisthe potential gradient. Thisis known as
standardisation of potentiometer. Now removing the plug
from the gap between 1 and 2 and inserting it into gap
between 2and 3. Now, closing plug key K wetake out
appropriate resistance fromthe resistance box. Withthe
help of rheostat by passing current of desired value such
that we obtain some detlection in voltmeter. This
voltmeter reading is noted down. This reading is called
incorrect reading. To obtain correct reading
corresponding to voltmeter reading V, balancing length
. is obtained on potentiometer. Then, according to the

principle of potentiometer, correct reading will be,

V'=xf,

=g, [;—“J use eq. (6.44) ... (6.45)

"
Hence, error inthe voltmeter reading will be,

AV =V -T1"

With the help of resistance box and varying the

value of rheostat R, , and adjusting the reading of
voltmeter, we can obtain the corresponding correct
readings of potential difference. The difference between
the voltmeter reading V and potentiometer reading V',
AV =V -}
is called error.

A graph is plotted between the error and the
voltmeter reading. It is called calibration curve as shown
inthe figure(6.15). With the help of'this graph we can
have correct reading for potential difference as

A

T N ﬁ
4 \Y 10

Voltneter reading Y/ —

AV=V-V’
+

Lirror in voltmeter reading

Fig6.15 Calibration curveof voltmeter



6.5.5 Calibration of ammeter :

A method of checking the correctness of ammeter
readings connected in electric circuit with the help of
potentiometer is called calibration of ammeter.

The required circuit tor calibration of ammeter 1s
showninthetig 6.16. This circuit is almost similar to the
previous circuit used for calibration of voltmeter. Here,
the resistance box is replaced by a 103 standard
resistance coil and in place of voltmeter, an ammeter is
connected inseries with 1€2 coil. Insecondary circuit.

182

Fig 6.16 Calibration ol ammeicr

Working : By placing a plug-inkey K, inthe
primary circuit and also inserting a plug between the
terminals 1 and 2 of the 2-way key, emf &_ofstandard

cell is balanced and balancing length £ is measured

then,
g =xf,
J— 8.&'

With the help ofeq. (6.46), we can determine the
value ofx. Thisis called standardisation of potentiometer.
Without making any change inthe primary circuit (1.e.
without disturbing the value of potential gradient, plugis
removed from the gap between the terminals 1 and 2, of
two-way keyand plugisinserted between the terminals

2and 3. By putting the plug in the plug key &, current is
made to pass through the secondary circuit. Withthe help
ofrheostat R, _, adesired value of current J isobtainedin

10 standard resistance coil. This is erroneous value
measured by the Ammeter.

According to ohm’slaw, current tlowing through
1 Q) standard resistance coil will be equal to potential

difference acrossitsends. Ifthe balancing lengthis £,
and potential differenceis }*, then,

Vi=xt, but F'=I'R or P'=1" (~* R=1Q)
T'=xt,

£, g
1 1 — _ - N — k3
o B [ €(' ] [ i EC' ]

Here /'is the correct value of current measured
with the help of potentiometer. In this way error inthe

. {6.47)

current measured by the ammeter A=/-/"1s
determined. Next we determined the correct value of
ammeter reading with the help of potentiometer for
ditfferent readings of ammeter and calculate the
corresponding errors (A =7 — 7' ). Agraphis plotted
between the error and ammeter reading. It is called
calibration curve of ammeter. It may be a Zig-Zag curve
(or ofany shape).

ANANW
RV

Anuncter reading |

+

N =1-T

Lrrorin ammeter reading

Fig6.17 Calibralion curve,
Now we can determine the correct value of the
ammeter with the help of calibration curve as.

I'=1-Al ... (6.48)
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10.

11.

Important Points

Kirchhoft’s first law 1s based on the conservation of charge and it 1s also called as junction rule. According to
this law, at any junction algebric sumot'the currentsiszero.ie. 2.7 =0 .

Kirchhoft’s second law is called voltage law or loop rule. It is based on the law ot conservation of energy.
Accordingtothislaw, >} =2 =Y [IR=>¢ .

In balanced condition of Wheatstone bridge, the ratio of ratic arms s equal.
Meter bridge is based on Wheatstone bridge. Here of unknown resistance is given by

100— £
(1=
£

Potentiometer is an experimental device with the help of which we can measure the potential difterence
between any two points or emfof cell accurately.

Potentiometer is based on no deflection method. At no deflection it works as anideal voltmeter of infinite
resistance.

Fall of potential perunit length on potentiometer wire s called potential gradient. It’s unit is J-m. Potential
gradient is equal to x — /(R,,), Here / = Current through the primary circuit and /2_ =resistance per unit length
of potentiometer wire.

To find the potential gradient with the help ofa standard cell is called standardisation of potentiometer.

The sensitivity of potentiometer is inversely proportional to potential gradient. By increasing the length of
potentiometer wire sensitivity can be increased.

Formula for measuring the internal resistance with help of potentiometer is,

i
r:{"l {CQJR
‘.

Here, £, and £, arethebalancing lengths in open and closed circuit and R is the resistance taken out from
the resistance box.

It & and g, aretheemts oftwo cellsand ¢, and £, are corresponding balancing lengths on potentiometer
wire, then

a4

g, £,

2

Formula for measuring the low resistance with the help of potentiometer,

£ —f
r:{ 2 ‘]R
fl

Here, £, = Balancing length for the potential difference across the series combination ot 2+

£, = Balancing length for the potential ditterence across resistance R .

Correctness of the measured value of ammeter and voltmeteris carried cut by means of potentiometer and it
is called calibration of ammeter and voltmeter.
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Questions for Practice

Multiple Choice Type Questions

|F¥]

Kirchhoft s first law and second law are based on,
(a) Law of conservation ofcharge and energy.
(b) Law of conservation of current and energy.
(c¢) Law of conservation of mass and charge.

(d) Noneofthe above.

Forthecircuit shown in the figure, the potential

difterence between point aand b will be,
o

b

(a) R —R, (b) R,—-R
RR,
(<) R+R, (d) Zero

Inthe given figure, the value of /will be,

SA
AA
0
2A
I
VaA
(a) 6A (b) 11A
() 7A (d) 5A

On inter changing the position of battery and
galvanometer in Wheatstone bridge respectively,
the new balance point,

(a) remainsunchanged.

(b) will change.
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(c) nothing canbe said.

(d) it may change or not will depend on the
resistance otbattery and galvanometer.

Inthe given figure, the potential difference between
the terminals A and B will be,

8 Q) B 6 Q)

40

20, .
(a) 7I' (b) 7I'

10
(c) 71’ (d) Zero

Inthe given figure, the value of T will be,

r=1Q
iy

r=2Q
il
J
I\sz 47 i
—MWWMWA——
50

(a) 2.5A (b) 0.75A
(c) 0.5A (d) 0.25A

Potentiometer 1s such a measuring apparatus to
measure the potential difference whose ettective
resistance s,

(a) Zero

(c) uncertain

(b) Infinite

(d) depends on external resistance.

Which of the tollowing quantities cannot be
measured with the help of Potentiometer,

(a) emfofacell
(b) capacitance and inductance

(c) resistance  (d) current



1.

In the given figure, the galvanometer shows no
deflection. What isthe value of R?

3502 1
[ [ 3 o] [
(r
{ : i
20 em =+ I
_II_
(a) 2200 (b) 1100
(c) 550 (d) 13.75Q

The temperature coefficient of resistance ofa
potentiometer wire should be,
(a) high (b) low
(c) neghgible  (d) infinite
The formula for internal resistance of a cell will be,
(Here £, and £, arethe balancinglengths ofcellin
open and closed circuit respectively.)

]R

© Z[f‘ ;fg}'{ @ " :[fi : J“

Inapotentiometer experiment, the emfe ofa cellis
balanced at L.length. Another cell of same emfeis
connected parallel to it, then, new balancing length
willbe,

(a) 2L (b L

(c) L2 (d) L/4

In a potentiometer experiment, a standard cell of
emf1.1 Visbalanced at 2.20 m length. Potential
difference across aresistance wire is balanced at
95 cmlength and voltmeter read this potential
difference as 0.5 V. Then, error inthe voltmeter
willbe,

(a) +0.025 V
(c) -0.025V

£

1_53 _ 62_51
(a)f’=[ 7 JR (b)f’—( 2

2

(b) +0.525V
(d) -0.525V

Very Short Answer Type Questions

Write down the mathematical expression of
Kirchhoff’sjunction law?
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11.

12.
13.

On what conservation, law Kirchhoff"s voltage
ruleisbased?

Write down the condition of balanced Wheatstone
bridge.

On what principle, meter bridge works.

Why potential gradient of potentiometer depends
on the temperature of wire?

What happens it the emf of cell in the primary
circuit is less than the emfof cell in the secondary
circuit?

Write down the definition of potential gradient.

Why area of cross section of the potentiometer
wire should beuniform?

For standardisation of potentiometer which cell is
used other than the Danial cell?

How the sensitivity of potentiometer can be
increased?

Length ofa potentiometer wireis 10 m. Astandard
cellofemf1.1 voltisbalanced at length 8.8 mof
potentiometer wire. How much potential difterence
can be measured from1t?

Why copper wireis not used in potentiometer?

Potential gradient of potentiometer wireis 0.3 V/
m. In an experiment for calibration of ammeter,
potential difference across 102 resistance 18
balanced across 1.5 meter length of potentiometer
wire, Ifthe reading ofammeter connected in circuit
0.28 A, Calculate the error in ammeter reading.

Short Answer Type Questions

L.
2.

|F¥]

State Kirchhott™s junction Law and loop law.

How s the resistance ofa wire determined with the
help ofa meter bridge? Obtain required formula
and draw circuit diagram.

What is Wheatstone bridge, derive its balanced
condition tor balance using Kirchhoft™s law.

What is potential gradient? On what tactors does it
depend?

What do you mean by the standardisation of
potentiometer? Explain it by drawing a circuit
diagram.

What do you mean by the sensitivity of a
potentiometer? How we can increase it?



10.

11.

15.

How will you compare the emf’s oftwo cells with
the help of potentiometer? Explain with the help of
proper circuit diagram and derive its formula.

Asstandard cell ofemf'1.2 Visbalancedona2.4m
length of potentiometer wire. Obtain the balancing
length across aresistance 3.5 Q, ifacurrent of 0.2
Aisflowing throughit. Also calculate the potential
gradient.

[Ans :x=035V/m £=140m ]
Why correct emf of a cell or potential difterence

cannot be measured with the help of a voltmeter?
How it is possible to determine the correct value?

Why do we try to obtain the null point near the
middle of meter bridge wire?

Why the current through the potentiometer wire
should not be passed for along time?

Why the current in the primary circuit of
potentiometer is kept constant?

Write two precaution while using the
potentiometer.

What do you mean by calibration of a voltmeter.
Draw necessary circuit diagram.

Draw required circuit diagram tor the measurement
oflow resistance with the help of potentiometer.

Essay Type Questions

1.

State Kirchhotl's loop rule and junction rule. With
the help of these rules deduce the condition of
balanced Wheatstone bridge. Draw necessary
diagram?

What 1s meter bridge? On what principal it is
based. Explain the construction ot meter bridge
and derive an expression for unknown resistance of
awire, Draw essential diagram?

What do you mean by the internal resistance ofa
cell? Explain the method to determine the internal
resistance of a cell with the help of potentiometer
and obtain the required formula with the help of
circuit diagram.

What do you mean by the calibration of ammeter
or voltmeter? Explain the method of calibration of
voltmeter with the help of potentiometer. Draw the
necessary circuit diagram. Draw the calibration
curve.
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Whatis potentiometer? Explain its principle. With
the help of potentiometer describe the method to
determinethe value of'a low resistance and derive
proper formula. Draw necessary circuit diagram.

Answer Key (Multiple Choice Questions)
1.(a) 2.(b) 3.(c) 4.(a) S5 (d)

6. (d) 7.(b) 8 (b) 9. (a) 10.(c)
11.(a) 12.(b) 13.(a)

Short answer Type Questions

1.

w

10.
11

12.

13.

>1=0
Based on law of conservation of energy.
Balanced condition of Wheatstone bridge is that

F R

(_ = ? of armswill remains same.

ratio

Meter bridge i1s based on the principal of
Wheatstonesbridge.

One increasing the temperature of potentiometer
wire, the resistance of wire increases. Hence,
potential gradient will be affected.

We will not obtain the condition of null point on
potentiometer wire,

Fall of potential per unit length on the
potentiometer wire s called potential gradient.

So, the potential gradient remains same at all the
points of potentiometer wire.

Cadmium cell
By increasing the length of potentiometer wire.

Potential gracdient (x)

w=Se MY 6 sy
£, 88
Maximum potential-gradient that can be
measured,
Vg =XL =0.125x10 =1.25Volt

Temperature coetlicient of resistance of copper
wire is very small and specific resistance is very
low.

1 x Ammeter reading[ =0.28 A
Foractual value of current

I'=currentin 1Q resistance,



= Potential difference across 1€ resistance
=V =xf

I'=03x15=045A
Errorinmeasurement of current= A 1
=I-T

=0.28-0.45

=-0.174

Numerical Questions

Find the equivalent resistance between terminal *a’
and ‘b’ ofthe network showninthe figure.

[Ans:RQ ]

Inthe tollowing figure, abalanced meter bridge is
shown. Iftheresistance of the wire of meterbridge
18 1 €/m, then find the value of resistance X and the
current passing through the resistance X.

X 30
A 4
+— 40 ¢cm 60 cm ——™
A B
A +| =
|I
oV

[Ans: X=2;I=1.26A ]
The resistances of four arms of the Wheatstone
bridge are given in the circuit griven below.
R,=100Q, R =100,
R,=50 and R ,=60Q.

A galvanometer of 15Q1s connected between the
terminals B and D. Calculate the current flowing
through the galvanometer. The potential difference

between terminals Aand Cis givenas 10V.
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[Ans: 4.87mA |

What will be the value of resistance R for the
network showninthe figure so that the current in
ammeter may be zero.

20Q) B
£y

10 Q2

+

| |
|I
10V

[Ans: Ammeter reading will be zero for allvalues of R
5.

Thelengthof potentiometer wireis L. The primary
circult consists of'a battery of emt2.5 Vand a
resistance of 1002 connected in series. In an
experiment the balancing length foremfot 1V is
obtained at /2. Find the new balancinglengthifthe
value of series resistance in the primary circuit1s
doubled.

[Ans: 0.6L ]

In a Wheatstone bridge the branch resistances are
as shown in the following circuit diagram. What
will be the value of X inbalancing condition of the
Wheatstone bridge?



-

[Ans: X=1000]

Inapotentiometer experiment for the calibration of
ammeter, thebalanced length of a battery of emf
1.1 Vis obtained at 0.88 m. The potential
difference across one-ohmresistance is balanced
at0.20 mof potentiometer wire. [fthe reading of
the ammeter connected in series is 0.20 A,
calculate the error in ammeter.

[Ans: 0.05A |
Inapotentiometer experiment, the balancing length
tor cell of emf'1.25 Vis 4.25 m. The balancing

length with another cell is obtained at 6.80 m.
Determine the emfof cell.

[Ans: 2.00 V]
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The resistance of'a 10 mlong potentiometer wireis
1 &/m. An accumulator of 2.2 V emf, negligible
internal resistance and a high resistance are
connected in series. What is the value ofhigh series
resistance, if potential gradient on the
potentiometer wireis 2.2 mV/m.

[Ans: 900 Q]

Inapotentiometer experiment, the balancing length
for two cells of emf & and ¢, (g >¢,)
connected in series 1s observed as 60 cm. On
reversing the position of terminals of one cell {(of
smaller emf)inthearrangement of experiment, the
new balancing length is observed as 20 cm. Find
theratio ofemfs 7 ( g, / £, ) ofthe cells.

g 2
[Ans:g_T]

Z






Chapter - 7
Magnetic Effects of Electric Current

Even before 2000 years, people knew about
electricity and magnetism, but as two separate subjects.
In 1820 a Damish scientist Orested found a close relation
between electricity and magnetism. Ampere and Farady
found that a moving charge produced magnetic field and
amoving magnet produced electric current. Later the
Scotish physicist Maxwell and Lorentz from Holland,
showed that both elecricity and magnetism depend on
each other. From this, a new field of study as
electromagnetism came into existance.

The modern technology is based on science of
electricity and magnetism. Theimportant devices for our
commonuse, suchas electric power, telecommunication,
radio, television, mobile etc, are based onit.

In this chapter, we will study the magnetic field
produced by current carrying conductor which is also
called as magnetic effect of electric current. We will study,
the torce on a moving charge in a magnetic field,
cyclotron and galvanometer etc.

7.1 Orested's Experiments

To study the magnetic field produced by a current
carrying wire, Orested pertormed an experiment whose
arrangement s shown in the diagram (7.1). Init a
conducting wire AB is connected to akey and a battery
with rehostate. Amagnetic needleis placed under the wire
and parallel toit, in north-south direction.

Battery Battery Battery

/L

vertical

(b - (©)

5 @

Fig 7.1 Orested's experiment
Orested found from his experiments that -

() When there 1s no current in wire, the magnetic
compass needle remain parallel to wire, but as
soon as the key is pressed to pass the current, the

needle gets deflected.

(i) The detlection is increased by increasing the
current or by bringing the needle closeto the wire.

(i)  Ifthe currentinthe wireisreversed, the deflection
1s also reversed, to its previous direction.

Similarly, ifthe compass needle iskept above the
wire and the experiment isrepeated, the deflection will be
opposite to the previous one. Sincethe magnetic needle
is deflected only by external magnetic field, it is clear
from Orested's experiment that -

Due to currentina conductor ormoving charges, a
magnetic field isdeveloped aroundit, it1s called magnetic
effect ofelectric current.

7.1.1 Conculsion from Orested's Experiment

The following conculsions are drawn from Orested
experiment -

(1) A magneticfield is developed across a conductor
dueto electriccurrentinit.

(i)  Themagnitude of magnetic field increases with
increasein current.

(i) Magnitude of magnetic field depends onthe
relative distance from the conductor, it decreases
with increase in distance.

(iv) IfthecurrentisinSto N direction, the north pole
of the magnetic needle placed under the wire
deflects towards west directions.

(v) Ifthecurrent in conductorisin Nto S, the
deflection will be towards east.

(vi) Thedirectionof magnetic field, above and below
the conductor arein opposite direction.

In next discussion we will define magnetic tield. It
may be a function of space and time.

7.2 Magnetic Field

Inchapter 1, we have defined electric tield, as the
force on a unit positive test charge at that point,
FE=I/g. Hadthe magnetic mono pole existed, we could
have defined magnetic field as simply as above. But
since magnetic monopole does not exist, we use another
method to define magnetic field. Fromexperiments it is



known that a charge at rest in magnetic field does not
experience a force. Alsoifthe test charge moves parallel
or antiparallel to magnetic field, the forceis zero. Inthe
absence of electric field, (neglecting gravitational field), if
a moving charge experiences a force in the direction
perpendicular to velocity then there must exist amagnetic
field B. Itisa vector quantity.

The defenition of magnetic field or magnetic
induction B, canbe given by the torce experienced by a
moving charge. Ifa charge qis moving witha velocity
atan angle & with 7 , the force onthe charge is given
by -

F =gq(¥xB) (7]

I =qvBsin6a

here &1s the angle between gand ¥ and 7 isa
unit vector in the direction of force f° , whichis
perpendicular toboth g and .

The magnitude offorceis | £ |= gvBsiné -

It ¢ =90°
gv
inequation(7.2),itq=1C and v=1m/s

I =gvBor B = ..(7.2)

then B=F

max "

Hence "the magnetic field at any point isequal to
the max force experienced by a unit charge moving
perpendicular to magnetic field withumnit velocity”.

Magnetic field is a vector quantity, its S.1. unit is
weber-m” whichis also called Tesla T.
1Weber 1IN

w

1Tesla =

Axm

In CGS system the unit of B is Maxwell/cm? or
(Gauss. Relation between the two unitsis 1 T=10*G
The dimensional formulaforBis = A7'2'1 7 A7

The magnetic field B1s also known as intensity of
magnetic field, magnetic flux density and magnetic
nduction.

Stationary charge produce only electric field where
as amoving charge also produce magnetic field along
with electric tield.

Just as electric tield, the magnetic field also obey

157

law of super position.
7.3 Biot-Savart's Law

The French physicsts Biot and Savart proposed a
law about the magnetic tield produced by current, on
experimental basis, which is known by their name.

N
AN

\\_X

Fig 7.2 Biot-Savart law

The magnetic field dR due to a small length
elementd ¢ ofa conductor XY havinga current I ata
distance ;¢ from d ¢, (showninfig 7.2) invacuumas -

(i) dBisdirectlyproportionto/.| 4B o T
(11) Proportional to lengthelements & £
|dB x| d 1|
(111) ,d!_)’» 1s proportional to sine of the angle
betweend ¢ and r .
| dB |oc sin

(iv) dBis inversely proportional to the square of
the distance of the point P from &/ .

1

e

|dR | o

So combining all above relations we get

. T|di |si
| dB| PRACALLL _Lsm ¢ . (73)
ap= 2o LG g
4 "
Hy . T
Here . = isaproportionality constant. Its value



T

forvacuumis 10" N/A itsunit 1s

Wb T xm

Axmor A

4, 1s called magnetic permeability of free space
(vacuum).

Itthe conductor is surrounded by another medium,
then

pu T|dl |sm19
A
magnetic permeability of that medium.

|dB |— where g = g, 15 the

! ) .. :
o= £ _ relative permeability of that medmim.
)u(’_l

The Biot-Savart lawin vectornotation is

_ dl
i = Ho pAxF (7.6)
dx r
: di %7
or dB:% I% (7T

-

Fromequation(7.0)itis clear that the direction of

dR s always perpendicular to the plane of /¢ and #
according to right hand screw rule. Inthe tig 7.2 the
direction of B at P, is perpendicular to the page and
downwards shownby & . At P'itis perpendicularto the
page but upwards as shownby ©.

Different Positions
I P
¥ ' a—
d A
0
L1 e
I R / JIL
180° : 6=00

(A) )
Fig 7.3 dB for (A) 8 =0°, 180°(B) g = 90°
(1) It the Pand P' are situated on the line of the

current, then #=0%and 180" respectively.
sinf =sin0 =sin180° =0

hence | 4B |= 0 .. (7.8)

(ii) Ifthe required point P is normalto ¢ , asin
[fig 7.3(B)], then & =90°, and sin 90°= 1.

f L]
| = Hy I|d |sm90
A
1, df
a1 19

Thisisthemax. value,

(11i) The resultant magnetic field due to the whole of
the conductor at a point P for is

Tdl <7

‘é:ﬂz 3

4 ¥

. (7.10)

Comparision of @B due to small current element
Id¢  fromBiot-Savart law equation (7.7), and the dF.
due to a small charge dgby coulomb's

law[df*f = @ﬂ?] i
¥

Inboththecasesthere are two similarlities and two
important difterences. The current 7d# produces
magnetic field where as dey produces electric tield. Both
obey inverse square law. But there is difference in the
direction of the field, due to d the field F is radial,
where as dB isnormal to the plane of 7 and o ¢ .The
second difterence 1s that F can be due to single charge
oracharge distribution whereas the magnetic field is due
to only current.

7.3.1 Direction of Magnetic Field
The direction of 5 canbe given by following rules -

(i) Snow Rule - The direction of dB near a
conductor can be given by the deflection of north pole of
amagnetic needle placed nearit. According to this law-
“Ifthe current in a conductor is form south to north and
wire 1s situated over the compass needle, then the
deflection ofits north pole is towards west” (fig 7.1 B).

(ii) Right Hand Rule - According to thisrule, if
we hold a current carrying conductor by our right hand



as shown intig 7.4 and the direction of thumb indicates
the direction ot /, thenthe currled fingers will give the
direction ot magnetic field arround the conductor.

A
Ll b

£l

~

Fig 7.4 : Right hand thumb rule

(iii) Right hand palm rule for circular current-
According to thisrule, if the direction of currled fingers of
right hand givesthe direction of current, then the direction
ofthe thumb gives the direction of magnettic field (fig
7.5).

B

Fig 7.5 Right hand palm rulc

(iv) Maxwell's Cork Screw Rule-Right
handed screw rule- Ifthe direction of linearmotion ofa
right handed screw gives the direction of current in a
conductor, then the direction of rotation of screw, gives
the magnetic field produced by that current.
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Fig 7.6 Maxwell's screw rule

7.4 Magnetic Field Due to a Long and Straight
Current Carrying Conductor

7.4.1 Magnetic Field of a Straight Current

Carrying Wire of Finite Length

Fig. 7. 7Magnclic ficld duc o long conduclor

Asperthefigure 7.7, astraight, wire XY liesin the
plane of the paper. 1t carries current fromx to y end,
consider apoint P, ata perpendicular distanced fromit.
Themagnetic field due to an arbitrarylength element o ¢
(ab) whose mid pointis O at a. Distance OP =r. From
Biot-Savart's law

dﬁzﬂfdﬁfmé’
4T F

(71

here there are three variables, / rand . We can
change / and r in terms of @, by the geometry in the

figure.
From AOO'P &



7.4.2 Magnetic Field Due to Straight Current

F
: — =cot Z(POO")=cot(180-8)=—cotd
o'rP d

Carrying Conductor of Infinite Length
Since the length of the conductorisinfinite, so the

f=—dcotd - (712)  angles ¢ = ¢, = z/ 2. Using equation(7.17)
£ We get
j@ = —d(—cosec *6) ;
B= ::‘Ld[sin §+ sin%]
dt=dcosec’ @d6 .. A{7.13) i
Againfrom AQO" P ,u(. L) { in” - 1}
cosec(180—-8) = or. =L
00 d 5 Ho I
. or rd ... (7.18)
cosecd =—
d P oo
r#=d cosect - A(7.14)
Substituting in equation 7.13 |
$, = 90°
. 2 . : z //_. P
dB:ﬁf(dcosec 6’d6’25m6‘ 0 7
4 (d cosecB)” A # =90
ap = o 1(d cosec® 8)sin 8d6
47 d’ cosec’ 0 :
g
dB = : 0 y sin@do (7.15) Fig 7.8 Magnetic field due to infinitely long conductor
Special Condition
since the angle g, changes from g to g, for P . . )
conductor XY-so0to obtain the magnetic field due to wire .. (Magnetic field ata distance d fromoneend of the
atP on integrating dB between hmits g tog, finite conductor.
Y
! ! A
=l I n6do = “L[-cosb];
Y YR drxd A L
B=th ! [cos 6 —cosd,] - 1“
T ard 1 2 .. (7.16)
Againfrom geometry ofthe fig 7.7, 8 = 90°— ¢ X P
(.6, +¢ =90°) . . d ) .
g, = 4, +90° Fig 7.9 Halfinfinite wire
Substituting € and &, inequation7.16. _ fo ; (sinO+sin g,)
md
au] 1 o o
= 22" [cos(90° — ¢ ) — cos(90° + 4,)]
d B:—'H‘]! Singef: 719
JI A . 4 d ’ - (7.19)
Sliingesing] o
Here ¢, and ¢, angles subtended by ends x and y Fromfig7.9 sing. = 70 1 Jd°

at PwithQ'P
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i I

B= —_—
Fromfjl.g?.9 ‘ ard m ‘ (7.20)
(ii) Magnetic field at a perpendicular distance
from one end of the infinite wire.

T
Forthis condition®, = B and ¢ = 0°;hencetrom
eqn. (7.17)

=" GnorsinZ
dxd 2

_ Ml

S ard . (7.21)

(111) Magnetic field due to a conductor of finite
length when the point P 1s situated at a perpnedicular

distance d fromits mid point-here ¢ =@, = ¢
]
o 3 =
14
X

Fig 7.10 Wire of tinite length
Fromeqn. (7.17)

= g(singé +sin @)

B= ’”0 = (2sing)

I .
= ’L—]dsmaﬁ .. (7.22)

27

(iv) At the axial position of point P; ¢ = 0 hence
B=0.

Example 7.1 : Find themagnetic field at the center

O of squareABCD of aside a, which carries a current |
A‘ B - T C

457 4%

Solution :
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The ends of each side makes an angle 45 at the
center. Hence magnitude of magnetic field issameforall
sides, from right hand palm rule the directionis also
same, and downwards, hence B, = B, = B, = B, and.
Total magnetic field at the center wll] bedtimes B

J75% BN )
B=——{(sing +sing,
i (sin g, +sing)

Ry — L

here, B, = B, —
T : 4z(al2)

(sin 43°+ s 45°)

e kAR er)
82 %107 T

¢}

|B|= Tesla

Example 7.2 : Find the net magnetic field at point
P due to two perpendicular current carriers, in two
situations givenin fig(A)and fig (B).

Solution :

Wire(l)
wire2) 3.9 p
A VAo
AN 1
Wirk
e () Iaa P Wirg (1) —»
Fig. (A) Fig. (B)

Infig(A), themagnetic fieldduetol is B, = Al

2ra

The direction of B, is perpendicular to page and
downwards. The magnetic field due to I, at P is

B,):ﬂo‘rz

; again the direction of B, is same as that of
2ra ‘

B, according torighthand rule. Hence the net field at Pis
. £ . . .
|B|=B +B, = i(!] +4,) the direction is to page
2T a

downwards.

Againfor fig (B) the magneticfield at P, dueto I is

7 o i .
B = % the direction of B, is perpendicular to page
Ta



upwards.

Mo 1,
2ra
direction of B, 1s perpendicular to the page downwards.

The magneticfield at P, duetol,is B, = the

hence the net magneticfield at P is

B:Bl—32
|B|: BI_B" :i(fl_fz)
T 2ra

Example 7.3 : Show the direction of magnetic
fields at point P, as @and ©.

o P
(B)

Solution : Infig. (A) the direction of 5 will be

downwards and given as @ . Infig (B) the direction of

R atPisupwards, and givenas ©.

7.5 Magnetic Field Due to a Current Carrying

Circular Coil

7.5.1 Magnetic Field at the Centre of Coil

To find the magnetic field at the center of a coil of
radius R, havinga current I, we consider the contribution
of smalllenght element &£ atcenter O,

Fig 7.11 Magnetic ficld at center of a coil
o ¢ isat adistanceR from the center.

(i1) 57 is perpnediculartoR;i.e 8 = 7/2.
hence from Biot and Savart's law

_ M, {6fsind

oh..
4z F-
16f .
_ M " sin E] ¥ =Rand =2
ar R\ 2 2
_ 168 723
=t ... (7.23)
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Since allthe length elements contribute in the same
direction. The net magnetic field is sumofall contributions

_ M

e = ~.0¢ (7
L Axi (7.24)
Bon= Pl orpy
TR
s w2 (7.25)
Talre 21{ 4 !{ . .
Ifthe coilshas N turns, the magnetic field at center1s
_ M N
Bow= =7 ... (7.26)
Dependance of B onradius of the coil.
1 t
B.;._,J, B-:-.m
Radius of coil /R —»
R —>»

Fig 7.12 Dependance of magnetic tield on radius of coil

Asitis evident from equation (7.26), hence the
graphbetween B and R 1s hyperbolic, and between B and
/R it 1sstraight line, as showninfig 7.12.

Special : We can tind B at the center of coil by

another method. Let the angle subtended by 8¢ at
center be da, then

Sor = € ot of y .
* radiusR R Orof= Roa
using this relation m equation (7.24) we get
_ T _ M7
dx I 2R

since Y 54 =RY.0a = R(2x) forwholeloop.

Magpnetic field at center due to one fourth of coil
willbeand

> /=Y Réa = in(zz): Rx%

#I) ]
2R

2 . (7.27)



c‘?{'/ Eﬁ. .2. -
\ o =1/4(27)

Fig 7.13 : Magnctic ficld duc to a scgment at centre

7.5.2 Magnetic Field Due to a Circular Current
Carrying Coil at an Axial Point

A coil of radius R with a current Tis considered in
Y - Z plane with center at origin O. Consider apoint P on
the axis ot'the coil (as X-axis). Consider a small length
element LA/—- g7 .

|6B| Cosat _,
4 B

Fmdxis

Fig 7.14 Magnetic field due to circular current
at axial point
The distance of § ¢ from Pisrand angle between
54 and 7is90"(i.e. 90%) . From Biot and Savart's law
the magnetic field at point P due to the above length
element §/ is

6}?:“—')]6%XF
L A
|6B| ﬁ]ér’sm%o

47 re
(s8¢ x7|=8¢5in6 and B=90°)

g 1&f

| 6)?_? |: 5
4 F-

. (7.28)

The direction of 8 will be always perpendicular to
the plane of 7 and § ¢ , according to right hand rule, as
shown by PO . Similarly the contribution due to
diametrically opposite length element L'M'= 5 ¢ will be -

, 1 8f

168" |= —ﬂ7 and the direction will be the

direction of P !. As shown in the diagram. Now

resolving, both 88PQ into components, as parallel and
perpendicular components, g§g.and B we see that
cosine components being equal and opposite cancels
each other, and the sine component, due to whole of coil
contribute to the magnetic field at axial point P. Hence

B= Z|63|sm0( ZM') smct

“’(l I Z

[ ] From the diagram for

o R
whole coil sino=—)
F

(- > 84= circumfrence of the coil =271R

_ﬁf(ZTﬁRE)
dn  F
, 1R’
gt 1CTR) 1) L (731)
4n r
from pythogorous theorem
=R 4x°
L
F=F +x7)?
= (R XY .. (7.32)

By putting valueorrineqn. (7.31)and eqn. (7.32)
_n 2 (rR*)

an (R - (7:33)
If'the coil has N number of turns
My 2/ (NTR)
w, NIR®
or .. (7.35)

= Z(RE +x2)3:‘3

Invector notation



W NIR
L2+ xT)

Due to the direction of current shownin the figure,
the direction of B will bein positivex direction.

(7.36)

Special Conditions-
(i) Magnetic field at the center of the coil

Inthis case x = 0 ; hence B will be maximum

NI
T AR 0)?
_ Mg NT _ A
B.i.ﬂ“ - T - anxi mim P (? 3 7)

(Itis same as obtained earlier)

(1) If the point P 1s at a large distance compared to
R,ie x>>R,

hence gr° isnegligible
Fant
 uNTR*  uyNIR?

= T (73
20+ x?)2 25" (7.38)

(1) Ifthe pomt Pisatx=R/2

Lo N 1 R?

e T

o NTR?  pyNIR®

2 372 2 32
2| g2 & 5| K
4 4

4 pg NI
B pi= 5 R ... (7.39)

Comparing withmagnetic field at center we get

x=Ri2 ~

8
—~_B..
55

The Variation of B with Distance on Axis

N~
X:

|
|
|
|
X R 0
2

Fig 7.15 Variation B duc to axial distance

The variation of B with distance is given by
equation (7.36) and x is shown by figure (7.15). Itis
evident from the figure that B is maximum at center. B
varies with distance on both sides, non-linearly and
becomes zero at X = . At a particular distance
x=+R/2 wegettwo points onthe curve P, and P,, at
thesepoints B «f-I2and linear. At these two points,
the sign ofthe slope ofthe curve changes from positive to
negative. Hence the points are called the points of
inflection.

. dB d’B

Atthese points — = constant; and —-=10;

dx dx”

The distance between these pointsisequal to R.

7.5.3 Comparision of Small Current Loop with a
Magnetic Dipole

The magnetic tield due to a circular coil at an axial
point is given by

W, 27 (NmR%)

CAn (R4 )
. el il -R2 - . -
Ifthe loop 1s small /& <<x; = negligible,

also A = aR° = isareaofthe current loop, we get

B Mo ZNA
dn x

l‘LI) 2M
or B=——
47 X’

where M =NI1A s the magneticmoment of current
loop. Thisexpression is exactly similar to the magnetic
field produced by a small bar magnet at the distance on
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its axis fromthe center of the magnet.

Hence a small current loop is equivalent to a bar
magnet (magnetic dipole).

7.5.4 Helmholtz Coils

Twoidentical coaxial coils held in vertical plane,
such that their center are at a distance equal to the radius
ofthe coil. These coils are called Helmholtz coils.

The plane otthe coilsis parallel to each other. The
coilsare connected in series, they produce exactly same
magnetic field. Fig 7.16. The coils are used to produce
uniform magnetic field, inthe area between the coils.

Fig 7.16 Helmholtz coils
The Magnetic Field Between the Space of Coils

The magnetic tield between the space ofthe coilsis
the vector sum of'the fields produced by the two coils.
The center of space is the area about the points of
inflection.

overall

T
wr - o (=2 -4
Magnetic Field Strenght B/Bg

(=]
n

(=]

Fig 7.17 Uniform magnctic ficld between the coils

The magnetic field at the center of spacei.e. point
ofinflection of both the coils, hence the magnetic field will
be
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B _ 4”‘1]N‘!
N (B.=R/2)
B -B, = du, N7
s
B=B +B,[- B and B, ]
=28,
u, NT w, N7
=2x———=0.716"—
53R
> I‘li]N‘!
=1.432
32 . (7.42)
B=1432B._ . (7.43)

Which means the uniform magnetic field in the
space between the coils is 1.432 times the maximum
magnetic tield produced at the center of each coil.

7.5.5 The Direction of Magnetic Field Due to
Straight Current

(1) The form of magnetic field dueto stright current
can be understood by the following experiment -

Consider a straight current carryiing wire PQ
passing through a cardboard ABCD, whose plane is
perpendicular to the wire. Put some iron fillings on the
cardborad, and establisha current in the wire. By taping
the card board you will notice the iron filling to align like
circular rings around the wire, as shownin the figure.

Fig 7.18 Magnetic ficld duc to straight currcent



(2) Magnetic field in a current carrying coil. We
look at the tace of the coil. If'the direction ot current is
N - wise (anti clock wise) then the face will behave like
north pole ofthe magnet. And ifthe currentinthe faceis
clock wise 1.e S-wise, the tace (end) will behave like
south pole.

Fig 7.19 Deciding the pole of current coil

Example 7.3 : Acircular coil of radius 10 cm, has
100 tightly wound turns. Find the magnetic tield at the
center of loop ifthe current inthe coil is 1A.

Solution : givenR=10cm=0.1m

N = 100, I=1A,

Bt NT _ Az x 1077 x100x 1
2R 2x0.1

=27x107'T

=628 107T

Example 7.4 : A helium nucleus revolvesina
circular pathofradius 0.8 m, in 2 s. Find the magnetic field
at the center of the circle.

Solution : The charge on He nucleusis q=+2e.
The magnetic tield at the center of circle s

potol

2r
_ 2e
{

I

t = time taken in one revolution

o 1 20)_ e

2rt Ft

_4rx10 7 x1.6x10 7
08x2

=1256x10"*T

Example 7.5 : Find the magnetic field at point O in
the givenfigure.

B=H, +E

o QLT

+ B

Solution :Magnetic tield at O is dueto the current
inPQ, QMR and RS. The contribution of PQ is

~ s M T
| BPQ |:| BRS |: ‘

. downwards

Contribution of RS is up-wards both cancel each
other, being of same magnitude.

The only contribution is due to semi circle QMR,
whichis

=5 L e, f
| B |:| B()_.\,:R |: _[;[—]J Wthh iS upwaTdS,
- 2\ 2r

Example 7.6 : At what distance fromthe center of
the coil of radius R the magnetic tield will be 1/27 ofthe
field at center.

Solution : Magnetic field at the axis of'a circular
current carrying coil 1s ;
U, NIF
2(R2 + xﬁ) :2

Magnetic field at center
B NI
TO2R
given-
B=—5..
27
yNIR 1 g NT
or P —

AR +x°Y? 27 2R



B 11
O Wy PR
or (R*+xY*=3R =Ry
1
o (R®1¥*) =3R
ar R+x* =91
or x*=8 R*?
or x=22R

Example 7.7 : In Helm holtz coils, each coil has
20turns and radius 10 cm. Ifthe current in the coil is 0.1
A, tind the magnetic tield in area between the coils.

Solution : Magnetic field inthe required areais
8 M NT NT
NG
given-N =25, R=10ecm=0.1m,7=0.1A
8 X
55

=225x10°T

Arx10" ><25><O.11,,
0.1

B=

Example 7.8 : Awire ofinfinite lengthis curved as
shown in thefigure. Ifthe currentis 1, then findthe angle,
for which the magnetic field at center O1s zero.

Solution :

Thetotal magnetic field at centeris
B B +B ,+B

&

#{I ‘T

Arr (upwards)

W
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4
At (upwards)

T

If wetake + ve signfor an up wards magnetic field
and - ve sign for downwards magnetic field then -

J7
By, = axr’ X (length of arc bed)
_ M d
By = azr> (27—0)r (downwards)

Total magnetic field at O is

| |_ }ulj ] }u(’_l (2 6) + #{I ‘T
4zr dar
ol ol ooy d _ 0
4y 473'?' dzr
As givenin question

4
L |1-2x-H+1|=0
4717?[ @7-6)+ ]

2-27-6)=0
6=27-2=2(r—-Nrad.
7.6 Motion of a Charge in Magnetic Field

Ifacharge ¢ ismovingin both electric field E and
magnetic field 3, then the net force on the praticle is

[F,=4F; F, =q0/xB)]

hence FF=F +F, =q[E+VxB] ...(744)

This forcewas given by H A. Lorentz, and hence
the name, Lorentz force,

The magneticforce on a moving chargeis griven by

:q(ﬁxf)’):qusinHﬁ .. (7.45)

£, |= gvBsing .. (7.46)

The direction of force is given by #, which s aunit
vector perpendicular to the plane of v & 5 according to
right hand rule. If the charge 15 negative, the force is

opposite to that on +ve charge.



Special Cases :

(7.5.1) If the charge is stationary; |V |=0;
| F|= 0, only a moving charge experiences magnetic
force. 7.5.2.If @ = 0° or 180° i.e. the chargeis moving
parallel or antiparallel to the ({field,;
sm@ =0 | F |= 0, hencee the charge continue to move in
staight line.

7. g

*

y

Fig 7.20 (A) Froce on charge in magnetic field
Fig 7.20 (B) Motion of charge parallel to B
7.6.1 Motion of Charge in Perpendicular Magnetic
Field

If y and 5 are mutualy perpendicular, then
8 =90". the force on the charge will be maximum and
equal to F =¢vRBsin90°; where is to the planc of
¥ andg

F=qB=1_ .. (7.47)

The direction of this force is shown in Z directionin
fig7.21 (A)hence the charge will have a circular motion
in X-Z plame. Infig 7.21 (B). The g isperpendicularly
down-wardstothe page.

B

—_—
Vv

e

™y

=

“

<)

Fig 7.21 (A) Force on a charge in magnetic field
Fig 7.21 (B) Motion of charge in magnetic field
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Ifthe charged particle has a mass m, and moving
on acircular path of radis #; then the magnetic force will
act as centripetal force, hence

s

=qvB
R
L hiiak . P
P_Q_B_Q_B ... (7.48)

If kinetic energy of particle is £, than

P=2mk,

The radius of circular pathis

e ZmkE,
gb

It means that radius of circular pathis proportional
to the linear momentum of the particle. Since ris fv, will
be constant. It menas the works done by this force, on
particleis zero.

(749

The circular motion of a charged particle behave
like acurrentloop, and producesits magnetic field which
affect the existing magnetic field.

The time period 7ofthis circularmotionis

7 2mam
4B ... (7.50)
and the frequency
| g
vV=—=— :
Y (75D
The angular frequency
o =2rv
1]
=L (7.5

m

From equation (7.50)1t is clear that time period T
and frequencyw or visindependent of speed and kinetic
energy /.. Itisalsoindependent of momentum.

This important concept is used in the design of
cyclotron. T depends on B and specitic charge ot the
particleq/m. T oc 1/B and ¥ ccm/q .

7.6.2 Motion of charged particle when 0° < 8 < 90°
Ifthe veloity ofthe particle makes an angle & with



R » thenvelocity vhas, two components,v, andv, The
component v, =vcos@ isinthe direction of B, and
F_— 0. The particle will move in a straight line with
constant velocity. The other component v =vsing
make theparticle to have auniform circular motion.

%
4

Fig 7.22 (A)Force onacharge when ¢* « g < 90°

Fig 7.22 {B) Helical motion of the particle

The combination of these two motionsis a helical
motion, which is shown in fig 7.22(B). Radius of the
helical pathis

;e mv,  mvsing
4B 4B ... {7.53)
andtimeperiod 7 = 27 = 2rm (754
v g

The linear distance, between the consecutive
revohutions is called pitch, whichis

2 m
y=v,T7 (vcosd) q_B

_ 2zmvcosd .
J 7(;8 .. (7.35A)
0 - 2t 7.55B
r y and ... (7.55B)

In the polar region, for example in Northern
Canada and Alaska, sometimes a spectacular pattern of
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coloured light polar aura 1s seen, which is called
AURORA BOREALIS scientists explaineditasa
phenomem due to motion of charged particles from
cosmicraysinthe earth's magnetic field, whichis strong at
poles.

Example 7.8 : An electron of energy 10el71s
moving ona circular path in perpendicular magnetic field
B = 10"T. Find the velocity of electron and radius of
circular path,

r

. l ke
Solution : £ ZEmv‘ =10e}

=10x1.6x10 7./

v= 2L m

v=2x10x1.6x10 ¥ x9.1x10 !
1eV=16x10". m=91x10"kg

v=188x10"m/s
radius ofcircular path

vy mv

r= q_B ~eg (rg=e=16x] 07"¢)

_ 9.1x10 'x1.88x10°
1.6x107" %107
r=107m

Example 7.9 : Abeam of proton with velocity 4 x
10°m/s 1s moving in a uniform magnetic field 0.3 T atan
angle 60" with B. Find (1) radius of the path and (u1) pitch.

Solution : The pathis helical hence

v, =veosO =4x10’ cos 60°
=4x10° ><l
2

Vv, = 2x10°m/ s

5

v, =vsing =4x10" x

=2x/§x10§mf’sec

;o my|
qRB




C(1.67x10 Tyx(2x~3 x10%)
1.6x10 ¥x03

F=12x10""m
. o 2xm
(1) Y=l =y x——

B 2x10°x2x3.14%1.67x1077
1.6x10 ¥ x0.3

The pitch =43.7x10 *m=43.7mm

Example 7.10 : Anelectronis moving with speed
3 x 107 m/s in a perpendicular unitorm magneic field
B =6x10"T. Find (1) radius of path (i1) frequency (1i1)
energy in KeV. (m_ =9x10kg:e=1.6x10"C)
(1eV=1.6x10"'°])

Comv . 9x10 ' x3x10

ion: F=—= :
Solution: /= = T 610" x6 %10~

=281 x10"m
=28x10*m=28 cm

_gB
frequency V=3 m

_ 1.6x10 ¥ x6x10 *
2x3.14x90x107"

=17x10°Hz=17 MHz

1 1 N
Eo=—m® =—x9x10 1 x(3x107)
ko2 2 & )

:%x9><10 xox10"

=405%x107"" J

_405x10 " ol
1.6x107"
=253 x 10%V =2.53 KeV
7.7 Cyclotron

Itisan electromagnetic device, used to accelarate,
massive + ve /y charged particles like ¢ — particles

proton, deutron, at high velocities.

It was invented by E.O. Lawrance and M.S.
Livingston, toinvestigate the structure of nucleus( 1934).

7.7.1 Principle of Cyclotron

(1) The charged particles are compelled to move n
a perpendicular magnetic field, with constant freqeucny/
time period.

(ii) The electric potential (AC potential of high
frequency) provide energy twice in one cycle.

7.7.2 Construction

Two hollow, D shaped metalic containers called
"Dees" are placed between poles ot magnet suchthat Bis
perpendicular to "Dees". These "Dess" are placed in
vaccum chamber to avoid collision of charged particles
with air molecules.

gB
™ ™ V=
AnAC source of cyclotron frequency 2

is connected to "Dees".

Iigh frequency
A source

I"ath of

I3 cawn of positive charges
accelerated protons

v Turget Nucleus

|||| S |I‘

Fig 7.23 Cyclotron

allr 1ime T2

Fig7.24 AC source at "Dced"

al lime



Working of Cyclotron-

The source ofions/particles (to be accelarated ) is
placed at the center of the circle made by the two "Dees".
Assoon asthe particleis ejected from the source by its
ownvelocty, it enters perpendicular magnetic field and
starts circular motion inside Dee. After completing half
circlein D, its enters the space between D and D,
whereitis exposed to electric field ofpotenhal VoIt
experiences a kick and gains energy ¢V’ The particle
enters D_with increased velocity and moves inlarger half
circlein D When the particleleaves D, and enters the
space between Dees, the polarity of the applied voltageis
reversed. The particle again gains energy ¢} and pre-
enters D, withincreased velocity. The particle gain an
energy 2q} from electric field in one revolution.

Itthe particle had N revolutions before coming out
of cyclotron its energy is increased by 2N¢gl, which
appearsas kinetic energy ofthe particle.

Mathematical Analysis-

Let m, g anvbethe mass, charge and the velocity
of the charged particle. When particle enters a
perpendicular magnetic field B,

AV _ qu
F
_mv_p
BB (7.57)
(p=mv=)
2 2
7= il = o (here v is velosity) . . . (7.58)
v gh
r_am 1 g8 .
2 4B and v= T am A{7.59)

which is called cyclotron frequency. It is
independent of v and ». Note that the frequency of'the
applied AC voltage to "Dees" is equal to cyclotron

frequency V= then the cyclotronis said to

T 27zm
be in condition ofresonance, And the particle gains
maximum energy from the system.

B
@ :27;1qu_

" (7.61)
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]. el
Kinetic energy of'the particleis £ = rkad

1 oo Br
=—m q — ( 757 1J:q—)
2 m m
. 1 g B )
g =-1 (7.62)
2 m

When the particle is about to come out from
cyclotron, 7 —#2; Thekinetic energy will be maximum

7B R

m

1
o .. (763
i 2 ( )

If the particle had completed N resovtions before
coming out, the energy obtained from electric field is
L=(2qV)N . (7.64)

Since energy is changed into kinetic energy, we get

1 ¢RB’R*
(2g7)N =1
2 m
_ 1 gB*R?
:Z oy . (7.65)

7.7.4 Limitations of Cyclotron

(i) It can't accelarate light particles like electrons,
because to obtain required kinetic energy, we haveto
provide very high velocity to electrons. At such relativistic
velocity, the mass of electron no more remain constant,
and the cyclotron frequency changes, which disturbs the
resonance of the cyclotron. To accelarate electrons,
another device called Betatronis used.

(i1) Neutral particles like neutrons can not be
accelarated by cyclotron.

Uses of Cyclotron
(1)  Theparticles accelarated by cyclotron are used to
study the structure of neucleus.

() The accelarated ions are impregnated by
bombarding into another materials to improve
quality or synthesis of new materials.

(i) To obtainnew radio active materials, which has

applications in several tields like research and
medical sciences.



Example 7.11 : The cyclotron trequency is
10MHz. To accelarate protons, what will be the value of
magnetic tield? Radius of Deesis 60 cm. also find the
maximum kinetic energy of accelate protorns inMeV.

{(e=16x10 "¢, m = 1.57 x 10 kg, 1
MeV = 1.6 x 1071 5))
Solution : The cyclotronfr sv=1
olution : The cyclotron freugency is Sam
2amv
hence 5=
q
~ 2x3.14x1.67x10 w10’
1.ox107"
B=066T

The maximum velocity of protons is

gBr _1.6x10 " x0.66x0.60
1.67x107

V=
m

=378 x 10'm/s

The maximum kinetic energy

1

, 167x10 % x(3.78x107

L‘ ‘A.
g 1.6x107"

=7 MeV

Example 7.12 : Discuss the path of a charge
(charged particle) entering a uniform magnetic field.

Solution : Case (i) Ifthe particle enters the field,
parallel or anti parallelto the field, then /- — o, The path
of'the particleis a straight line.

Case (ii) When the particle enters the field
perpendicularly & = 0% thenthe force 7 =gJ’Bwillbe
normal to V. The path willbea circle. It will move clock
or anticlock wise according to direction of B.

Case (iii) When the particle enters magnetic field at
anangle &% 0° 180, 90. The path of the particle will be
helical.

P X%
C W (clockwise}

E E E E

A C W (ant clockwise)

E E E

E E E

=
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7.8 Force on Current Carrying Conductor in
Magnetic Field

When acurrent carrying conductor is placed ina
uniform magnetic field, the charge carriers, (the tree
electrons) moving with drift velocity v, experience a
force F = g(v, x B) . Hence, there will be a net force
onthe conductor.

I:‘zl(fz‘xB)

L3

.
L

Nk

I» 7 x

L J

Y

Y

k J

L J

Fig 7.25 A current carricr in magnectic ficld

Asin fig 7.25 conductor of cross section A,
number of free electrons per unit velume 'n’ carries a
current 1. Its ¢ length Zis placed in uniform magnetic
field B at an angle & Thetotal amount of charge of free
dectrons willbe g —nedl Sincethe velocity ofthis charge
is v, , thenet force on the conductor will be

| I |=gv,Bsind

=neAfv, Bsind (g =nedfr)

= (neAv,) Bsin@ (L =nedv,)
| F|=1fBsiné .. {7.66)
F=I(/xB) . .(7.67)

Here the direction of # is inthe direction of
current. Direction ofthe torce will be perpendicular to the
planeof ¢ and A , according to right hand rule.

7.8.1 Direction of Force on a Current Carrying
Conductor in Magnetic Field

For this, two laws are inuse -
7.8.1.1 Fleming's Left Hand Rule

Make thumb, index finger and middle finger of yoar
left hand perpendicular to each other. Ifindex finger
indicates the direction of B (magneticfield) middle finger,
the direction of I; then the thumbs will indicate the



direction of force on the conductor.

Fig 7.26 Fleming's left hand rule
7.8.1.2 Right Hand Palm Rule

If we spread our right hand in suh away that the
finger are inthe direction of magnetic tield B, the thumb is
in the direction of I, then the force onthe conductor will
be upward and perpendicular to the palm.

Fig 7.27 Right hand palm rule

7.9 Magnetic Force Between Two Parallel Current
Carrying Conductors

Let two parallel conductors carrying currents I
and I, arein the plane of the paper at a distance d in am‘
vacuum. B3 ,and B , are themagnetic tields produced by
currents and L at the location of IT and Iconductor.
The force onthe a’f' ,length of the first conductor carrying
currenr I inmagnetic field B ,willbe -

]4

direction shown iffig (7.29) here 5, = ad rd

S15, =1, (55-:2 xH,)

|62, = 1,|54,| |8 [sin 90°

‘aﬁm| =1,51,B,

oy 1“[:!1125’{{2
oFy|l=—" . (7.69
‘ . 2rd (7.69)

similarly the force onthelengthd/, dueto B, and /,
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814, = 1,(64,x B,)

(813, |= 1, |54, |B.|sin90°

= 1,84,

#I)I ]
2

hence |5J-’".{~|— 251, .. (7.70)
(1) Ifthe direction of current in the two conductors

1s same, they experience a force of attaction.

(2) Ifthe direction of current in the two conductors
1s opposite to each other, they will experience a force of
repulsion (Fig. 7.28).

S
Fig 7.28 Forec between two parallel currents

The direction of both forcesis as per right hand
palmrule, and shown inthe figure 7.28 These forces are

actionreaction pairs, 5/, and 8/, , and are opposite

indirection.

Fig 7.29 Force between two parallel currents
The force perunitlength ofthe conductorsis given
AN

N/
bY |57 |0k 2zd

. (7.72)

7.9.1 Defination of Standard Ampere in S.1. Units
Fromequation 7.72, the torce per unit length ontwo

. OF ,u(,}'lfg

N/
parallel currents in air/vacuum, is —— S 2xd .



If we put the condition that/, =7, =1A and

L 8F o x1Ixl 4xx10’
d=1m mnair —= — =
of 27 %1 27
=2x10 " N/m

From the above conditionwe candefine 1A 1A s
that current maintained intwo parallel conductors placed
at a distance of Imin air, if it exerts a force per unit
length equal to 2x107" N/m then the current in each
conductoris 1 A, The latest definition of Ampere in S1
units effective from 20-5-2019 can be searched at
{(http://physics.nist.gov).

7.10 Force and Torque on a Rectangular Current
Loop in Uniform Magnetic Field

B

¥

D fE
Fig 7.30 Torquc on a current loop in magnetic ficld

Consider rectangular current loop ABCD of length
land breadthb and area A. The current intheloopisI. It
is placed in a uniform magnetic field B. To find net torce
on the coil, we consider the force on each side of
rectangle and just sumup. At any instant ifthe area vector

A makes an angle & with B , the force on side BC is

F =T (b X f)’) , the directionis upward in the plane of

the paper. Similarly the force !«I‘z on DA is
I = ](5 " 3) , the directionis downward inthe plane

of the paper. They are equal, opposite and collinear
hence get cancelled. The force on side CD and AB

is |I* ‘ =1£Bsin90" = 148 againtheir sumis zero. But
they are not colinear, hence they produce atorque on the

coil. Net force ontheloopis 4 = 11 Jm."f"2 +_f'; +J_.','j4 =0
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Calculation of Torque

Asshown in thefigure 7.31, the forces /-, and /<,
are equal and opposite. They act ontwo ditterent points,
hence produceatorque 7 .

7 = Force x perpendicular distance between
forces

r=(/¢B)(bsind)

=1(#h)Bsind
r=14Bsiné . (7.73)
It'the loop has number of N turns
7=NIABsing A7)
T =MBsinf . A(7.75)
Here Af = NJA . (7.76)
1s the magnetic moment of the current loop.
Invectorform 7 —Afx B . A7.77)
or £ = NIAx B . A{7.78)

Y

Y

[
o=

Fig 7.31 Torque ona current loop

Note - When we consider the angle between the
plane of the cotl and as the equation (7.75) will be

Thedirectionof 7 is perpendicularto the plane of

A and B asperright hand screw rule.

Comparing 7 on an electric dipole in uniform
electric field , we seethatitis (r = PI7sin 6’)
Special Conditions

(i)  Whenthe plane of the coilis perpendicularto 5 |



ie.8=0" 180%nd ox =90" fromeq.7.75, the

[ MBsin@ =0 :(minimum),

()  When the plane of the coil is parallel to1.e

8 =90" ; @ =0" thetorque will be maximum

T=1, =MBsin90" = MB . A7.79)

Electric motor and moving coil meters work on this
principle.
Example 7.13 : Find the magnetic field 5 at

points P, Qand R, duetotwo parallel currentsas givenin
diagram.

| 2
20 An v30A
Moem|i0emQ  [l0emR
«— 2.0 cm —

Solution : Field £ dueto astraight current I

- - - _ #I)I
B=10
d at distancei1s given by ord

ApointPthenet B, =8, ~ B,

_ H(20)  4,(30)

27(0.1) 27(0.3)
1A-T
= Ha1200-100]=2221Y 100
27 27
= 241071

of B isgiven by as perpendicular to page upwards.
(i) At point OJ; net BQ’ = B_@. + B_Q; sinceboth are

insame direction.

5 _ #,(20) . 1, (30)
¢ 2x(0.1) 27x(0.1)

— £ 1200+300]
27

=2x107" x500
=10x1077' =10""7

givenby.e. to page downwards.

(i) Similarly on point R. The net E‘: = JETHJ + E

J7 O S
1 2

_m[30 20
27z 01 03

=2x10 "% 2.33x10°
—466x10°T

The direction will to page upwards.

Example 7.14 : A 10m wire carries a current of
10A. Itisplaced at, with B. Find force perunit on the

wire,if B=55x107"7 .

Solution : Theforceon whole wire isgiven by
F=1(ixF)
The for perunitlengthis;
|| =1¢Bsin6
[=104, B=50x10"T
£=10m d9T g =30°

‘F‘lexleleO 4 % 8in 30°

=10x10x5x107" X%NT

=250x10 ' N
A 4
‘){—;‘:%:ZSXIO_L1 =0.025N/m

7.11 Galvanometer

In previous chapters, we have studied about the



physical quantities like electric current and potential. In
this section we will study about the devices that measure
these quantities.

Galvanometer 1s a device used to detect current in
acircuit or potential ditference between two points. It can
be converted into a voltmeter and Ammeter. Itis based
onthe principle of torque on a current in magnetic tield.
They are of two types - (1) Moving coil (1) Moving
magnet type.

In this section we will study only moving coil type
galvanometer, which are again of two types -

(1) Suspended coil glavanometer (i1) Pivoted coil
galvanometer. Both types are based on same principle,
but differn their construction and working,

7.11.1.1 Suspended Coil Galvanometer

As shown inthe diagram 7.32, a rectangular or
circular coil ot insulated copper wire wounded over an
alluminium frame, is suspended by a phospher bronze
fiber between the poles of a horse shoe magnet. The
alluminium frame of'the coil is free to rotate about a fixed
ironcore. One end of the coil is connected to terminal T
via phospher bronzetiber and the otherto terminal T, via
an elastic spring.

T ‘Tortion (Tap

—— Phospher Brooze

Mirror ~

Coil

\

Core

——3
\QT

2

Fig 7.32 Suspended coil galvanometer
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Principle- Itisbased onte principle of, torque on
a current loop in magnetic field. This torque deflect
(rotate) the coil, which is measured on a suitable scale.

Acoil of N turns and area A, having current |
experiencesatorque 7, = NAIBsin & inmagnetic field
B. To avied the monlinearity of, the poles of the magnet
aremade concavein shape, so that the field B is always
radial and 8 =90 . So 7, = NAIB  which has a
linear relation with L.

The role of phospher bronze fiberisto produce a
counter torque (Restoring Torque) due toits tortion; 50
that the coil comes in equilibrium after a rotation of 6 .
@ is measured by lamp and scale arrangement, for that,
a small mirror is attached (fixed) to phaspher bronze
fiber.

Iftherestoring torque per degree due to phospher
bronze fiberis C, then the restoring torque for deflection

gwillbe 7, =C¢ ...(7.80)
Inequilibrum 7., =7,
or NAIB=C¢
L (c ] ;
VAR .. (7.81)
I =ke ...(7.82)
here = ¢, lled reducti
ere K= is a constant called reduction

factor ofthe galvanometer. Hence 7 =« ¢

7.11.1.2 Radial Field and Role of Iron Core

As shown in the fig 7.33, when the poles of the
magnet are made concave in shape, then magnetic field is

always radical and perpendicular to area vector 4 ofthe

coil, the torqueis maximum. 7., = NAIB Thesoftiron

coreintensifies the effective magnetic field B, sothat kis
reduced and sensitivity of the galvanometerisincreased.



iron corc

Fig 7.33 Radical magnctic ficld
7.11.1.3 Working

Inthis device the deflection s measured using lamp
and scale arrangement. Ifthe perpendicular distance of
mirror from scaleis D, and deflection of light spot on

d
— and for small deflection

scale is d. tan(2¢) D

o o
0%

2¢, because deflection of mirror by ¢, deflects the
reflected ray by angle 2d)and 7 « o o« ¢

(tanx ~x), 2¢= . (Here we have taken

7.11.1.4 Sensititvity of Galvanometer

If a small current causes large deflection in
galvanometer it 1s said to be more sensitive. The
sensitivity is inverse of figure of merit/reduction factor

&
"—[m]‘ﬁ—"@*

Hence, the current sensitivity

Fromequ. 7.81

¢ _ ¢ _NAB 1

YL Ok

Toincreases sensitivity we can increase N, B and
A to certain practical imit. C canbedecreased by taking
the fiber of phospher bronze as long and thin. Againto
practical limit for ruggedness of galvanometer.

.. (7.84)

Voltage Sensitvity - It is defined as detlection

v

If'the resistance of galvanometer coil is G, and

pervoltin galvanometer V', =

currentisl; " = {(z and

A
TG
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y, =25 7.86
TG ...{(7.86)
Fromequation 7.84 and 7.86
r LS:-
Ve=— . (7.87)
G

7.11.2 Figure of Merit of Galvanometer

It is detined as the current required for unit
deflectionin galvanometer. Hence it isinverse of current
sensitivity

X:i:

K

e |

NAR
7.11.3 Pivoted Coil Galvanometer

All the arrangements of coil, frame, iron core and
concave shape of magnetic poles 1s same as that in
suspended coil galvanometer, except that its coil 1s
pivoted on two sharp point (instead of suspension) so that
itis free to rotate. Coilis connected to terminals T and
T, viatwo hair springs, which providerestoring torque for
equlibrium. Avery light indicator needle of aluminimumis
attached to the coil. The other end ofthe indicator needle
gives deflection on agraduated dial. Such galvanolmeter
18 also called weston galvanometer. In spite of'its less
sensitivity compared to suspended cotl galvanometer, 1t is
most used because of convinience inuse.

...(7.88)

g Sping

Pivat

Fig 7.34 Pivoted coil galvanometer



Use of Shunt

Galvanometer gets damaged, due to excessive
current. Acopper wire (shunt) is connected between the
terminals T, and T, which by passesthe extra current and
protect the galvanometer from damage. Fig 7.35 shows
ashunted galvanometer.

7 A B 7
_'__'[_©_'__'—

Iy 4

Fig 7.35 Shunted galvanometer

If G and R are resistances of galvanometer and
shunt respectively and 7, 7 and/ are the main current,
current in galvanometer and current in shunt, Then

1,G =15 (potential between A& B is same for
both)

I, G
!L’ LST
—+1==+1
I,
I.+I, G+S§
!8 LST
I G+S
7S (- T=1,+1)
. . I _ LST I
which gives : lorg ... (7.89)

Galvanometers of required range are fabricated
using above relation.

7.11.4 Ammeter

Anammeter is a current measuring device, so it is
always connected inseries inthe circuit. Resistance ofan
ideal ammeter should be zero, so that it does not eftect
the current inthe circuit, (to be measured). But a practical
ammeter has certain non-zero resistance (1.e. resistance
otcoil).

To make the effective resistance of the
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galvanometer as low as possible, a very low resistance s
connected between the terminals T and T, of the
galvanometer it is called shunt. The value of shunt
resistance s determined as per requirement of the range.

As shown in the fig 7.36, a shunt is connected
between its terminals T, and T, whose value is

determined by therelation / (7 = (f -1, )S

!g(}
(1_12)

Here [ =range of a ammeter; Ig=current for full
scale deflection.

§= ...(7.90)

. (7.91)
The effective resistance of the ammeteris given by
€AY
G+S

A

.. .(7.92) (law of parallel combination)

Since § << (3

R, O—S e

@
The converted ammeter is first calibrated. [tis zero
18 marked to extremeleft on the dial.

S ...{(7.93)

N

Pivot

%wr

@ Spring

shunt

Fig 7.36 Conversion of galvanometer into ammeter
7.11.5 Voltmeter

It is a device to measure potential differnce



between two points. A volt meter is always connected in
parallel to the points. A voltmeter should not draw any
current for it self (not to change the potential ditference to
be measure).

An ideal voltmeter should have infinite resistance.
But an infinite resistance give I=0, and coil of voltmeter
will not rotate. So for a particle moving coil galvanometer,
it should as highresistance as possible (as perits range).

To convert a galvanometer to a voltmeter a very
high resistance 1s connected in series with galvanometer.

Fig 7.37 Conscrsion of a gal vanomcter to a voltmeter

As per diagram the potential across the series
combinaionof G and R (applied potential)is -

V=I,(Ry+G)

R, +G=2
R =L ¢

H !g ol (?94)
R, =G+R, .. .(7.95)
R, >>C

Since R, >> (5. The effective resistance of the

combination 1, = R, .
Here V =range of voltmeter; G =resistance of
galvanometer coil

and Ig = Current for full scale deflection of
galvanometer

The practical voltmeter discussed above s unable
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to meaure potential ditference very accuratly. For this we
use potentiometer.

Example 7.15 : Adeflection for certain current is
50. Whenitis short circuited by areistance of 1202 | the
deflection reduces to 10. Find resistance of
galvanometer,

Solution : For shunted galvanometer / « ¢

L _10_1
7 50 5
r-1
€75

(-1,)8=1G
(1-1/5)x12=(1/5)G

(r=4x12=48Q

Example 7.16 : For a galvanometer the current
tor full scale deflectionis SmA, and resistance of its coil is
99 2. Find the value of required resistance to convert it
to (i) Ammeter of range 5 A. (i1) Volt meter of range 5V.

Solution :

=54

Given 7, =5mA | (=990,

(i) convert to anammeter the value of shunt

¢ LG 5407

0= - X99
[-1, 5-005

5x10°
4.95

x99 =010

hence aresistance of 0.1 3 isto be connected in
parallel to galvanometer.

(1) To convert to avolt meter

4

R”:Z_G

R, = ——99 _ 1000
B gt 00 =1000-99
R, =901

be connected in series with galvanometer.



7.12 Ampere's Circuital Law

Just as Gauss's law in electrostatics help in tackling
the problems regarding % due to a symetrical charge
distributions, where Coulomb's law can't; thereis a law
called Ampere's law, whichtackles problems regarding

B dueto symetric currents where Biot and Savarts law

cant.

According tothislaw;

$B-di=p, 31 ... (7.96)

It states that the line integral of magnetic field
produced by electric currents in air/vacuum, over a
closed path (loop) enclosing an area, is equal to the
product of £z and alzebric sum of the currents passing

through that area. <ﬁ B-d f isalso called circulation of

magnetic field.

LI,
I 1 -
SV
{
e - d_ - -
L
(b
1 ol
R
{

(e)
Fig 7.38 Ampere's Law

Here alzebric sum of currents >,/ =/ , means |

can be taken as +ve ore -ve; according to one
convention, If integration is taken in anticlock-wise
direction, the upward currents are taken as +ve; and

vice-versa. For fig (a) Xi=7 ; ftor fig (b)
Si=1+1,+(-1,); for fig (c) Zi=0; For

Cj) B-di=0 ;it does not mean that thereis no magnetic
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field it states that the loop choosen, contains no currents.

B =y H here His magnetizing tield or magnetic
intensity.

Theampere's lawinterms His

qg H-di=Yi andi.e. circulation of His called
mmt (magnetio motive force).

Ampere's law 1ssame as Biot and Savarts law and
both can be deduced from each other. While tackling
problems, the Ampere'sloop is selected in such a way
that -

(1) B1s same on each part of the loop.
(i) B andd’
B-d{=Bd¢

should be parallel so that

(iii) B and ¢ should besothat 5.47 =0

7.12.1 Magnetic Field Due to Infinity Long
Current

The magnetic field produced by current [ in
conductor CD isin the form of concentric loops around
the conductor, the conductoris the center ofthese loops.
Theloops are all along the length of the conductor.

Fig 7.39 Magnetic ficld duc to infinitly long wirc

To tind magnetic field at point Pat a distance »from
the conductor, we construct a circular Apmere loop

taking wire as center. Now take a small element (7 7 and

find (_f}b‘-d? = 1, 2.7 along the loop. From Ampere's



law
CﬁB‘dl&:;q] 2
gf)Bd.E" cosf =, 2.0
d=0", cosfd =1
Yi=T
CﬁBdf = u,d
Bcﬁdf = u]
$dr=t=2zr
B(27n*) =7
hence B = f'—ii ...{7.98)

The resultis same as that obtained earlier by using
Biot and Savart's law and long mathematical process.

The magnetic field in thiscaseis Boc / and Bx [ /F.

e

Ll A

Fig 7.40 Variation of B with distancer

7.12.2 Magnetic field due to current carrying long
cylendical conductor

Themagnetic field due to the solid cylinder in which
current lisuniformly distributed through whole cross
section A, will bein the from of concentric circles, as the
cylinderat thecenter. The loops of magnetic field lines will
be there thoughout the whole length of cylinder -

Fig 7.41 B duc to cylindrical conductor
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(1) To find magnetic field B at apoint P, ata
distance ¥, we construct a circular Ampere's loop of
radius #, passing through point P. From Ampere's law

@B{m! ‘d? = /ui] ZI
(J.DBde cost =y, >/
6=0"cosf=1.2i=1

(J.)Bdf =,

(_f)df: (2nr)

B 2xzF

£

= 1

_ Ml

T PN . 9
2y (7.99)

, 1
Here again 5., , asexpected.

(i1) To tind B at the surface of the consuctor;

r = I . bysameconsideration we obtain

#I) ]

R ...(7.100)

hi

(111) To tind B ata point inside the cylinder; i.e.
r<R; The same procdureis again adopted but right hand
side of the Ampere's law should be taken care of. From
Ampere'slaw

(J.)Bd? =, 21
(j.)Bmdf cosf =, 21

6=0° cosf=1

We consider an Ampersloop passing through that

point, insidethe cylinder X7 isthetotal currenr passing

thoughthe area ot Ampersloop. Fromunitary method -
Y

1
2i=——-7r°
Tl

I
Yi=—
e




7.13 Solenoid

§ Bt = ’”')‘r r - - -
i A tightly wounded coil of insulated copper wire
over ainsulator pipe, where the turns are very close to
2 (2 ) 1 dr’ each otheris called solenoid.
in ar)= 2
e
vy 7l
B _ nf’lilj i
" \27R)R
p
hence Bfn:BsE .. {7.101)

Fig 7.44 Magnetic field due to two loops

B, = r and at center (undetined) The plane of each circular loop of wire may be

considered perpendicular to the axis of solenoid. To
know about the magnetic field produced by solenoid we
consider two current loops (1) and (2) and two points P
. and Q inside and outside solenoid. Fig 7.44. The

f B «xr/ . o . . e
n NGB, = constribution of both current loops at point P (inside) 1s in
same direction, where as it is in opposite direction at Q
: . (point outside). Super position of magnetic field dueto all
Y =R ¥ the loop gives B =0 outside the solenoid; and 5, as
——3 Distance fiom axis strong and uniform, inside the solenoid for an ideal

Fig 7.43 Variation of B for cvlinder with » solenoid.

A

(1v) Ifthe conductoris a pipe (hollow cylinder) the
field inside at all points is zero.

Example 7.17 : The magnetic field due to an
infinitly long current carrying conductor at distance 10 cm
is 10° T. Find the current in the conductor.

M

Solution : Forinfinitlylong conductor

F=10cm=0.1m

B=10"°T , N :
Fig 7.45 B due to loosely wounded solenoid
v
B=1 000000000000
R —
105 = 2x107" % 7F .
0.1 >
s ORI
10 ° x0.1
!= o107 =0.5x10=5A Fig 7.46 Field dueto an ideal solenoid
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7.13.1 Magnetic Field Inside an Infinitly Long
Solenoid

To determine the field inside a soelnoid the field,
we take alongitudiual section (LS) ofthe solenoid, and
show the direction of current in the loops as (x) (_) and
the direction ot magnetic field produced, asinfig 7.47.
The current in the solenoid is I, and same in all loops.
Asuming the solenoid as ideal one, we mark (show) tield

inside as B, nd out sideasB=10.
5 B

o

B=0
p— X —
W 4

;1

[
rl

ol

T

SRS

Fig 7.47 Magnetic field inside solenoid

Q

¥ Y

To tind B inside we construct an Amperian loop
PQRS which enclose length x of th solenoid.

From Ampere's law (ﬁ B-dt=p,2i
BORY

(=all currents enclosed by loop PQRS)

The defined quanity for solenocid is #, the turn
density. (Not thetotal number of turns) hence the number
ofturns enclosed by Ampere lcop PQRS 15 72x, hence

Againwetake

4} Bdf=yp,%i

PORS
Q . . R = . S = = P . .
jB-df+jB-df+fB-df+jB-df SN
P o i 5
o= e
L" B-dt= L Bd ¢ ; (thecontribution of remaining
integrals it zero, dueto either B=0or .4 ¢ =0)

o
we get, Bj.déz‘+0+0+0:;z[]2£ ... (7.102)
r

e
since de =X
p
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and >i=nx!

weget BAx= g nx/

or B=unl ... (7.103)

which is uniform throught the space inside solenoid.
It the solenoid is finite but its radius R < <L the result is
valid at apoint inside and far away trom ends.

N
n=—
L
Also  B=p,—1T=pnl ... (7.104)
r=2
Hy
NT
Hz?lzm’ ...(7.105)
If amediumis placed inside the solenoid.
N
B =u—I
L # L
N
B, =pu, If ... (7.106)

where # is relative magnetic permeability of the
medium. For ashort solenoid B atapoint P is

B= %,u[]n] (cosd —cos.)

where ¢ and ¢, are the angle between the axis
and the linejoining the point P to outer rims. Magnetic
field at one end of the solenoid -

forthis and

(4, =90°,¢, =180")

1 _ .
hence B 5 il [cos 90" —cos180° ]

and

Nl
Bemf = Holt [0_(_])] hence B

2 ond
whichishalf'the magnetic field inside the solenoid.

1
> il



\J r U

Fig 7.48 Magnctic ficld at the end of a solenoid

» B

7.14 Behavioral Comparison of Bar Magnet and
Current Solenoid

1. Afreely suspended current carrying solenoid
always stay in North-South direction. Justhikea
bar magnet.

Itthe ends of two current carrying solenoids are
brought close to each other, they will attract or
repel each other, just like magnets do.

Eachend ofsolenoid behave like a North or South
pole, depending uponthe direction of current.

The ends of solenoid attracts feromagnetic
materials, just like magnets do.

Fig 7.50 shows the relation of polarity with
direction of current.

/”—__-‘h""\ ‘/-—-—— e
..(“ P -« ) )
=N sSEES = —SHE=EEEEEET

'Y ™
\""‘"-—-—-—-q"""ﬁ

Fig 7.51 Comparison of solcnoid with bar magnet

We conclude that a current carrying solenoid
behave like a bar magnet. But there are some
dissimilarties too -

(a) Thefield linesin solenoid are straight, butina
magnet some what curved.
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(b) The magnetic field outside a solenoid is
approximalty zero, but in case of amagnet we get
magnetic field, but different at different points.

7.15 Magnetic Field on the Axis of a Toroid
Ifa solenoid is circularly curved and its both ends

are joined it becomes Totoid. It behavelike infinitly long
solenoid.

It can also be tabricated by wounding insulated
COpper wire over a ring.

Fig7.52 Toroid

N turns areuniformly wounded. Due to current [1n
each loop, they produce equal magnetic field at their
centers; the contribution of all loops 1s in the form of
concentric circles; whose center is the center of toroid.
Hence themagnetic field inside (i.e. on axis) the solenoid
1s parallel toits axis. Tangent at a pointon field line, gives
the direction of magnetic field at that point.

To find magnetic field at the point on axis, we take
the cross section of Toroid along/parallel to its plane.
Show the direction of current as (x) and ( ) and also

directionof g produced accordingly.

Now construct a circular Ampere's loop passing
through the point of interest. We see that this Ampere's
loop encloses all the turns and

From Ampere's law Cj) B-df= H, 20

C'[)B-dfcosé’ =, 20

d=0", cosfd=1
Si=N
<ﬁBdf:;%AW



B= I
.
B=yunl ... (7.107)
”_i is the turn densit
2y S thetumdensity
HZEEHZHIZiI ... (7.108)
H, 2xr

Ifaemdmm is present

B, =u Al {
2y
B =p.u i! 7.109
or n i ety 273_? . ( . )

Magnetic field out side Toroid is zero. Magnetic
field depends on radius, current and medium inside the
toroid.

A=m* = 3.14x(10_3)2 = 3.14x107

. =05m. Clearly A<« L

Where, A=Areaofcrosssection
‘NT
B=yu, ?1
Clearly A<<L, hence the coil canbe asumed to be
very long (infinitly long)
B=4xx10 ?X@XS
0.5
B=628x10"T

Example 7.19 : Mean radius of a toroidis 10 cm
and number ofturns is 500. Find the magnetic tield itthe

currentinitis0.1 A. (,u(, =dzxl 0‘4Wb;’Am)
Solution : Magnetic field inside toroid 1s

F=10cm=0.1m

Example 7.18 : Asolenoid oflength 0.5 m and N =500 B=pu, i !
radius 1 cmhas 500 turns, 1t carries acurrent of SA. Find 271
magnetic field inside the toroid. 50001

) _ B=4rx10  x———

Soltuion: Given £ =05m, r =lecm =0.01m, 22 x0.1

Important Points

1. Orested found in his experiment that a current in a conductor preduces magnetic field around it. This
phenomenon s called magnetic effect of electric current. If amoving charge experiences a force (neglecting
electric and gravitational field), there exists a magnetic at that point.

2. SlunitofmagneticfieldisT orWh/m orN/A.m. The force ona moving charge in magnetic tield is

qu(ﬁxé)

|I:'| =gvBsind

whose direction is perpendicularto the planeof ¥ and g .

[F¥]

field.

Stationary charge produceselectric field only whereas amoving charge produces, both electric and magnetic

4. FromBiotand Savarts law, the magnetic field due a current elements /d/ -



# Lotsing (5}3:ﬁ1(d-rf’xﬁ)

dr i dr

obh =

I, :
The magnetic field due a conductor of finite length 5 = % [ sing +sin g, ]

magnetic tield due to straight infinite current

— #I) ‘T
27d
Magpnetic field due to circular current loop at
. ) 7
(1} Itscenteris B,. = ﬂ
© 2R

(ii) On apoint at distance x fromits center -

2 (R3 +x° ) )

L B NI gt [ 2ANIR
()R <<x;, £~ 2% 4rx i
gt 2M
4r x°

Here M = N{ (7:1‘{2 ) 1s the magnetic moment of the coil, it shows that coil behaves like a bae magnet.

Helmholtz coils, has twoidendical coaxial coils whose centersare at a distance equal to their radius. Magnetic
field in the region, between the coils1s

B(middlereginn] = ] 432 B(center)

Force onacharge moving perpendicaulrto magnetictieldis / = gvB , and pathof'the particle will be circular

2mTm R

v
- o AL o P 4B
andradius of pathis [ 4B ) , period of revolution o5 and freqeuncy* Gy

This freqeuncy is called cyclotron frequncy. The frequecny does not depends on velocity and radius of path.
Thisconcpetisused in cyclotron.

Cyclotronis adevice, used to accelarate heavy positive particles. The frequency ofapplied ACis equal to
cyclotron frequency.

Force on acurrent carrying conductor in magnetic field F=T (? x B )

‘ﬁ| — I/Bsin®
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12.

13.

14.

15.

16.
17.

The forcebetween two parallel currents is attractiveifthe current inthem s parallel, and repulsiveifthe current
1s antiparallel. Theforce perunit length on such conductorsis

L _sohly
of  2md

definition of 1 Ais SI; 1 Ais that current maintained in two parallel wires placed 1 meter apart in air/vacuum if

aforceof 2 x10 7 N/m force act per unit length on each other, then currentin both conductor is 1 Ampere.

A current loop in uniform magnetic field experiences no net torce, but the torque onthe loop is
7=NIAxB
|7|= NIABsin @
Here N =number ofturns, I=Current; A= Area, of current loop B=Magnetic field anglebetween A4
and B is &
Galvanometer detects electric current. In moving coil galvanometer

¢
NA

Here I =current, N =number ofturns, A= area of coil, B =magnetic field, C = restoring torque per unit
deflection, K =reduction factor of galvanometer.

¢

)7 =k =

(i) Current sensitivity § = ¢ - V8 _ 1
I C &k
1 1 C
(i) Figure of merit X = S_; = ) ~NAB k
. s NAB S,
(1v) Voltage sensitivity § = [4 = =
TV (R OR

-1

I G
The value of shunt required to convert voltmeter into ammeteris .5 = { % J
o
The value of reistance required tor conversion of galvanometer to voltmeter is
l/— - - - . . .
L, = 7 (7 ; Resistance ofideal voltmeterisinfinite.
=

Ampere's circular law Cj) B-di=pi

The magnetic tield due to acylendrical conductor -

(1) Outside cylender B = ’2“_]1 ; r=distance from axis.
Ir
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L1
(ii) Onthe surface B = L7 R radius ofconductor

2R

(i) Inside the conductor

i d
B, = B
Y R[Rj w7

Infinitly long solenoid and Toreid areused to produce uniform magnetic field.

The magnetic field insidean ideal solenoidis B = y,n/ forafinite solenoid at oneend

Magnetic field due to current ina toroid.

o N
B=nnl=
(].) #I) 2 ! {

(i1) B=0magnetic field outsideis zero.

; R=Radius; N =Number of turns

B= ol 1l |

Questions for Practice

Multiple Choice Questions -

1.

|F¥]

A charge inuniformmotion, produces -

{(a) Only electric field

(b) Only magetic field

(c) Both electric and magnetic field

(dyEM waves along with electric & magnetic field

The magentic tield due to a straight current at a
distanceris B. If distance becomes #/2 keeping /
constant, then magnetic field will be -

(a)2B (b)B/2
(B (d)B/4

Themagnetic field at the center ofa circular current
carrying coil is B . The magnetic on the axisata
distance equal to radius of the same coilis B. The

ratio B/ B, willbe-

@)1:/2
(©)24/2 - 1

Helmholtz collsareused -

(b)1:2\5
(d)\/i:]

(a) To produceuniform magnetic field
(b) To measure electric current
(c) To measure magnetic field

(d) To find the direction of electric current
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Two circular current coils are concentric and their
planesare mutualy perpendicular and the magnetic
field due to each coil is B, as hown in the figure:
the net magnetic field at their common center will
be -

B
A

-]
: 4
wa

(a) Zero {(b)2 B
(©) B/\2 (d) V2B

Projected with same velocity in uniform and
perpendicaulr magnetic field, which particle will
experience maximum force?

(@) ¢ (b) H'
(c) ,He' (d) L’
Two wires of mains supply are at a them distance
12 cm. Ifthe force per unit length between is equal

to4 mgweigth, the current inboththe wires would
be-



11.

(a) Zero (b)4.85A
(c)4.85mA (d) 4.85 x 10-A

A proton of energy 100 ¢} 1s moving in circular
pathin perpendicular magnetic tield of 10 *T. The
cyclotron frequency of the proton in Radian/s will
be -

(2)2.80x10°  (b)9.6x 10°

(c)5.6x 10° (d)1.76 %108

A galvanometer of resistance (3 requires 2% of
the main current as current for full scale deflection.

Thevalue of shunt will be -

4 N
@) 3o ® 75
(©)49G (d)50 G

Magpnetic field ina solencid dueto current 1, is B. If
thelength and number of turns are doubled. To get
the same magnetic field the current will be -

(a)21 (b)1
(c)f2 (dy/ 4

Actoroid has aturn density n, the current is 1. Ifthe
magnetic tield inside (at axis) is B, the magnetic
tield out side will be -

(a)B (b)yB/2
(c)Zero (d)2B

A galvanometer is converted to voltmeter by
connecting -

(a)Highresistance in series
(b) Low resistance in series
(c)Highresistance i parallel
(d) Lowresistance in parallel

Anideal voltmeter and ideal ammeter should
have -

(a) Zero and intinite resistance

(b) Infimite and zero resistance respectively
(c) Both should have zero resistance

(d) Both should have infinite resistance

Very ShortAnswer Questions

Write the name of sources, used to produce
magnetic tield.

L

18.

Write the dimensions and unit of magnetic field.
Which field is produced by a moving charge.

A charge qentersa perpendicular to magnetic field
B at velocity ¥ . What will be the force on the
charge and path of the charge?

Detine 1 Amperein S.I. unit.
(Searchlatest definition at https://physics.nist. gov)

A proton is moving up word in vertical plane, it
experiences a horizontal force in North direction.
What will be the direction of magnetic tield?

A charged particle is moving parallel to uniform
magnetic field. What will be the path ot particle?

A battery is connected to diametrically opposite
points of circular coil. What will be the magnetic
field at the center?

A coil of turns N and radius R 1s opened as a
straight wire, how many times will be the magnetic
field at a distance R, compared to the magnetic
tield at the center of the coil?

What will be the distance between, two points of
inflations ofa Helmholtz coil?

Write down the mathematical form of Ampere's
circutal law.

Write down the value of magnetic field inside a
copper pipe of radius R and current I.

Why the magnetic peoles of moving coil
galvanometer, made concave in shape?

How the current sensitivity of a galvanometeris
increased?

At equilibrium what will be the position of coil and
magnetic fieldin a galvanometer?

Why cyclotron is not used to accelarate light
charged particles?

Which device you will use to produce uniform
magnetic field?

How does the period ofrevolution of'a charged
particle depends on speed and radius of circular
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pathinside "Dee" of cyclotron.

Write theexpression tor the highresistance used to
convert a galvanometer in to voltmeter.

Short Answer type question-

1.

10.

11.

12.
13.

14.

15.

Write down the conclusions from Orested’s
experiment.

Write down, Bict and Savart’s law in vector form.

Explain the two laws to find the direction of
magnetic field produced by electric current.

A charge enters a uniform magnetic tield at an
angle (0 <  <90° ). What will be the path of the
charge? Also find its pitch.

Find the relation between the magneticfield at R/2
on axis, and magnetic field at the center of coil.
Here R isradius of the coil.

Show how a small current loop, behave like a bar
magnet?

What is the circulation of magnetic field? Please
explain.

What is the ditterence between a current carrying

solenoid and a bar magnet?

Find the torce per unit length ontwo parallel current
carrying conductors.

Using Ampere‘s circutal law, find magnetic tield
inside a current carrying cylinder.

Show the period of halfrevolution of a positive
chargein "Dee" of a cyclotron does not depend in
theradius of circular path.

Explain the principle of cyclotron.

What s sensitivity and figure of merit of a
galvanometer? How they are related to each
other?

Find the expression forthe resistance connected in
parallel to convert a galvanometer to an ammeter.

A rectangular current loop EFGH is placed in
uniform magnetic field, as shownin the figure.
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(a) What willbe the direction of torque onloop?

(b) When torque will be (i) maximum (ii) zero

N S

S ETTR N

Essay type Questions -

1.

%]

State Biot and Savant’slaw. Using thislaw find the
expression for the magnetic field due to a finite
straight current carrying conductor. Show that for
infinitely long conductor, the field at a

o
perpendicular distanced, is & = %

Using Biotand Savart's law, find the expression for
magnetic field at an axial point ofa circular current
loopin vector form. Draw required diagram.

Describe the working of cyclotron. Draw the
diagram showing path of particle in both "Dees".
Derive expression for (1). Frequency of cyclotron
(11). Kinetic energy ofionsin cyclotron.

Derive expression for force and torque on a
current loop in uniform magnetic tield. Draw
required diagram. When the torque will be (1)
maximum (1) zero

Find the expression for force ona current carrying
conductor inuniform magnetic field. Explain the
right hand palm rule to explain the direction of
force.

Write Ampere*s circulate law. Find the expression
for magnetic field inlong current carrying solenoid.



Draw required diagram.

Describe construction ofatoroid. Find expression
for magnetic field at the axis of toroid of mean
radius # number of turns N and current I. Show
that the magnetic field out side, and in open area
enclosed by toroid is zero.

What 1s a galvanometer? Describe the
construction and working of a galvanometerusing
labbled diagram.

Describing the principle of a galvanometer, find the
expression for its sensitivity and tigure of merit. On
what factorsthese depend.

Answer (Multiple Choice Questions)

(H(©) 2(A)

3(B) 4(A) 5(D) 6(D) 7(B)

8(B) 9(B) 10(B) 11(C) 12(A) 13(B)
Very Short Answer Type -
1. Permanent magnet, current carrying conductor,

|F¥]

10.

moving charge, changein electric field.

M'eT 24 ' and Tesla.

Both, electric and magnetic field.

Force I = q(ﬁ XB)_;_ |f| = qvBsin90° = gvB
and the path will be circular.

Ifthe torce per unit length in air/vacuum, ontwo
equal current carrying conductors palced at a
distance Im, is 2x10 " N /m, thenthe current in
conductoris 1 ampere.

Search latest definition at (https//physics.nist. gov)

Inhorizontal plane towards East.

Rectilinear
Zero
. NI
A the center of coil B...= 2R and due to
. . t‘{’li]] . BCG-‘* T
ire B=210" —=Nr
straight wire, R required B
Equal toradiusof coil R,
(J.)Bd? =, 27
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12.
13.

14.

15.

16.

17.
18.

19.

Zero

So that the field is radial and deflection on scaleis
linear,

By increasing number of turns, area ot coil and
taking softiron core.

When the plane of the coil is perpendicular to B.

For a required energy more velocity, due to
relativistic effect mass of the particle and
resonance frequency changes.

Longsolenoid.

Doesnot depend. It remains constant

T 2mm
gB

r=’
7

2

—(r

; here 7, = current for full scale

deflection.

(G = Resistance of galvanometer; V = Range of
voltmeter.

Numerical Problems

l.

L

Find the magnetic tield at the center of a circular
coil of radius 8.0 cm and 100 turns, having a
current 0. 40 A,

(3.1x107'T)
Acircular coil made trom 6.28cmlength of wire

has aradius of 0. 10cm and current 1.0 A. Find
magent field at its center.

(6.28x10°71)

Along straight wire has a current 35 A. Find
magnetic tield at a distance of 10cm.

(3.5x10° 1)
Awire having current of 10 A1s on the plane of
table. Another wire in which current is 6A s just
overthe wire AB, at adistance of 2 mm. find the
mass per unit length of CD, such that it held there
by magnetic torce. What will be the direction of



10.

currentin CD, withrespect to the current in AB?
(m/l =6 x 10 *kg /m; oppositc to AB)

A wire on herizontal plane hasa current of 50A in
south to North direction. Find the magnitude and

direction of magnetic field at point 2.5m towards
east.

(4x10™" T downwards)
Two long parallel wires having current Tand 3Iin

same direction are4m a part. Find the point where
magnetic due to bothis Zero,

(1 cmtrom [, between them)
A proton enters a perpendicular magnetic tield of

0.2T with velocity 6.0 x10° m/sec. Find
acceleration of proton and radius of its path.

(1.15x10"” m/s* and 0.031m)

A wire with current 8 A is placed in a magnetic
field of 0.15T, at an angle 30° form B. Find the
force per unit length, and direction of force.

(0.6 N/m)

Two identical coils of radius 8cm and number of
turns 100, are fixed coaxially at distance 12cm. If
the current inthemis 1 Ain the same direction, find
magnetic field at mid point on the axis.
(8.04x107*7)
Two wire oflength 2m each are parallel and are at
adistance 0.2mfrom each other; if the current in

bothis 0.2 A inthe same direction. Find force per
unit lengthon them,

(2x10 "N/m)

A Square coil of'side 10 cm and 20turms have a
current 12 Ais suspended vertically. Ifits area
vector makes an angle 30“withuniform magnetic
field of 0.08T. Find the torque on the coil.

(0.96N xm)
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12.

15.

16.

17.

Find the ratio of the radii of circular paths traced
by an ct particle and beam of proton, entering with
equal velocity vin perpendicular magnetic field.

2
(771)

W
Radius of “Dee” of cyclotronis 0.5m. A

magnetictield of 1.7 T is perpendicular toit. Find
the maximum energy gained by proton.

(5.53x10 2.7)

Resistance of'a galvanometer coil s 12 Q, the
current required for full scale detlectionis 2mA.
How you will convert it to a voltmeter of range
0-18volt.

(By connecting 3988 resistor in series)

Agalvanometer of resistance 99 ), requires4mA
current for its full scale deftection. what you will do
to convert it into an ammeter of range 0-6 A?

{(By connecting 6.6 x 10 * Q) resister in parallel)
A 1.0m long solenoid has 100 turns. Its radiusis
1cm. Find magnetic filed at its axis, it current in it is
5A. Find the force on electron moving with
velocity 107 m/s along the axis.

(B=628x107T ¢cy F=0N)

A solenoid has length 0.5m. Its winding is in
doublelayer, eachlayer having 500 turns. Itsradms
1s 1.4 cm. Find magnetic tield at its center when
currentinitis SA.

(12.56x10° 1)






Chapter - 8
Magnetism and Properties of Magnetic Substacnes

We have studied about magnets in earlier classes.
The property of attracting iron, cobalt, nickel is called
magntism and the material that shows this property is
called magnet. In this chapter we will study about
different physical quantities realted to magnetism. The
earth also behave like a magnet, so we will study about
elements of'its magnetism. Every material show some
magnetic property, so we will classity materials on this
basis.

8.1 Natural Magnets

In anciant times in Greece, some deposits were
found inisland magnesia, which showed the property of
attracting iron, cobatt and nickel. This material was
named magnet after the place, and the property as
magnetism. It was magnetite, an ore ofiron (Fe O,).
Normally natural magnets are not used because of their
irregular shape and weak strength.

8.2 Artifical Magnets

Artifical magnets are prepared either by rubbing a
ferromagnetic material by a strong magnet, keeping in
long contact with pole of a magnet or by keeping in
magnetic field of'a solenoid. They are of two types (1)
permanent (i1) temporary.

(i) Permanent magnet - Their magnetism stay for
alongtime. They are prepared by hard steel, cobalt steel,
tungustan or an alloy ALNICO (Al Ni1 (o) or other
alloys. Their magnetism can't be controlled.

(ii) Temporary Magnet - These magnets shows
the property aslong as magnetizing field exist. Their shape
anstrength canbe manipulated. They normally are of soft
iron, and used in motor, generator, electric bell and
electromagneticrelay.

8.2.1 Properties of Bar Magnet

Normally magnets are used in the form of'a bar.
They have following basic properties -

(i) Attraction property - These magnets attract
iron, nickel and cobalt like feromagnetic materials. The
strength is maximumat ends (called Pole) and zero at mid
point.
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(ii) Directional Property - When suspended
freely from centre of gravity, the bar magnet, in
equilibrium it always stay InN-S direction. The end which
stay in north direction is marked as north pole, the end
which stay in south direction as south pole.

PESRRRNNRRNN

[

Fig 8.1 Directional property of abar magnet

(iii) Existance as dispole - Magnets always exist
as dipole. North pole and south pole are equal in
magnetude (strength). Existance of monopoleis not
possible.

(iv) Attraction and repulsion - Same poles repell
each other, while opposite poles attract.

Fig 8.2 Attraction and repulsion light

(v) Equality of polestrength - The pole strength
of boththe poles are always same. Asshown in the figure
8.3 (A)and(B). If devided transversaly, the two pieces
behave like two separate magnets of same pole strength.
And ifdevided longitudinally into two parts, their pole
strength will be halved. Here m1is taken as symbol of pole
strength.

meN T Sefm mpeN----o-Selm

2 o —— P
2 O — 7T

m m m m

Fig 8.3 Division of pole strength of a magnet



(vi) Repulsion is a sure test to differentiate
between a magnet and an iron bar- It youhave two
bars, one is certainly magnet, but the other you don't
know. To test, bring one end of the second bar towards a
magnet; it it gets attracted - other may be magnet oriron
bar. Ifthe second end is brought near the magnet -

(1) Ifitis attracted - the other bar is iron bar and

(2) If it gets repelled - the other bar is a magnet
hence repulsion is suretest in this case,

(vii) Magnetic induction - When a magnetic
material is kept near in contact with a bar magnet it
acquires magnetic property. This phenomenon is called
manetic induction. The other pole will be of opposite
polarity.

(viii) Demagnetization - Amagnet will loose its
property by heating, beating by a hammer, kept under
intfluence of AC current or by keeping dumped in earth
foralongtime.

(ix) Repulsion of some material - Some
materials get repelled by a magnet these materials are
called diamagnetic materials, water, gold and silver are
some examples. This repulsionis extreamly weak and
can only be observed by sensitive devices or
arrangement.

§.2.2 Some Definations Realted to Magnet

(i) Magnetic Poles and Magnetic Axis- Atthe
peint, very near to the end of a bar magnet magnetism
(field)1s strongest. These points are called poles. All the
field lines (lines ofaction of magnetic force) pass through
thesepoints.

The imaginary line passing through the poles and
extending up toinfinity is called axis of a bar magnet.

A

Fig 8 4 Magnetic axis and effective lenth

(ii) Effective length of a bar magnet - The
distance between the twopolesis called effecitve length
of a bar magnet. It is aproximatly 5/6 ot the physical
length. (Since poles are situated slightly inside and not
exactly at ends). Itisa vector quantity ¢ anditsdirection
is from S pole to N pole.
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(iii) Magnetic Meridian - The imaginary vertical
plane passing through the axis ot a bar magnet, whenit is
freely suspended and is in equilibriumis called magnetic
meridian. Any other plane whichis parallel to the aboce
mentioned will also be magnetic meridian.

%

/]
A
S N

Magnelic

meridian

Fig 8.5 Magnetic meridian

(iv) Pole Strength - The attraction power of a
magnet is expressed by a physical quantity called pole
strength its symbolismandunit 4 m.

(v) Coulomb's Law for the force between
magnetic poles - Just as gravitational force between
two masses and electrostic force between two electric
charges, we have inverse square law for magnetism,

The Coulomb force is inversely proportional to the
squared distance between the magnetic poles and
directly proportional to the product of poles’ strengths.

Let two poles of strength m and #r_ are at a
distance from each other in air/vacuum. (Situation is
maginary since magnetic monopole does not exist). The
attractive or repulsive force between themis

j_.‘ o HII}T?Q
=
j_.‘ — k HIITQ
F
L, mm, .
I :i—;;— ... (8.1)is given by

here £ = f—') =10 " Web/Am isaconstant
T

and 2, =magentic permiability of air/vaccum.

F=t _ 107N
4
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Fig 8.6 Force between magnctic poles

Definition of unit pole

Ifm =m,=1Am,r=1mand

s

ar 10 "N Thenusing equation (8.1} we

get m, =m, =1 Am (Leunit pole)

Iftwo equal poles separated by 1min air/vacuum
experience a force of 10~ N, then both poles have unit
polestrength.

8.3 Magnetic Field Lines (Magnetic Lines of
Forces)

Ifa small magnetic compass needle ismoved ina
magnetic tield, and path of one poleis traced using dots,
joining these dots gives curves which are called magnic
field lines. (Earliar it was defined as thelocus of a free

north pole ina magnetic field).

Fig 8.7 Magnetic field lines

Fig 8.7 show the magnetic field lines of a bar
magnet. Place a paper or a glass sheet ona bar manget.
Sprikle someiron fillings on the glass sheet. The pattern
of theiron fillings will give you anidea of the field lines.

Properities of Field Lines

(i) Theyareimaginary and are in the form of closed
loops.

(i)  Outside the magnet their directionisfromNto S,
whilenside they arefrom Sto N,

(m) Thetangent drawn at any point on the field line,
gives the direction of magnetic field at that point.

(v) Theyneverintersect each other. Ifthey do, two
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tangents can be drawn on the point of intersection
which gives two directions ofthe field, whichis not

possible.

(v) Thearea where field lines are close, the field 1s
strong and vice-versa. The field is strong near the
poles.

(vi) Theparalled field lines represent uniform magnetic

field.
8.4 Neutral Point

The earth hasits own magnetic field. So when we
place a barmagnet on a paper placed on wooden table,
there will be super position of two fields (1.e of earth and
bar magnet). The pattern of field lines drawn, show some
(one/two) points where the net magnetic field is zero.
These points are called null points. At these points, the
herizontal component of earth's magnetic field exactly
cancells the magnet field of barmagneti.e B- B =0. The
location of null points depends on the orientation of the
bar magnet.

(i) When S pole of bar magnet is in
Geographical North Direction - In this position/
orientation as showninfig (8.8A). The field on equator
(1.e ] lineto axis)is strong near the magnet because both
fields are n the same direction. We get mull points on axis

asN and N,
Y

NS _
Y )I\ig

) D

i /FATIR

N'_’

Fig 8 .8 Neutral Point (A) When 8 polc of the magnet is
towards geographical north. (B) When N pole of
magnet is towards geographical north.

(i1)) When North Pole of Bar Magnet is owards
geographical North - Inthis case the null points ¥V, and
N, are obtained onequitorial line, as showninfig 8.8 (B).

S

(iii) Ifthe bar magnet is kept vertical and its north
poleis downwards on the paper; the field lines willbe as
showninfig 8.9. We get only one null point is in south
direction. If south poleiskept downwards the position of
mill peintisreversed, i.e. innorth,
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Fig 8.9: Ficld lings when magnel iskepl verlicle

8.5 Magnetic Dipole and Magnetic Dipole
Moment

8.5.1 Magnetic Dipole

In a bar magnet, both north pole and south pole
exist. Inacurrent carying solenoid, one end behaves like
north pole and the other as south pole. Ina current loop,
one facebehaves like north pole and other face as south
pole. In nut shell magnetism exist as dipole and it is the
elementary entity of magnetism. Mono pole 1s not
possible. Evenifwe go on dividing a magnet into two,
each piece has dipole.

8.5.2 Magentic Dipole Moment
Ttisthe physical quantity which gives the strength of
amagnet.

We have learnt that a coil having Nturns, area A,
current I, experiences a torque in external uniform
magnetictield B;

7 = NIABsin@

Comparing it with the torque experienced by an
electric dipole in external electrical field E,

..(82)

. (83)

We get an equivalent quantity to p as NIA, this
quantity is similarly named as magnetic dipole moment A4,
Just as in electrostatics, we can write where mis pole
strength and is a vector distance between two poles,
whichis from S to N.

In pf = N4 (84
thedirection of A4 15 totheplane of current loop.
Theunitof 3718 Am®,

7= pksing

It can be defined using realtion
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T=MPBsind ... (8.3)foradipole. IfB=1,
€ =90° ,then 7 =AM . Hence the magnetic moment is
equal to the torque experienced by a dipole in unit
magentic field, whenit is placed perpnedicular to the field.

8.5.3 Magnetic Moment of a Bar Magnet
...(8.6)

where m=polestrength and ¢ iseffectivelength of
abar magnet.

Itisgivenby M =mx f

(A) Ifwebisect a bar magnet of dipole momnet M
into two, perpendicular to its length. The dipole moment
ofeachpartis

¢ mt M

M =mx— =
2 2 2

(B) If abar magnet is dividend mto two, by dividing
alongitslength, again

M= =
2

2

mé M

2 2
(C) If abar magnet of length 2 # and magnetic

moement M is bent into a semi circle of radius r.

Cirumferance of semi circle xr=+£. Then
M, =mx2r,
26 2M
M, =mx—=——
’ s T

(D) If two bar imagnets are kept at an angle @
between their axis, the net magnetic moment will be
vector sumofindivisul M,

M= M2 +2MM, cos@+M? ... (8.7)
mil e f g | mi mﬁ-ﬁ --------------- 2 il
< £ > < f >
il R o | i mi2[aN Se ] 2
N 5 N S mi2[oN Se ] 2
— > “ £ >
Hi,
’ .y
2 o B
S =

Fig 8.10 Magnctic moment of a bar magnct



8.5.2.2 Magentic Moment of a Revolving
Electron

In an atom, electrons revolve round the nucleus,
which1s equivalent to current loop. Hence every orbit
(having one electron)hasamagneticmoment M=N1A.
Foranrevolution (N=1), charge=e, and time t=T hence

27

¢ & a g
== M=—=xarori =
Tbut 7 or -

where r =radius of orbit, v = linear velocity of
electronand w=angular velocity.

4

M = X TP = —e@r”
So . . (8.8)
1
and M =T . (8.9)
since v = Fo

Example 8.1 : Find the magnetic moment of abar
magnet with pole strength 40 Am and eftective length 5
cm.

Solution: M =mx £
m=40Am, [=5c¢cm=0.05m
M=005x40=2 Am°

Example 8.2 : Acurrent carrying coil has magnetic
moment 5 Am®. Ifits radius is halved and the current is
doubled, what will be new magnetic moment compared
to previous one.

Solution : pAf = N7z#* The new magentic
momentwillbe Af'= N ' zp

pl=— 1'=21

F
2

M"_f‘szr><2}'><(rf’2)2 1
M NxIxr® 27

deviding we get M ' = 5

Example 8.3 : Find the magentic moment of the
elctron in first orbit of hydrogen atom.

(r=053A, v=22x10"ms ').

1
Solution; M = EGW'
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r=053A
F=053x10"m

v=22x10°ms™
M :%x'],fyx']O'w %x2.2x10°x0.53%107"

M =093x10 “ Am®

Note : It is called Bohr Mahneton and is a
tundamental constant in physics.
8.6 Intensity of Magnetic Field

Earlierit was definedas B (force onunit N pole).
Inanalogy to (force per unit positive charge).
But now we define it using the realtion 7 =3 x B

(since M is the most basic quantity in magnetism and
magnetic momopole does not exist.

B isequalto the torque experienced by a magnet of
unit magnetic moment placed perpendicular to it.

Its STunit iIsN/Am, or Tesla.

8.6.1 Magentic Field at an Axial Point of a Bar
Magnet

Fig8.11 : Intensity at an equatorial point

Asshowninfig8.11, pole strength of abar magnet
1sm, its effective lengthis 2/. The magnet field at an axial
point at a distance 7 trom the center O, ot the bar magnet
isB =B +B, ,where B and B, are the field due to

north and south pole at p. Using Coulomb's law, and
definition of B we get ; hence

Bl:ﬂ m 1
47?(}*—!)‘




m ... (8.9b)

By convention, taking pole strength of north pole s
(+m) and for that of south pole as (-m).
do m o (-m)
B=— —+ -
Weget ™ dz (r-1)  ax(r+1)

_ 1 B 1
4z (r—f)2 (rﬂ.’)2
_Hm marl
4 (rl _? )2
gt 2Mr

T arx (!,2_12)2 [+ M =mx2I]...(8.10)

For Special Condition of / = <r (for a very small
magnet) we modify equ.8. 10 by taking common from
denomenator-

B M 2Mr

4r ( PR = )2
here £r“is anegligible quanitity

henceB:&XT
% A

L (8.11)

8.6.2 Magnetic Field due to Bar Magnet at its
Equitorial Point

Asclear fromfig 8.11, the magentic field at P, due

My m

B = i (?.2 J”rz) along line NP and

tonorthpoleis

away from N. Similarly field due to south poleis

m
(rz ”z) (alongPs, towards S).

£y

st -
¥4

Z

X

Resolving E’l and §2 into components along axis

and equator. We see that the sine components get
cancelled being equal and opposite; and only cosine

components contribute to B at equator. We get

B =B + B, (only cosine componentsof B & B, )
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B =58 cos@+ B, cosd

B =28 cosd [« B =B]
Ly, x2m

:mxcosé

¢
— )

(r2 +1 )“d

(butcos & =

My 2ml

= _— ..(8.12
47 (!,2 e )A 2)

Again for special condition for a small ba magnet
{1, P/ being negligible, we get

gt M

py— [ M =mx2!]

. .(8.12b)

The direction of B hereisopposite tothat of 4 ;

We appreciate the similarity to that of the electric
field due an electric dipole at axis and equator

o 1 210
L—%E)r—s ...(8.13a)
po_L P
v . (8.13b)

. 1
here Misreplaced by Pand 2, by —.
0
8.7 The Torque on a Bar Magnet in Uniform

External Magnet Field

Asinfig8.12 abar magnet of pole strengthm and
effective length 2 ¢ 1s placed inexternal uniform magnetic
field B , suchthatitis parallel to 8 . The net force on the
magnetisF=F _+F_=mB+(-mB)=0. Also thetorque
is zero.

F-mB F-mB

>

\I; :
- 7 li—ml}
H—

Y
I'—ml \1/ 1
_—
Ay (B)
Fig 8.12 (A)and (B) Force on poles of a bar magnet in
external magentic field




Ifthe bar magnet is slightly rotated by an angle g
from equilibrium ( g is angle between B and 2 ¢ ), The
net force on the magnet is again zero; but the magnet
experiences a torque which 1s 7 =m B x NP(distance
between forces).

T=mBx NP
T=mBxfsinf

T=(mx#)Bsiné

7 =MBsin® ... (8.14a)

(M=mxt)

r=MxBE ... (8.14b)
Special Conditions

(1) When (6‘ = 0) magnet being parallel to B

T=MBsm0=0

(ii) When magnet is perpendicular to B , then
(6‘ = 90°)and 7 .. =MBsin90=MB . The torque
will be maximum.

The potential energy of a bar magnet (manetic
dipole) inexternal magnetic field.

{/m = work done in rotating the magnet by
angleg.

U, = Ir(é’)d & here shows that 7isafunction of
8.

U, = [(6)do

— JMBsinQdQ =-MPBcosé

U, =-MB

for position 8=0°; ({/,)),,., =-MB (most
stable conditionfor (ii) @ =7, ({/,,),,,. = MB)

{most unstable)

. (8.15)

Ifwerotate the magnetbyan angle to g . then the
definit integral will give you -

£
PV:jbﬁmedQ
il

W = MB[-cos 19]?
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=MPB(cos0—cos8)
W = MB(1-cosd) ... (8.16)

Example 8.4 : Find the torque on abar magnet of
pole strength 25 Am and effective length 10 cm, whichs
atanangle g=30from B, (earth magentic field)

(B,=04x107T),

Solution: 7 =MB,, sinb
m=25Am, £ =0.1m,8 =30°
T=miB, sinf
=25x0.1x04x10 " x0.5

=05%x10*Nm

Example 8.5 : Amagnet of magnetic moment 5
Am’is placed in magnetic filled 0.2 T. Find the work
doneinrotatingit, from parallel to antiparallel position.
Also find the potential energy at the two positions.

Solution : The work donein rotating the magnet is
W = MB(cos& —cos8,)
W =5%x0.2(cos0—cos180)
=10(1+1)=2]
Similarly the energy inposition 1 i.e. =0
{/,=—-MBcos6 =-MBcos0=-MB

=—5x02=~-1J

{/,
8.8 Earth's Magnetism

~-MBcos180=MB=5x02=1J

The earth behave like a bar magnet, 1t hasits own
magnetic field. 1t1s called geomagnetism. The following
facts confirmit -

(1) A bar magnet freely suspended fromits C G
always stay 1s NS direction in equilibrium.

()  Anironpiecekept burried in earth for along time
aquires magnetism.

(i)  We get null points while ploting field lines of a bar

magnet.

Themagneticfield on the surfaces varies from place
toplaceand is ofthe order 10°T.



8.8.1 Cause of Earth's Magnetism

The origion of geomagnetism is not well
understood. There are certain explanations, the simplest
one of existance of a giant magnet at the center of earth
was rejected due to hot conditions inside earth where
such magnet can't exist. The other oneis "dynemo effect”,
given by Elsisteris most accepted. Accordingtoit certain
metals like iron and nickel exist in the outer core of earth
in melten and 1onic form. They rotate with earth and
causes convention current which in turn produces
magentic field.

Magnetic field lines of earth are maped, and their
simplest version resembles to the field lines ot an
imaginary bar magnet placed inside the earth such that its
axis makes anangle 11.30"to earth's axis and its north
poleistowards south pole and south pole towards north
pole ot the earth. The location of these pole on earth
surface areatlattitude 79 74° N andlongitude 71 81/
a place in north canada. And 79 74°§ and
108.22° £ which is in Antartictica.

Giengraphical
Nenth Pole

Sdagnedic

Morth TPols \

Magnetic equater

Gongraphical

equater

Geographical S"

Maonetic
South Pole ° i

South Tole

Fig 8.13 : Geomgnetism
8.8.2 Elements of Earth's Magnetism

To know about earth's magnetic field at certain
place, need to know about three physical quantites about
it. Theseare called elements of earth's magnetism. They
are -

(1) Angle of declination (or simply declination).

(2) Dip angle.

(3) Intensity of earth's magnetism (or simpley
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horizontal component of it). First two gives the direction
of earth's magnetic field in horizontal and vertical plane
respectively, and third givesits magnitude (or magnitude
in hortizontal direction).

(1) Angle of declination

Magentic meridian is a vertical plane passing
through the axis of a freely suspended bar magnet fromits
CG andisin equilibrium.

Geographical meridian is a vertical plane passing
through the axis of rotation of earth. It also contain
longitude circle.

The angle of declination is the acute angle between
magnetic meridian and geographical meridian. Itis
different at different places of earth. A Delhiitis0“41 E
and at Mumbai it is 0°58' W. These small values shows
that at these places, the direction shown by a compass
needleistrue north south.

(ii) Dip angle or angle of dip

If we take a compass needle, which is free to
rotate about a horizontal axis, in vertical plane, thenin
equilibrium, the angle between its axas with horizontal is
called angle of dip. It gives the direction of earth's
magnetic field in verticle plane. Again the dip angle vaies
from place to place on surface ot the earth. It is O at
equator and 90° at poles.

(iii) Horizontal component of earth's magnetic field

At aplace other then equator or pole the direction
of magnetic field make certain angle with horizontal. We
canresolvethismagnetic field B, into two components, as
B, and B i.e. vertical component and horizontal
component

BH
I

il
-

Wagnmic needle

Fig 8.16 Components of carth's magnctic ficld




B, = Bsin® (8.17)
B, =Bcos# .(8.18)
Suchthat B= B, + B,
B=\B: + B +2B,B, cosOC°
B=\/B, +B;

B
tan & = —=

i

B, =B, tan0 .(8.19)

Example 8.6 : At certian point on earth surface dip
angleis 60" and horizontal component of earth's magnetic
field 15 0.25 G Find vertical component of earth's
magentic field at this place. Also find the resultant
magnetic field at that point.

Solution: 8, =B, tan &

B, =0.25tan 60°

=0.25x+/3=0.25x1.732 = 0.433G

B, = Bcosf

g By _ 025 0325
cosf cos60 0.5

B=050G

8.9 Magnetism and Gauss's Law

According Gauss's law in electrostatics1.e fora
closed surface mtegral of electric filed is proportional to
the algebric sum of charges enclosed by the surface.

Ifa surface encloses electric dipole . The incoming
electricfluxisequal to outgoingelectric flux. Exacltyinthe
= B-dS

same wayfor magnetic field P because

magnet always exist asdipele. The incoming magnetic
flux through a closed surface 1s exactly equal to the
outgoing flux, and net flux =0. Hence Gausses law for
magnetismis

8 =§ﬁ3-d5'=0 . (8.20)
5
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Fig8.17: Magnetic flux

8.10 Behaviour of Substances/Materials in
External Magnetic Field

Farady found that all materials are ettected by
magnetic tield or react to external magnetic tield.
However they interact with the field difterently.

To invesitigate the behaviour of different materials
tollowing experimental set up is suggested -

A current carrying sole noid produces magnetic
tield, strong inside and weak near its ends. Atest tube
with sample to be tested is attached to a very sensitive
spring balance near the end, as showninfig 8.18.

When a currentis setin the sole noid -

(i)  Some materials like, iron, nickel and cobalt are
strongly pulled inside the sole noid, these materials
move from weak field to strong field.

()  Some other materialslike aluminium, CuCl, etc are
weakly attracted inside, 1.e. with very weak force.

(ii) Majority of thematerialslike Z B, gold etcare

weakly repelled outin above experiment i.e they go
trom strong magnetic field to weak magnetic tield.

There are many more types of materials, which you
will know in chemistry or in higher classes. Here we
restrict ourself'to only three types mentioned above.

(i)  Thefirst type strongly attacted by mangetic field
are called Ferromagnetic materials.

() Thesecond type which are very weakly attracted
by magnetic field are called paramagnetic
materials.

(i) The third type whichis very weakly repelled by

magnetic field is called dimagnetic, material.



Q)

Fig 8.18 Bchaviour of matcrials in a solcnoid

8.11 Important Physical Quantities Related to
Magnetism

8.11.1 Intensity of magnetisation 1

We know that the circulating electron has a
magnetic moment; when material is not magnetized, the
magnetic dipole sum up to zero. When an external
magnetic field is applied the magnetic moments are
alligned in a particular direction, and the material gets a
net non-zero dipole moment. The net dipole moment per
unit volumeis detined as magnetization or intensity of
magnetisation. Its symbolis I, and its unitis Am™'. Itisa
vector quantity. Its dimensional formula is [MPLT°A'].

8.11.2 Magnetizing Field H

The magnetic field produced only by electric
current (without any contribution ot medium)in sole noid,

.. p o ; .
itisnl or 4 =— TItisalso called magnetic
i)

intensity. 1t is the external field that induce magentic
property in material. Itsunitis also Am™.

8.11.3 Magnetic Susceptibility

When a material is placed in external magnetizing
field H, the material get magnetized. For small
magnetizing field, the I aquired by the material is
proportionaltoH.i.e / «« H or [ = y_H here ¥, isa
constant for a perticular material called the magnetic
susceptibility ot that material. It is defined as, iftH=1,
then ¥, = { inwords we say the magnetization I aquired
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by the material in unit magnetizing field is equal to its
magnetic susceptibility.
8.11.4 Magnetic permeability p

It s a measure of ability of the medium to allow
magnetic field to set in the medium. g, 1s magnetic
permeability of vacuum/air. x is magnetic permiability of

F)

_H : : —
medium. And # =~ igrelative magnetic permiability
0

of'the medium.

8.12 Relation between different Magnetic
Quantities

Imagine a core of a material is placed in-side the
solenoid. Thenet magnetic field produced by the system

15
B=B,+B ..(825)

B, is contribution of current B iscontribution of
material of core.

here B, o« /
= B =ul
again b= H+ul

Substituting in equation 8.25

B=u,(H+1) ... (8.26)
B=u(H+y,H) [v1=x.H]
B
E = l“[] (]'+an)
=101+ 2,) H_ A
)L"il)
o= (1+,1/m) ... (8.27)
B
——I1=H
Or . ... (8.28)

Example 8.7 : The paramagentic material
cromium has magnetic susceptibility as 2.7 x 10 #. Find its
magnetic permeability and relative magnetic permeability.

Solution: =4, (1+ x,)



X = 2.7x107°

p=4r%10 7(1+2.7x10 %)

#=12.56 % 1.00027 x 107
#=125634x10"H/m
Relative permeability

Ho=1+x,
=1+2.7x10*=1.00027

Example 8.8 : Paramagnetic material Aluminium
has magnetic susceptibility 2.3x10 = Ttis placed ina
manetizing tield 4x10°Am ' . Find the magentization of
the material.

Solution: / =y H

X =23x10° and H=4 < 10°A/m

1=23x10"x4x10°=92A/m

Example 8.9 : Anironwire oflength/ — fm and
cross section Imm?is placed inside a sole noid, which

produced a magnetizing field 4x10° A/ m. Find the
magnetic moment ofthe wire. (1677 x10™ H/m )

sotuions 7, = 4= 1
olution: %, 7 BT
M:ZWIHI/}—

£=1m,

A=1mm* =10 “m
H=4x10"A/m, 4 =167x10" H/m

V=Af=10%%1=10"m*

167 X107
Zo == 12400-1=399
i 4z x10
M=y, HV

=399 x4 x 10°x 107°=1.596 Am?

Example 8.10 : Arod of cross section 0.40 em? is
placed in magnetizing tield 4000 Am ' . Ifthe magnetic
flux passing the rod is 5x 10 “Whb, then find magnetic
induction, magnetic susceptibility and magnetization of
the material of rod.
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Solution: 5 =

by
A

given g, =5x107 Wb,

A=4x10"m", H =4000 A/m

5x107° 5
B=2"  —125Wb/m’

4x10™
Magnetic permeability

B 125
pf=—=——=03125x10"

H 4000

=3.125x107"H/m
Magnetic susceptibility
3.125x107

Z:n:#r—l:i_.l = - -

4 4x3.14x107

X, 1=2488-1=2478
T =y, H =247.8x4000 = 9.90x 10" A/m given

Example 8.11 : Aniron rod of dimensions
Semx 1em x 0.5 cmis placed the in magnetizing field
10+ A/m. Ifamagnetic momen of 10 A/m*isinduced init.
Find magneticinduction.

Solution: g = i, (gjL H]
V

M =10 Anv’,
V=5x1x05x10°°=25x10m’
H=10*A/m

B=arx10"| —2 100
25%10°

=12.56x1077(4x10" +10") = 5.036 Wb/m”’
8.13 Classification of magnetic materials

According to the behaviour of materials in external
magnetic field, the materials are of mainly three types -
(1) Diamagnetic (i) Paramagnetic (iii) Ferromagnetic
8.13.1 Diamagnetic Substances

If placed in nonuniform exrternal magnetic field,
the materials moves from strong field to weak field, or



they outstead by the field. Actually they aquirea small, net
non-zero magnetization opposite to the applied field.
These materials are called diamagnetic and the property,
diamagnetism. examples- Cu, Zn, Sb, Bi, Hg, H,,N_, Au,
Ag, airwater diamond etc.

Explanation of Diamagnetism

Such materials have pairedelectron in their atoms,
which revole in opposite direction. In the absence
external magnetic tield, the magnetic moment ofthose
electron get cancalled being equal and opposite. In the
presence ofexternal magnetic field, the magnetic torce on
moving electronis oppositein both pairing electrons, on
one electron, it is towards the nucleus, increasing its
velocity, hence increasing magnetic moment; #2 — £ 2evr:
One other it is away from nucleus, thus decreasing v and
magnetic moment.

The magnetic moment inthe direction of applied
field get decreased, and that which is opposite, get
increased. Hence the net magnetization induced in the
material is opposite to the appilied tield.

>< >< ><

>< LT

< % x
'

X x p

% x ~'><' - ><x % x

Fig 8.19 Explaination of diamagnctism

Diamagnetismis present in all substances in some it
is not observed due to other dominet properties present.
Super conductors areideal diamagnetic substances. For
them y,, =—1 ;u, =0 this eftect is called Meisner
eftect. Magnetic field lines of external field are completly
expelled by them. Aliquid diamagnetic substance placed
in watch glass over magentic poles, behaves as shownin

the tigure 8.20.
ﬁﬁz N
™ S ™ N

@
N ——
\"\_/ W hen pals are near

Fig 8.20 : Behaviour of diamagnctic matcrials

When pols ure away

8.13.2 Paramagnetic Substances

These substances, when placed in external

magnetic field move slightly trom weak field to strong tield
or they are slightly, attracted by manetic field. We say
that they aquire small net magnetic moment in the
direction of applied field. These substances are called
paramagnetic substances. Example - Na, Ca, AL, CuCl,
etc.

Explanation of Paramagnetism-

This type of materials have unpaired electronin
theiratom. So every atomis amagneticmoment. The net
magnetic moment, inthe absence of external field 1s zero
because of random orientationsdue to thermal agitation.

When external field is applied, thetorque acting on
them; align some of these atomic magnetic dipolesin the
direction of applied field. All magnetic dipolesdo not get
aligned due to thermal effect. Hence the material gets
some net non-zere magnetic moment in the direction of
applied field.

S 2O 0 00 O
o Q2 o 00D
a2 &P 90 -0 -0
S 6. 06| |©©8-0

Fig 8.21: Explanation of paramagnetism

Such materials allow. Some of the field lines of
external field to pass through them. IF placed inwatch
glass over the poles of a magnet, shows the behaviour as
showninfig8.22.

S
-

x
o

T T b

VW id

When pals are near When pols are away
Fig 8 22 . Behaviour of paramagnetic materials
Temparature Dependance
Practically the magnetic intensity of'a paramagnetic
substance is proportional to the imposed magnetic tield
and inversly proportional to the absolute temparature

I-x&

. B,
or [ =L-I—‘, ... (8.29)

here C==Curie Constant



But B, =y, H

it

C'y,
.

called curielaw.

-

which gives X, = (8.

8.13.3 Ferromagnetic Substances

When placed in nonunitorm magnetic field, these
materials rapildy move towards strong tield ot they are
strongly attracted by a magnetic field. Also they get
magnetized inthe direction ofapplied magnetic field.

Example - Fe, C_, Ni, Fe,O,, gadolinium and
magnetite (Fe,O ).

Explanation of Ferromagnetism

Asin paramagnetism, the ferromagetic materials
also have permanet dipole moment (of a group of atoms,
oriented in same direction). The difference is of intensity.
The orientation ofthese groups ot atomis random; which
make for whole sample.

Dueto complex interaction between the atoms, one
dipole, compels the other, to orient inthe same direction.
In this process, small colony of dipoles having same
orientation is formed. This colonyis called "domian".
Whole sample is devided into domains having different
orientations, making for whole sample. Size of one

domian is ofthe order of few mm and it contain atom of

the order of 10"
E — —_— |}
—_— —_— —_—
(a) () (e)
Fig 8 23 : Ferromagnetic materials

When a sample offerromagnetic material is kept
in an external magnetic tield; if the applied field is weak,
then the area or size of the domain having same
orientation as that of applied field, increases and vice-
versa. If'the exrternal magnetic tield is removed; the
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phenomenonisreversed duetothermal effect. Hence the
processinreversible.

Itthe applied magnetic tield is strong. The whole
domain rotates inthe direction of applied tield. The first
torotate isthat which makes minimum angle with applied
tield. Itkept in the field for a longtime, the whole sample
becomes one domain.

Ifthe external field is removed, the sample does not
returns to original state, but some residual magnetism
remains.

8.14 Curie Law and Curie Temparature

Pierre Curie studied the effect of temparature on
magnetic materials and found that the magnetic
susceptibility of diamagnetic materials does not depend
ontemparature, whereas the magnetic susceptibility of
paramatic substance/material ininversly proportional to
its absoultetempraturei.e

C

|
o — =
;{m -(i.lr Or Zm ?—r

where C =Curie temparature
T=Absolute Temparature of the material

Temparature dependance ofa ferromatic material
obeys Curie - Weiss law. According to this law the
magnetic susceptibility of aferromagnetic material is given

T—Tc
where C = Curie constant; 7'is thetemparature of
the materialand 7. is curie temparature for that material.
Below 7' .the matenal behave like a terromagnetic
matenal and above I’ the material behave like a
paramagnetic matenal Above 7' all materials are
paramagnetic. /_is difterent for dJﬂ'erent materials. The
curie temparature tor some materials are givenas -

by X. = (83D

Materials Curie temprature
Iron T.=1043K
Cobalt T.=1394K
Nickle T.=631K
Gadolanium T.=317K

Example 8.12 : The curie temparature for some
material 18 300 K. Ifits magnetic susceptibility at 420 K 1s
0.4, then find curie constant.



A

: - C
Solution : manetic susceplibility ¥ = T

o

7=04, T,=300K qan T=420K

C=x(-1)
=04(420-300)=04x120=48K
8.15 Magnetic Hysteresis Curve ( B- H Curve)

When a ferromagnetic material is placed in
magnetic tield H (magnetizing tield), magnetization of
material takes place which produces magnetic field B.
The curve showing ot B and H is known as Hysteresis
curve or B-H curve.

To find B-H curve of a ferromagnetic material we
take its demagnetized from in the shape of a rod. We
place thisred ina current carrying solenotd. The current
in the sole noid produces H (H —ni). This Hmagnetises
the material whichin turn produces B. We can change H
by changing current, and we have a device to measure
B.
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Fig 8.24 : Magnctic matcrial insidc a solcnoid
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Fig 8.25 : Hystersiss loop

We start our experiment with i—o, H — 0, Bwillbe
zerol.etheorigin O. Increasing H, B willincrease but the
relation is not lenear, it goes as per curve O abinthe

diagram. After the point b, increasing Hdoes increase B
(the material is saturated and all the domains are aligned in
one direction). The value of H atter which B does not
increases,but become constant, is called magnetic
saturation.

Now if we reduce H to zero, the curve does not
retrace the pathb a o; but it goesfrom b to ¢. At point ¢,
H=0but B#0i.e some magnetization remains in the
material. This remainent magnetismis called sesidual
magnetism. The value of B at H=0iscalled retentivity
or remanence, B, . The domains are not completely
randomised although extcrnal ficld H=0.

Now if we reverse the direction of current in the
sole noid, and increase it slowly, B decreasesas curve
cd and B becomes zero at certain value of H, whichis
called coercivity of the material. If we go onincreasing H
beyond d, the material is magnetized in opposite direction
and get saturated at e (i.e all the domainsare alligned in
oppositedirection). Ifwereduce H to zero again B will
bot be zero but have a value of the remamant value in
opposite direction. Thisis show as of inthe curve. Again
ifweincrease 7 inthe original direction, the curve goes as

Jeb, and completes a cycle. Again the value of H, Ogis

coercivity of the material. We can know about the
behaviour of material and its magnetic properties from1its
B-H loop bede fob. Fig 8.26 shows B-H curves of soft-
iron and steel.

Softiron

Steel

\

Fig 8.26 : Hystersiss loop for soft iron & steel
From this diagramitis evident that -

(1) Forany value of H, the value of B tor soft iron is
more than that for steel, hence magnetic
permeability |, of soft iron is more than that of
steel.



@)
3)
(4)

Retentivity of sott ironis more than of steel.
Steel has more coercivity than soft iron.
For any value of H, the value of magnetization lis

more for soft iron than steel:ie. ¥, ={/Hig
more for iron which shows that the value of
magnetic suceplibility of soft ironismore than that
of steel.

(5) Thearea of B-H loop for soft ironisless than that
for steel which shows that hysteresis lossislessin
soft iron compared to steel. The area of B-Hlcop
represents the enrgy loss per cycle per unit volume,
(6) B always lags behind H, this property is called

hysteresis.

To select a material for core of electromagnet soft
iron s suitable for its high permitivity L1, less coercivity
and less hysteresis loss.

8.15.1 Hysteresis Loss

Energyis given to the material during magnezation.
But during demagnezation the material does not release
the whole energyit recieved. Some energy get lost (work
doneinrotating the domains). This loss of energy per
cycleiscalled Hysteresis loss. Thisenergy is converted
to heat energy.

Area of B-H loop represents energy loss per cycle

perunit volume. Hence the loss of energy persecondis ()
— VAn; V =Volume of sample; A =Area of B-H loop
and nis thefrequency (number of cycles/s).

Electromagnet consists of insulated copper wire
wound over a soft iron core. [t i1s used in telephone
electric bell, electric motor, dynamo, telegraphy and
separation of magnetic materials from a mrxture. It1salso
used inmedical sciences.

For a permament magnet the material choosed,
should have high retaintivity and high coercivity. It should
also have high curie temparature and high saturation
magnetism, so that it does not get demagnetized due to
temparature, stray magnetic field and mechanical
impulses. Hysteresis is meaningless for permanent
magnet. For permanent magnet the suitable materials are
steel and alnico (Al+Ni+ Co). Inthese materials, the
domains once get orienated remains as such and the
external demagnetizing etfects are minimum. Permanent
magnets are used in galvanometers, ammeter, volmeter
and loudspeaker.

The material for a transtormer core, should also
have the properties that are required for electromagnet 1.e
highp, high y  highretaintivity. Anextra quality ot low
hysteresis is required. For transformer core the suitable
materials are, superalloy, transformer steel (soft iron 4%
silicon) and p-metal (CutFe+Ni+Mn).

Important Points

1. Magnets show directional and attractive properties. Both the poles can not be separated.

Magnetic field lines are imaginary close loops. The tangent drawn at any point gives the direction of magnetic

Super position of magnetic fields ot two magnets givestwo points, where mahnetic field is zero, these points

2.
field at that point.

3.
are called null points.

4. Themagnetic moment of following dipoles is as given -
(i) For bar magnet M =pole strenth x ettective length
() Forarevolving electron
M=1/2evr =1/2e0r’

5.

(i) Torque 7 = Af < B

(i) Potentialenergy 7 — _Af . B
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When a magnet of manetic moment Mis placed in niform magnetic tield B (i) net force onitis zero.



(v)work doneinrotating the magnet 1s
W =MB(l-cos8)
6.  Magnetic axis doesnot coincide with axis of rotation of earth, but it makesanable 11,3,
The quantities that give complete infromation about earth's magnetic tield are called elements of earth's
magnetism, they are (i) angle of declination (i) dip angle (i) Horizontal component of earth;s magnetic tield.
8.  TheGauss's law for magnetismis
d,=§Bds=0
&
9. Ifamaterialiskept in magnetic field B | then magnetizing field or magnetic intensity H= E.) 7
Magneticintensity / =M /}”1.e magnetic moment per unit volume.
: o M
10. Magnetic susceptibility %, = e
11. Relationbetween y, ,and g isgivenas
p=uy(l+z,)
,U = zuljlur qu' = ] + Zm
12,  Magnetic materials are classified as diamagnetic paramagnetic and ferromagnetic according to their reaction
toB.
13.  Diamanetismis dueto orbital motion of electrons, paramagnetismis due to orbital and spin motion ot electron,
ferromagnetism is due to domain property.
14. Thehysteresisloop or B-Hloopisused to study magnetic properties of of materials, and in selecting suitable
materials for electric devices.
15, Diamagnetism does not depend on temparature for paramagnetic material , = 1/ 7 curielaw. For
1
ferromagnetism Am = 7_ 7 (curie-wiesslaw).
o
where T =Curie temparature
Questions for Practice
Multiple Choice Questions - 2. Forsuper conductors, magnetic susceptibility is -
1.  Iftwomagnetic poles of unit pole strength are at (a)+1 (by-1
Im distance in vacuum. The force between them (c)Zero (d) Infinite
will be - \ . - i
3. Magnetic susceptibility of free spaceis-
@) 4rx10' N (b) 47 N (a)+1 (b)-1
A (c)Zero (d) Infinite
()10 N (d) 07
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10.

11.

The magnetic susceptibility is negative and very
smallfor -

(a) Feromagnetic materials
(b) Paramagnetic materials
(c) Diamagnetic materials
(d) All ofthese

The relative permeability of a meterialis 1.0001 the
material willbe -

(a) Feromagnetic (b) Paramagnetic
(c) Diamagnetic (d)Non ofabove
Theunit of magnetic moment is -

(a) Wb (b) Wb/ m?*
(c)A/m (d) Am*

Wb x A/mis equal to -

(a)J (b) N

(c)H (d) W

Magnetic tield does not interact with -

(a) Another magnetic field

(b)Accelarated magnet
(c)Astationary chagre

(d) Moving electric charge
The cause of diamagnetismis -
(a) Orbital motion of electron
(b) Spinmotion of electron

(c) Paired electron

(d)Nonof'the above

Magnetic moment of diamagnetic substances -
(a) Infinite (b)Zero

(c) 100 Am? {(d) Nonoftheabove

Relative permeability of ferromagnetisc substances
18-

(a)>1 (b)>>1

(c)=1 (d)=0

Thevertical component of earth's magnetic field is

Zero ete,
(a)Magnetic pole {b) Geographical pole
{d)Non ofthe above

The area of hysteresis loop of a substance

(c)Magnetic meridian
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represents -
(a) Energyloss per cycleto magnetise the material

{b)Energyloss per unit volume per cycle in
magnetizing the material

(c) Energy loss per unit volume in magnetizing
(d) Energy lossin magnetizing the material
Steel isused to prepare permanent magnet -
(a)Lessenergy loss

(b) Density of steel ismore

(¢) The residual magnetism is more

(d) Magnetism is not destroyed by ordinary
external magnetic field

At curie temperature, a ferromagnetic substance
becomes -

(a) Non-magnetic (b)Diamagnetic
(c) Paramagnetic (d)More ferromagnetic

Very Short Answer Type Questions -

1.

L

L NS

10.
11.

A magneticneedleis free to rotatein vertical plane
about horizontal axis. What direction it will
indicate at magnetic poles?

Name the type of magnetic material which does not
depend ontemparature?

How the value of dip angle changes in going from
equator to poles?

A magnetic material has magnetic susceptibility as
-0.085. What type of materal it is?

What isretentivity or remanence?

Name two paramagnetic substances.

What is magnetic meridian?

Where on earth's surface the dip angle is zero and
907

Write realtion between magnetic parmeability and
magnetic susceptibility for amedum.

Writeunit of pole strength.

What will be the value of dipangle, where the ratio
of vertical and horizontal component ot earth's

1
magnetic field is f ,

What ismagnetic Hysteresis?



15.

What will be the ratic of magnetic fields at the
points on axis and equator, equidistant from center
ofbar magnet?

What will be value of dip angle at a place where
vertical and horizontal components of earth's
magnetic field are equal?

What will be the change in magnetic moment of a
bar magneticif we bisected it along its length?

Short Answer Type Questions -

11.
12.

13.
14,
15.

Find the expression for potential energy ofabar
magnet placed inuniform magnetic field B, such
that the anglebetweenits dipole moment and B1s.

How you will identify rods of paramagentic and
diamagnetic substance?

Why we get two null points for abar magnet? Can
we get only one null point? How?

Why soft iron is used for electro magnets.
A bar magnet of magnetic moment Af is placed

parallel to uniform magnetic field B . Whatwill be
thework doneinrotating it by 90°?
Difine angle of declination and dip angle.

Write down curie-wies law and write the value of
curie temparature for iron.

Write four properties of magnetic field lines.

What 1s the behaviour of diamagnetic,
paramagnetic and ferrcmagnetic substances in
non-uniform magnetic field?

What is Gauss's law for magnetism? What does it
indicates?

Why magnetic field lines are closed loops?

Compare magnetic tields of a bar magnet and a
current carrying sole noid.

Whatis cause of earth's magnetism?
What are uses of hysteresis curve?

Find the expression for torque on a bar magnet
placed at angle withunitorm magnetic field. When
it willbe maximum ?

Essay Type Questions -

1.

What are elements of earth's magnetism? Detine
them and show with a labled diagram.

210

What is meant by hysteresis loop? Draw it and
define its main physical quantities (specilities).
Explain diamagnetism, discussits properties. Write
five difference between paramagnetic and
diamagnetic substances.

What 1s curie temparature? Explain how the
magnetic susceptibility of paramagnetic,
diamagnetic and ferromagnetic substances depend
on temparature? Also write law regarding it

Write specilities of the materials used for (1) Electri
magnet (1) Permanent magnet. Also write their
uses.

Anwers (Mutliple Choice Questions)
1.{A) 2.(B) 3.(C) 4(C) 5.(B) 6.(D) 7.(B)

8.(C) 9.(A) 10.(B)
14. (D)

11.(B) 12. (D) 13.(B)
15.(C)

Numerial Questions -

|F¥]

A bar magnet of magnetic moment 20 Am?is
suspended inuniform magneticfield of 0.86T. Find
the torque inrotating it by 60,

(863 Nxm)

The horizontal component of earth's magnetic field

at certain placeis B, =0.5x10™ Wb/ m" and

dip angle1s 45”. Find vertical component of earths
magnetic tield.

(Sx107Whb/m™)

Aniron rod of cross section 1 cm?is placed in
magnetic field of 200 orested. It proudces a
magnetic field of 3000 G. Find magnetic
permeability and magnetic suceptibility of the
material,

(15 and 14)

For a sample ofiron the following relation holds -
M= {%JﬁlelO_ﬂ H/m
H

Find the value of H which produce amagnetic field
of I T

(500 H/m)
Amagpnetic field of 2 x 10° A/m. produces a field



10.

11.

87 T in a sample of iron rod. Find relative
magnetic permeability of the sample.

(10%)
A sample of volume 30 em® 1s placed in magnetic

tield ot 5 orested. The magnetic moment induced is
6A/m?. Find magnetic induction.

(0.2517T)

A sample of ferromagnetic material ofmass 0.6 Kg
and density 7.8 x 10° kg/m’ is placed in a
alternating magnetic field offrequency SOHz. Ifthe
area of hysteresisloopis 0.722m’, Find hysteresis
loss per second.

(2.777x10))

The curie temparature of ferromagnetic material is
300K. Ifthe magnetic suceptibility at 450 Kis 0.6.
Find curie constant for it.

(90K)

Magnetic susceptibility for a paramagnetuic
material is 0.60 at 120 K. Find its magnetic
susceptibilityat 27°C.

(0.24)

Aniron rod of cross section 4 cm? is placed
parallel to a magnetic field of 10° A/m. Ifthe
magnetic flux passing through itis 4> 10 *Web.
Find magnetic permeability, relative magnetic
permeability and magnetic susceptibility ofiron.
(10 *Web /A x m, 796, 795)

A circular coil of 100 turns and radius 0.05 m, has
acurrent 0.1 A. Find the work done inrotating it by
180"ina fieldof 1.5T.

(0.236 1)
A coilin the form of unilateral tringle of side /15

suspended inmagnetic 5 which s perpendicular
to plane of coil. Ifthe current in the coil is [ and it
experience a torque T; find the expression for
length of one side of the tringle.

() |
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Chapter - 9
Electromagnetic Induction

Inprevious chapter we have seen that a magnetic
field isassociated with moving charges and current. The
aboveinvention by orested raised questions to scientiests,
1s the converse effect possible 1.e. can a magnetic field
produceelectric field which establishe electric current in
a closed circuit? The answer is yes.

Experinments conducted independently by
Michael Fraday and Joseph Henry conclusively showed
that electric currents were induced in closed coils when
subjected to varying magnetic fields. This phenomenonis
called electro magnetic induction.

Experinments by Henry not only confirms the
aboveinter-relationship but gave many practical utilities of
phenomenon of electro magnetic induction. For example
the electric generations which supply electric power to
our homes and work places works on electro magnetic
induction. Theelectric furnaces in which metals are melts
in large amounts safely, works on electro magnetic
induction. Now adays use of induction stovesis popular
inkitchens, rapidly replacing the traditional stoves. Inthis
chapter we will study the principles related to electro
magneticinduction,

9.1 Magnetic Flux

Before studying the experinments performed by
Faraday and Henry, we must get familiar with a physical
quantity magnetic flux, which helps qualitative and
quantitative explanation ofthese experinments. We will
define magnetic flux as we have defined electric fluxin
chapter 2. Magnetic flux is measure of number of
magnetic field lines passing through a surface. The
magnetic flux dg, through an small area element d4
placed inuniform magnetic field B canbe given as

dg, = B-dA ...9.1(a)

Itis a scaler quantity. The area elements ¢4 isa
vector normal to its geomatrical arca.
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e

B
Fig. 9.1 (a) : An arca placed in magnctic ficld arc
magnetic flux

The total magnetic flux passing through a surface
placed inmagnetic ficld £ is summation of magnetic flux
passing through all such small arca clements.

Hence fhix passing through a surfaceis given by
8, = [dg, = | B-dA ... 9.1(b)

Hereintegralis considered over the surface area of
surface under consideration.

Asaspecial case magnetic flux passing through a
plane surface placed inuniform magnetic g is:-

$,=BAcosd . .(6.2)
A
/@/z

/Y7

Fig. 9.1 (b) Plane surface of area 4 placed in uniform

magnectic ficld, arca vector 4 is normal to surfacc and
outward

Here & is angle between directions of normal to
the surface and magnetic field B . Foragivenarea ¢, is

maximum when cos#& is maximumi.e. cos&d =1 or

¢ =0° .Inthissituation B and 4 are parallel and
¢Bmax = BA l

Inthecaseof @ = 90° (here g and 4 arenormal



to each other) the magnetic tlux is minimum and zero.
Hence

¢’B111i11 = 0

Outgoing flux tothe surfaceis taken as positive and
flux entering the surface is taken as negative.

Because magnetic field lines are closed curve or
loop, so the total magnetic flux associated to a closed
surtace isalways zero.

PB-dd=0

This1s called Gauss law for magnetism. Magnetic
flux 1s a scalar quantity, its dimensions are
[MLET ‘A 1] _Its S.1. unit is weber (Wb) or Tesla -

Joule x sce _

Coulumb volt x

meter®. (Tm?*) as Joule/ Ampere =
sec, these unit can also beused

Unit of magnetic flux in CGS is maxwel (Mx).
maxwel and weber are related as follows :-
1 Wb=1Vxs=10"emu of potential = 10* Mx

Example 9.1 : A circular coil of area
(3i + j+2k) * 10°m? is placed in a magnetic field
(27 —2k)x10 * T. Find out magnetic flux passing
through the coil.

Solution : Magnetic fluxis givenas :-
¢, =84
¢ =(27 —2k)yx10™ (31 + j+ 2k} x 107
=8 (6—4) x 10°Wb
$, =2x10 ‘Wb
Example 9.2 : A circular coil is placed in a

magentic field 5x10 *T at 60° angle to the field. Ifthe area

of coil is 4m- than find the amount of magnetic flux
throughthe coil.

Solution :

X
N

N/
¢, =B- A= BAcosd

Y

Y

B
»
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Here 9 is anglebetween normal to the plane ot coil
and direction of magnetic field 3 .

g =30°

Putting values of B, Aand dwehave
$,=5x107

~

:5x']0"3x4x%:10\/§><10 *Wb

9.2 Electroc Magnetic Induction

For the description of electro magnetic induction
we will study first the three experiments carried out
independently by Faraday and Henry. Understanding of
different phenomenon related to electro magnetic
induction are based on these experiments.

Experiment 1: Letusconsider a closed circuit of
Galvano meter G and a coil C asshownintig9.2. Here
coilis not connected with any source of e m.t. (i.e. cell or
battery). North pole of a bar magnet is kept towards the
coil. As we move north pole of the magnet towards the
coil, the pointer of the galvanometer shows deflection.
But as the north pole of bar magnet moves away trom
the coil, the pointer of galvanometer deflects in opposite
direction.

Fig. 9.2 : Electromagnctic induction north polc of bar
magnct moving towards coil

If south pole of bar magnet moves toward or away
fromthe coil, the direction of deflectionin galvanometeris
opposite to the direction of deflection formetion of north
pole. Ifthe magnet moves faster towards or away from
the magnet, relatively large deflectionis observed. Ifthe
bar magnet is held fixed and co1l Ci1smoved towards or
away fromthe coil same effects are observed. However,
when coil and bar magnet both remain stationary
galvanometer showsno deflection.



Experiment- 2 : Inthis experiment bar magnet is
replaced by another coil C, connected witha cell. When
coil C, having current moves towrds or away from the
coil C , the same effects are observed as in experiment
one.

When coil Cisbrought towrds C, galvanometer
shows some deflection and when coil C, isbrought away
from C, galvanometer shows deflection in opposite
direction. If coil C,is held fixed and coil C, moves
deflection is observed in galvanometer. When both coil
C,and C, are held fixed no deflection is observed in
galvanometer.

8

/
®
G

(b)

Fig. 9.3 (a) Induced current due to motion of C,
(b) Induced current in C, due to change in currentin C,

Experiment - 3 : The above two experiment
involve relative motion between magnet and coil and
between two coils. But Faraday showed that for electro
magnetic induction relative motion is not an absolute
requirement. As showninfig. 9.3 (b) ifboth coils C, and
C, remains stationary and the key connected tocoil C_is
pressed, there is amomentary deflection in galvanometer.
When the key is released there 1s again momentary
deflection in galvanometer but now in opposite direction.
Whenkey ispressed continuously there is no deflectionin
galvanometer.

Deflectionin galvanometerincreases when number
ofturns of the coil increases and a softironrod s placed
inside the coil.

9.2.1 Conclusions From Experiments

Faraday explained the results of experiments on
the basis of magnetic flux. According to Faraday when
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magnetic flux associated with coil varies anemfis induced
in coil due to which a current is also induced.

When coil and magnet remains fixed relative to each
other or steady current flows through the secondary coil
C, then magnetic flux through the first coil remains
unchanged. When coil and magnet have relative motion
or when varible current flows through the secondary
coil,the magnetic flux varies through the first coil.

By moving the magnet near to the coil C, or by
increasing current in secondary coil C,, magnetic flux
through coil C, increases. According to Faraday,
variation of magnetic flux associated with coil C,
develops induced emf in the coil.

Induced e. m.fisas larger as the rate of change of
magnetic fluxis faster.

The phenomenon of developing induced emtin coil
due to variationin magnetic flux through the coilis called
electromagnetic induction.

9.2.2 Faraday Laws of Electromagnetic Induction

Fromthe experimental observations Faraday gave
two laws for electro magnetic induction which are called
Faraday's law of electro magnetic induction laws.

First Law :- When magnetic flux assoicated witha
closed circuit varies, an emfisinduced in thecircuit. Ifthe
circuit is closed an induced current develops due to this
induced e. m.finthe circuit, the induced current persists as
long as themagnetic flux is varied.

Second Law :- According to this law "the
magnitude of the induced emfis equal to rate of change of
magnetic flux" associated with coil. If induced emf'is
denoted by & , than mathematicallyit is given as

dg,

£= ...9.3(a)

It
For a closely wound coil of N turns, variation of
flux assoicated with each turn is same. The total induced
emtisgiven by -
s
dt

(the negative sign in this equation is due to the
Lenz's law discussed later)

.93 (b)

Fromtormula ¢, = B4 cos& tluxcanbe changed
by changing tollowing processes-

(1) By changing magnetic field B.



(1) By changing total area of the coil or part of area
associated with in the magnetic field. For example by
stretching or by shrinking the coil (by changing the shape
ot coil) or by pushing the coil inside the tield or pushing it
out ot field.

(111) By varing the angle between the direction of
magnetic field B and normal to the plane of the coil (or
plane ofthe coil itself).

For example rotating the coil ina magnetic tield B in
such a waythat initially B remains normal to the plane of
coil and afterwardsit is in the plane ot coil.

Example 9.3 : Acoil is placed in magnetic field
B sothatitsplaneisnormal to the field. Ifmagnetic flux
associated withcoilis ¢, = (21~ — 67 + 9)mWb thenfind
theinduced emfat¢=5 sec.

dby

Solution : Inducede.m.f £ =— o

given ¢, =(21° —6(+9)mWb

&= —%(2:2 —61+9)=—(4(-6)mV

t=35s
g=-(4x5-6)=-14mV

Example 9.4 : Graph given below shows a time
dependent magnetic tield B (¢) that exists uniformly over
a conducting loop. Direction of magnetic field is normal to
the plane otloop. Arrange four parts a,b,c and d ot figure
in order ofinduced emftirst greatest.

B(7)

B(]

B,

A
Solution : Magnitude of induced e.m fis given by

- |12
dt

Here ¢, = B(1) 4

As B(¢} 1s normal to the plane of loop and
A is constant

=4\ o
ddt dt
(1) Inpart(a)B(¢r)=o0
=0
. 45| _|ABI_5,-0 _ B,
(1) Inpart (b) al (|l 277" 71

dB
(i) In part (c) = 0 (here B=Bo = constant)

|d3‘:| b, -0 |:&
lar| |51-31] 27

Hence induced emfis in decreasing order as
follows -

(iv) Inpart (d)

£,>8,>8, 28(,(20)
9.3 Lenz's Laws

By Faraday's law we can find the magnitude of
induced emf but the direction ofinduced emfand
induced current isgiven by Lenz's law.

"According to lenz's law the polarity of induced
e.m.fand directionotinduced current in the circuit is such
that it opposesthe change in magneticflux that produced
it_ "

FromFaraday and Lenz's law :-

__d¢,
g=—— ..(9.3)
For coil having N turns : -
dg
— _PVT 14
€ w L (9.4)

When magnetic flux through the coil increases the
direction of magnetic field lines duetoinduced current is
opposite to the original magnetic field lines. When
magnetic flux through the coil decreases the direction of
magnetic field lines due to induced current 18 in the
direction of original magnetic filed lines.

Infig. 9.4 north pole of a bar magnet moves
towards onface of a coil, direction ofinduced current in
the coil is such that this tace of coil behaves like a north
pole. There is a repulsion between bar magnet and coil so
induced current incoil opposes the motion ofbar magnet.



(V)

Fig. 9.4 : Moving magnet towards stationery coil

S N|

—_—

Infig. 9.5 when north pole ot a bar magnet moves
away form the coil, the direction ot induced current in the
coil is suchthat the face towards the magnet behaves as
south pole. There is attraction between coil and magnet,
so the induced induced current opposes the motion of

' S

Fig. 9.5 Magnct moving away from stationery coil

IERS

B J—

InLenz'slaw
g=—d¢,/dl

The negative sign gives the direction of induced
emf,

What will happenifan open circuit or open coilis
used in place of a closed circuit. In this case emfis
induced due tovariation in magnetic flux but there isno
induced current.

9.3.1 Lenz's Law and Conservation of Energy

Lenz'slawisbased on the law of conservation of
energy. Let usimagine that the north pole of amagnet
moves towards the coil and the direction of induced
current is such that plane of coil towards magnet behaves
as south poleand not as anorth poleas discussed . The
coil attracts the magnet and it is accelerated. Due to
acceleration the induced current in the coil also increases
which produces greater force on magnet and
acceleration also increases. Hence kintetic energy of
magnet and rate ofheat °R, in the coil increases. Henceif
initially we push magnet slightly towards the coil its
velocity and kinetic energy increases continuously
without spending any energy furtherwhich violets the law
of consevation of energy. Hence ourimgination is wrong.

Inthe experiments for electromagnetic induction
we have seen that tfor keeping the magnet in motion
external work isto be done against induced emt. Where
does the energy spent in work goes? The mechnical
energy spent in work converts in the form of electrical
energy. Mechanical work done by external source is

216

equal to energy dissipated by Joule heating due to
induced current. Hence Lenz's law follow the law of
conservation of energy.

9.3.2 Induced Current and Induced Charge

According to Faraday's law induced emf'in coil
having N turns is
NS
dt

£ =-

Ifarea vector 4 ofcoilisalong magnetic field B
than magnetic flux ¢ = B4

d
= -NZ(BA
& dz( )

It 4 isfixedand B isvariablethan

dB
g=—NA—
” L (9.4)
If 5 isfixedand 4 isvariablethan
A
e=-NB— 95
I .. (9.9)

[fthe total resistance of circuit 18 R than induced
currentis
_Ndg,
R dr
Induced charge intime interval dtis
dg=1Tdt

I=—= .. (9.6)

N
dg=—""d
7= /8

Iftflux changes from ¢; to ¢, thaninduced
chargeis

N gy,
Jda=-Z 1, ¢
q= _%(gﬁb’: _@!’Hl)

‘NT
qzﬁ(quﬁ _éﬁl) ... (9.7
From above equation it is clear that magnitude of
induced charge depend on change of flux but does not
depends onrate of change of flux.



Example 9.5 : Acoil ofarea 1.6 cm- having 50
turns placed inmagntic field of 1.8 Tin0.3 sec. The plane
of'coil is normal to the direction of magnetic field lines.
Find the amount of charge flownin coil itits resistance is
108,

Solution : Flux passing through each turn of coil
having area A placed normal to magnetic field is

&, =84
¢ =1.8x1.6x10™ =2.88x107 Wb
From Faraday'slaw induced e.m.f

2.88x10*
X ———

LA

5:—N%:—SO =—48x107”V
dt

Magnitude ofinduced e.m.f
le] =4.8x10°V

1s Induced currentin the coil

lel _48x107
R 10
Induced chargein coil
g=TA1=48x107"x03=144x10"C
9.4 Flemings Right Hand Rule

Fleming's right hand rule gives the the direction of
induced current. Accordingto thislaw ifthe fore finger,
central finger and thumb of right hand are held
perpendicular to each other asin fig (9.6). If fore finger
shows direction of magnetic field and thumb shows
direction of motion than central finger shows direction of
induced current,

/= =48x107 A

Moiiun

Right 1land
Magnelic Ficld

<

Induced Cmrent

Fig. 9.6

Example 9.6 : Explain direction of induced
current under tollowing situations :-

A
HE__N C}
—_— B P SE—

! I

—" ©

(i

NN

A B C

. ! ; . . ;
(1v) direction of induced current in the loop

when current decreases unitormly.

X Y
QUoOULY QUoeuy
)
C ¥
Solution ;

(1)  According to Lenz's law direction of induced
current inloopis from B toA. Hence plate Awillbe
positive and palte B negative.

() Loocking from the side of coil P direction of
induced current in coil S1sclock wise.

(i) Thereisnoinduced current in coil B dueto current
in coil Cbecause C coil is fixed. Looking trom the
side of coil A the direction of indcued current in B
isanti clockwise.

(iv) Therateofchange ofmagnetic flux associated with
circular loopis constant hence current willnot be
induced ntheloop.

(v)  Assouthpole moves towards coil X the induced
current is in the sense a ¢ b and as north pole
moves away fromcoil y the induced currentin it is
thesenseqrp.



9.5 Induced emfin a Conductor Rod Moving in a
Uniform Magnetic Field

Infig. 9.7 uniform magnetic field B is shown by
dots. Its directionis normal to the plane of paper and
outward. A conducting rod ab oflength 11s placed
perpendicular to the field, and the rod ismoved witha

constant velocity ¥ perpendicular tothe direction of both
£ and magnetictield 3 .

-b-
1 1 L1
1- 1 -'_ 1 L4
1 1 1 V
o
1 1 - 1
1 1 - 1
I+-F'HF-+ 1

Fig. 9.7 : Motion of conducting rod in
perpendicular magnetic ficld

The free electrons present in conducting rod also

move with velocity V inmagnetic field. Magnetic force on
moving freeelectrons is

F =q(vxB) ..(9.8)
hereis ¢ charge of an electron. According to figure

for positive charge the direction of ¥ x B isfrombtoa.
Hence magnetic force on electrons because ofnegative
charge isfromato b along the length of conductor. Due
to drift of electrons there 1s excess of electrons'sat and b
and deficiency of electrons at and a. Hence there is
excess of negative charges at end 'b' and excess of
positive chargeatend ‘a’.

Due to accumulation of opposite charge at both
ends of the rod a static electric tield get developed
between the edges. The drift process dueto motion of
conductor continuoustill the force on electron due to
electric tield isbalanced by the torce of magnetic field.
Force on electron of charge g dueto electric field E 1s

F =gk ...(9.9)
Inthe state of equilibirium

q!f+q(\7'><ﬁ;):O

E= —(V x i_j;)
i.e. the direction of ; is opposite to direction of

v x B orinside conductoritis from end ato end b ends
magnitude of electricfield £ =vB .
Due to this electric field E, an emfg is induced
between two ends of conductor.
Hence
g =work done indisplacing aunit positive charge
against electric field from one end to another end.
=Force onunit positive charge x displacement.
g=F¢
or g=vBf ... (9.10)

Ifthe direction of ¢ 1staken fromnegatively charge
end to positively charged end and the conducting rod is
moving at an angle g withthe direction of magnetic tield
lines than component of v perpendicular to the direction
of Bis ysin @ . Insuchacase induced emfbetween the

ends of conductoris givenby Bv¢sin 6. The induced
emfis zero when conductor moves along the direction of
magnetic field.

Example 9.7 : Acubeis made by joining twelve
straight conducting wires. Length of each armis 5 em.
Cubeis moving ina magnetic field ot 0.5 T with velocity
Sm/sec.

TV

E— m—

B B
(i) If cube moves along the direction of magnetic

field than what is induced emfin each arm.

(11) If cube moves perpendicular to the direction of
magnetic field than what 1sinduced emfon eacharm,

Soltuion : (i) Infirst case the velocity of conductor
1s parallel to magentic field hence induced emfalong each
armis zero.
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(11) Induced emf will not develop along arms
AB,CD,EF and GH because they are parallel to
magnetic field. Arms AE, DH, BF and CG ara parallel to
direction of velocity, hence induced emfalong these arms
is zero. Arms AD, BC, EHamd FG are perpendicular to
both velocity vand magnetic tield B, induced emf along
eacharmisgiven by -

&g=hHvé
=0.05x5x5x%10°¢
=125x107°V

Example 9.8 : Aconducting rod oflength 40 cm
is placed perpendicular to amagnetic field of 0.5 T. The
rod is moving with velocity 15m/s at an angle of 30" with
magnetic field. Find induced emtacross the rod.

Solution: £ = BFlsiné
=0.5%x15%x0.4sin30°

:O,Sx']Sx0,4x%: 15V

Example 9.9 : Two lines of arailway track are
separated from each other and also from earth. They are
connected by amilivoltmeter. When a trainmoves on this
track with speed 180 km/hr then what is the reading in
milivoltmeter. Distancebetween the railway linesis 1 m
and vertical component of earths magnetic field is
0.2 x 10°T.

Solution : Induced potential difference between
raitwaylines- g = By/

1805

S50m/s

given v =180km/h =

B=02x10"Tand /=1m
£=02x10"x50x1
=1x107 V
=1mV
9.6 Induced emf and Current in a Rectangular
Loop Moving in a Non Uniform Magnetic Field

In fig 9.8 a conducing rectangular loop or coil is
placed perpendicular to a non uniform magnetic field.
Suppose magneticis B, ofarmaband B, onarmed.

Coilis moved with ¢ velocity v perpendicular to
magnetic field in such a way that direction of velocity is
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perpendicular to armab and cd.

A
B,
° Y e el S e e
i
1
i
® * * * o o
oy
° e ® e g °
1
i
® L @ Ho ®
d
* * ® ® »

LA

Fig. 9.8 Motion of rectangular loop in
non uniform magnetic ficld
Suppose length of arm ab and cd is /. Distance
traversed by coilin small time interval AzisvA 7. Area
crossed by arm ab and ¢d is A4 = /vAr . Magnetic
tields in these small areas can be taken as B. and B...
Fromfig 9.8itis clear that the area which comes out of
magnetic tield B, on left side and same amount of area
enters inmagnetic field B, onright side. Due to motion of
coil decrease inmagnetic flux crossing through coil on left
sideis
b, =B xAd=BivAt . (9.12)
Increase in magnetic flux crossing through coil on
right sideis
d;, = B, x A4 = B vt ..(9.13)
Change in magnetic flux passing through coil

A¢I3 = ¢I32 - ¢,r31 = (Bﬂ —B] )f vAt

.. (9.14)

Ag, .
—_ Bﬂ —B { 1
Hence A ( 2 1)

According to Faraday's law, the induced emf

_ AP, _—dg,
At dt
or g=—(B, - B){v
g=(B —-B)v ... (9.15a)
Ifresistance of coil isR than induced current inthe
coil



_E (B -B)V
R R

9.7 Energy Conversation

! ...(9.15b)

Infig 9.9 (a) conducting loop abed is placed
perpemdicular to nonuniform magnetic tield. Suppose
loop moves with velocity v. Due to motion of wire'ab' in
magnetic field positive charges accumulate at end a and
negative at end b. Inthe same way on wire cd positive
charges accumulate at end b and negative at c.

F 74 B,
A

a

¢

r
x
x
+
+
+
¢
¢

Fig. 9.9 Force on current carrving conducting in
magnetic field

It B, > B, than amount of positive chargeatend a
is greater thanat end d.

Induced currentin loop flows in direction adcba.
Let this induced current be 1.

By torce on current carrying conductor in magnetic
field, the force onlength/ofarmabis

F =B (towardslefi side)
Inthe same way froce onarmed
F,=1/B, (towardsright side)
Resultant ofthese two forces
F=F, -F,

F=1/B, -1/B, (towardleft side)

Forces F_and F, on arms bc and cd are equal in
magnitude and opposite indirection. Hence they cancel
each other.

When loop travels a distance vAzin time A /
towards right side work done against force F is

W = FAx = T£(B, - B,)vAt

[ E BB
R R
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{:"_’vl
R
Energy spent in this work doneis converted into

electrical energy inthe circuit and ultimately dissipated in
the form otheat.

W=(B-B) —At ... (9.16)

H=1"RAi
On puttingvalue of 1

(BB
R'_’

H x AL

_ (Bl _ Bz)z‘ﬂvz
- R
Fromequations9.16and 9.17

W=H

We see that power delivered by the external force

is equal tothe thermal power developedintheloop. This
is consistent with the low of energy conservation.

H At {917

Example 9.10 : Length of arm of a squareloop s
1.5 m. Half of the loop 18 in magnetic field 2.5 T and
remaining halfpartisin | T, Itismoved with a velocity
7.2 km/hr perpendiculatr tomagnetic field. Find induced
emf,

Solution : Induced emt’in a loop movinginanon
uniform magnetic tield
e=(B —-B, v
Here A =25T, B, =1T, f=15m

7.2x5

|1 =2m/s

£=(25-1)x2x1.5=45)

Example 9.11 : 2mlong conducting rod is placed
perpendicular to amagnetic field of 1 T. Rod is moved
with a velocity 0.6 m/s perpendicular toits length and
magnetic tield. If conducting rod is connected across a
resistance wire of 12 €2 . What 1s the required torce and
power for motionof rod. What is rate of heat production
inthe circuit.

Solution : Force on current carrying conducitng
palced in magnetic filed



F=I(¢xR)

F=1{Bsin90° =7fB

or F=01x2x1=02N

Foruniform motion of rod an opposite force of
same magnitude as of above force 1s required.

Required power for motion ofrod
P=Fv=02x06=012W

Rate ofheat produced in circuit
H=I"R=(01)"x12=0.12W

9.8 Induced emfin a metal rod rotating in a
Uniform Magnetic Field

Intig. 9. 10 uniform magnetic field B is shown by
cross (x) its direction is inward perpendicular to the plane
of paper. A conducting rod OA oflength Lis rotating
with uniform angular velocity @ anti clock wise in this
magnetic field. Let us consider a small element o/ of rod
moving perpendicular to magnetic field with velocity v.
Magnitude of induced emt’in this small element.

=

® WX

Fig. 9.10 Conducting rod rotating perpendicular toa
unifornm magnetic ficld

de = Bvdf
If small element is at distance 1 from centre than
v=wf
Hence de=Bowfdf

Induced emf across the rod is equal to the
integration of above equationfromOto L.

jde = jB(z)fd{f
il

1

SZEB(MF ... (9.18)

By Fleming's right hand rule and in view of direction
of magetic field and direction of rotation the induced
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current 18 directed from Ato O and the end O of rod if
positively charged and A is negatively charged for this
case.

If frequency of rotation of rod is fthan

o=21f
£= %Bxbrfx]f

=Bxxl’x f
Suppose area of circle traversed by rod in
magnetic fieldis A
zlm = A
£ =BAf

9.9 Induced emf in a metal Disc Rotating in a
Uniform Magnetic Field

and ... (9.19)

x % ® ® ¥ X

“ L5005 A o »%

x X % & X F %
L0

b ¢ 5 Ay e

x ox X Tx  x X

Fig. 9.11 Conducting disc rotating perpendicular to
magnetic ficld

A uniform magnetic field B perpendicular to plane
of paper and inward is showninfig 9.11 by cross (x). A
metallic disc of radmis r1s rotating in this magnetic field
with angular velocity o inthe plane of paper anticlock
wise. Disc canbe considered as made up of many rods
having one commonend at the centre O of the disc and
other end at the circumference. Length ofeach suchrod
Lisequal toradius#. Dueto rotation in magneticfield emf
will induced across each rod. The end at the centre is
positive and at circumference is negative.

emfacross eachrodis givenby -

8:%8(0?‘3 = BAf .. (9.20)
Because emfacrosseachrod is same and these are
connected in parallel. Hence resultant emf across centre

and circumference of discis & = BAf

4

‘8|: BxX7mr X
27



g :Lb'wr2 C.(9.21)
2
Example 9.12 : A0.5 mlong conductor rod is
placed in uniform magnetic field of 0.04 T. The rod id
rotating about its one end perpendicular to the plane of
magnetic field with angularvelocity 40 revolutions per
second. Find emf induced across the rod.

Soltuion : Induced emf /2 = BAf
E=Brff
given B=004T, #=05m_ =40 revolutions/sec
I£=0040x3.14x=3.14x04=1256 V

Example 9.13 : Diameter of a metallic gramo
phone disc 1s 0.20 m, the disc is rotating at the rate 40
rcvolutions/minute in horizontal plane. Vertical
component ot earth magnetic tield s 0.01 T. Find emf
induced between centre and circumference of'the disc.

Soltuion : Givenin the question

0.20

B=0017,radius (r =) = ——=00lm
40

f= 0 rev./sec

Induced emf £ = Bzv” f
=0.01x3.14x(0.1)’ xg: 2.09x107V

9.10 Induced emf Due to Rotation of a rectangular
Coil in Uniform Magnetic Field

Infig 9.12 (a) rectangular coil abed is placed in
uniform magnetic field such that its axis of rotation is
perpendicualr to magnetic field. When coil rotates at
angular velocity (o , the angle between plane ot coil and
direction ot magnetic field changes continuously. Hence
magnetic flux associated with coil also varies with time
which produces induced emf'in coil.

A O

Fig. 9.12 (a) Rotating rectangular coil in uniform
magnetic ficld
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Suppose at any instant 7 the area vector 4 isatan

angle @ withmagneticfield B . Numberofturns incoilis
N then flux passing through coil

¢, = N(B- Ay= NBAcosé

¢, = NBAcoswt ... (9.22)

b

Fig. 9.12 (b) Position of coil at time ¢ (top view)

Since magnituded of flux changes with time /the
induced emf given by Faraday's law is-

__déy
df

g= —Ni(BA Cos 1)
dt

. .(9.23)
.(9.29)

&= NBAosm ol

& =g,snwt
Here g, 1s maximum (Peak value of) induced emf.

&, = NBAw ... (9.25)

A graph drawnbetweeninduced emf £ and time/
is as shownintig9.13

Fig. .13 Graph between induced emf and time

Fromfig9.22 and 9.24 we see that induced emfis
zero (minimum) when flux passing through coil is
maximum and when flux passing through coil is mmimum
induced emfis maximum. Ifa resistor R is connected
with coil then current in the circunt

g &, .
=—=—sinwt
R

I'=1 smoft ... (9.26)



Here I, is maximum (peak value of) induced emf.

The emfand current given by equations (9.23) and
(9.206) are called alternating emfand alternating current
respectively. Thisisalso the principle of alternating current
generator.

Example 9.14 : A coil of radius 0.15 m having
3000 turns is rotated at 250 rev/sec in the horizontal

component of earth’s magnetic field B, = 4x107° T .
Find out maximum induced emf.

Solution : Induced emfin arotating coil
F = NBAw sinwt

Maximuminduced emf
k= NBAw

We have given N =300,B=4x10°T, #=0.15m
Jf=250rev/sec

E, ><4><105><3,14><(0.15)2><2><3.14><250

331V

Example 9.15: Ifaconducting coil after rotating
once on africtionless axle continue to do so with angular
frequency o without any external torque. If coil s in
magnetic field and not in a closed circuit than explain (1)
Whether emf'will be induced inthe coil (if) current will be
induced in the coil (111} 1s there a need of external torque of
for continuous rotation. (iv) Ifthe coil isin closed circuit
than how itsmotion is effected.

= 3000
|

Solution :
(i)  Duetorotation of coil in magnetic field the angle
between area of coil and manetic field changes,
hence flux through coil also changes which

producesinduced emf.
(i)
(iii)

Inopen circuit thereis no induced current

When current 1s not flowing, energyis not spent
and there is no need of torque for continuous
rotation.

If circuit is closed induced current flows in the
circuit hence according to Lenz's law angular
velocity of coil decreases and external torque is
required for continuous rotation.

Eddy Currents
When magnetic flux associated with a closed

(iv)

2.1
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electric circurt varies with time current isinduced in circuit.
In the same way when bulk pieces of metallic
conductor's are subjected to changing magnetic flux,
induced currentsare produced in them, their flow pattern
resembles with swirling eddies in water. These plane of
flowis normal to the direction magnetic field lines. These
are called eddy currents. These currents opposes the
motion of metallic pieces and also change inmagnetic
flux. These currents were discovered in 1895 by Focault
so also called as Focault current.

9.11.1 Experimental Demonstration of Eddy
Currents

Experiment-1 Infig. 9.14 ametallic plane plate
PQRS is placed perpendicular to uniform magnetic field
B, extended in alimited region, when plate1s pulled cut
of the field, the area of plate inside the field reduces
hence flux asociated with plate also reduces which
produces eddy current, in the plate. Direction of eddy
current 18 such that it oppose the motion of plate. This
type ofdampimgis called electromagnetic damping. In fig,
9.14 direction ofeddy currents are according to fleming's
right hand rule.

. Q . > . . R >
B ——
x ® " X ® x

Aoy
X X 4 e % X

- - - R

~
. P . > . \ . >
" eddy current

loop
Fig. .14 Experimental demonstration of cddy currents

Experiment - 2 A copper or aluminium plate 1s
allowed to swing like a pendulum between poles ofa
magnet. Theareaofplateassociated with magnetic field
changes with time. When plate enters and comes out of
field, the flux through plate is minimum and when it 1s
completely inside fluxis maximum. Dueto change influx,
eddy currents are induced in the plate, which dampsits
motion. Whenthe plate swings into the region between
the poles and when it swing out of the region some part of
mechanical energyis converted into heat and plate stops
after few oscillations. Here the oscillatory motion is
damped. Ifrectangular slots are made in copper plate it
swings comparatively more freely because thisreduces
the possible paths ofthe eddy currents considerably.



Fig. 6.15 Slotcd copper plate to minimisc cddy current

Inelectric devices, dueto eddy current electrical
energy 1s dissipated in the form of heat, hence eddy
currents are reduced by laminations of core of electric
devices. Core of transformer is made by thin plates
placed one over other and separated by an insulating
material ikelacquer. Plane of thin plates ofthe core is kept
parallel to magnetic field lines which increases resistance
and reduces intensity of eddy currents.

9.11.2 Application of Eddy Currents

(i) Dead Beat Galvanometer : When current
passes through a galvanometer its coil deflects and
oscilates, when currentis remeved coil takes some time in
coming to equilibirum position whichisnot required. So
coilismade by winding its turns on acopper frame. Eddy
currents are induced in the frame when coil rotates in
magnetic field which damps the motion of coil and 1t
comes to equilibirium position with in no time.

(i1) Brake in Electric Train :- The wheels of
electric operated trains are joined with metallic drums.
These drumrotates with wheels. Strong electro magnets
are situated above the rails. When electro magnets are
activiated, strong eddy current are induced in the drums
which opposes the motion of drum which apply brake on
trains. Asthereis no mechanical linkage the braking eftect
is smooth, free from wear-tear due to friction . Also the
breaking action is efficient at high sheeds as magnetic
force increases with speed.

(iii) Diathermy :- Diathermyis production of heat
in body tissuses for therapeutic purposes. A coil is
wound on the part of the body when current flows
through the coil which induced eddy current in tissues
which produced heating of soft tissues.

(iv) Induction Furnace :- Ininduction furnace we
get metals fromore. The metals to be melted are placed
in high trequency variable magnetic field, which induces
strong eddy currents in metals. These eddy currents
produces large amount of heat which melts the metals.
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9.11.3 Motion of Conducting Rod in Earth's
Magnetic Field

When a conducting rod of length / moves with
velocity vin earths magnetic field following cases are
worth considering :-

Case - I Motion of conducting rod when placed in

East-West direction and moves on perpendicular
direction :-

B,

B,

(1) For themotion along East or West direction the
conductor moves alongitslength hence area generated
A=0
~e=0
(i1) For themotion along north or south direction the
conductor cut's earths vertical component B
perpendicularly
- E=BVI

(111) The conductor crosses horizontal component
of earth magnetic field B when it moves vertically
upward or downward.

g=hyvi

Case Il : When conductoris placed horizontal and
moves in north-south direction and moves -

N

H 1
W > K
> /
by

(1) While moving along east or west directions the
conductor crosses vertical component of earth's
magneticfield B,

£=RVI

(i) Along its length in north or south directions,
then



~e=0
(i11) Vertically upward or downward in magnetic
meridian no component of earth's magnetic tield is cut.
L e=0
Case ITl : Whenconducting rod placed vertically
and moves

N
B, /
W - »
B, S / y

(1) Along east or west direction the conductor cuts
horizontal compnent of earths magnetic field B .

L eg=0

(i) Along north and south direction, conductor
moves inmagnetic meridian

g=B, VI

(111) The conductor moves along its length in
vertically upward or downward directions, then

. e=0
9,12 Self Induction

When current ina circuit or coil changes with time
the magnetic tield produced and tlux asociated with the
coil also changes. Due to this an emfis induced inthe coil.
This phenomenon is called selfinduction. According to
Lenz's law the direction of induced emtf'is such that it
opposesthe changein linked magnetic flux.

Experimental Demonstration

Infig 9.16 a conducting coil is connected witha
battery and keyin series. As the key ismade on a current
flows throught the coil and the magnetic tlux is associated
with coil. Initially as key is made on current rises with time
and induced magnetic tlux also rises and emtis induced in
the coil and induced current opposesthe battery current
in coil. when key is made off current in coil reduces to
zero, the flux associated with coil also reduces and
induced current flows in the direction of battery current.
Direction of induced emfisshownintig9. 16 whenkeyis
made onor off.

2258

Induced current
h

Induced L‘-urrenl_:

Current 1
1
+1, -

K

(A) When key is on {b) When key is off

Fig 9.16 Phenomenon of sclf induction
9.12.1 Coefficient of self induction

Suppose current I flows through a coil. The
magnetic field due to current is proportional to current
and there by the magnetic flux associated with coil is
directly proportionaltocurrent I, 1.e.

¢y x T
¢, =11

Here L is e constant of proportionality called
coetficient of self induction or self inductance. Self
inductance (L) depends upon shape and size of coil,
marterial of core, medium and number of turns.

IfI=1ampthen ¢, =1

Hence self inductance of a coil is equal to the
magnetic tlux linked with the coil whenunit current flows
through the coil. Due to variation of current, magnetic
tlux linked with coil changes hence by Faraday's law of
electro magnetic induction -

s,
dt
Ll
dt

negative sign showsthat induced emf opposesthe
change in current

If — a
df

Numberically, the selfinduction ofa coilis equal to
magnitude ot induced emt due to unit rate of change of
current.

Inducedemf € =—

... (9.28)

=1 than|e|= 7.

When key 1s made on current flows in the coil,
mnduced emf opposes the variation in current hence for the
continuation of current work is required to be done
agamst induced emf. This workis storedincoilinthe form



of magnetic potential energy.

Work done in time df for maintaining current 1 ;-

dw =|e|7dr = [f %)m = Lidl

Hence work done to raise current fromOto1 :-

W :judf
1,

W=_1I
2

If7— IthanZ —2 W

Hence seltinductance of a circuit is equal to twice
the work done against induced emf'to maintaine unit
current. Inductance is a scalar quantity its SI unit is
Henery (H) or Vs/A or Wh/A and its dimensions are
[M'L"T A ]

9.12.2 Self Inductance of a Plane Circular Coil

Suppose a current I tlows ina plane circular coil of
radius # having N turns. Magnetic field at the centre of

coil
5o M NI
2r

magnetic flux linked with each turn of coil due to its
owncurrent

¢'s = BA
Total magnetic flux linked with coil is then
NI

¢, = No', = NBA =L N(zr?)
2F
1N Txr
ég == D)
From definition of self inductance
¢, =11
/= HTNT aN°r
2

If'some material of magnetic permeability s filled
inthe coil then

HrN°r
2

9.12.3 Self Inductance of a Current Carrying
Solenoid

1= .. (9.30)

Suppose | current flow through a solenoid of area
of cross section A, lengthland having number ofturns N,
than magnetic field inside the solenoid atits axisis

B = pnl

N
Where # = n 1s number of turns per unit length.

Total magnetic flux linked with solenoid

¢, = N(BA4)
¢, = M x NA

N A

= 7
4, =
If'self inductance of selencid is T than

¢, =11
L= ’”NA_,u Al L (931)

If solenoid is filled with material of magnetic
permeability i than

L=pum At

In resistance box the resistance coil are doutly
twisted to remove the effect of self induction.

.{9.32)

Inwheat stone bridge experiment, first we pressthe
battery key and then galvanometer key to remove the
eftect otinduced current.

9,13 Mutual Inductance

Ifavariable current flowsin a circuit or coil, the flux
linked with an other coil inits vicinity also changes and
emf'is incuded in the second coil or circuit. This
phenomenonis called mutual induction.

Coilinwhich current varies is called primary coil
and the coil in which emfis induced due to mutual
inductionis called secondary coil.



T
{A) When key is on (b) When key is off

Fig. 9.17 Experiment for mutual induction

Intig. 9.17 coil P in primary circuit is connected to
battery B throughkey K and in secondary circuit coil S is
connected to galvanometer G Both coilsare placed near
be each other. As key K in primary circuit is pressed
thereis momentary detlection in the galvanometer G in
secondary circuit. WhenkeyK isreleased thereis again
momentary detlection in galvanometer but in opposite
direction. when key K is kept pressed continuously
constant current flows in primary coil P, there is no
deflection in galvanometer.

Reason for the above resultsis that when intially
keyis on madecurrent flows in primary coil magnetic flux
around the coil increases and fhix linked with secondary
coil also increases, which induces emfand current in
secondary coil. Inthe same way whenkeyismade offthe
magnetic flux through secondary coil decays hence emf
and current are induced in secondary coil. Inboth cases
the direction ofinduced emfand currentis such that they
opposes the change 1n magnetic flux. The current is
induced in secondary cotl only when the magnetic field or
magnetic flux of primary coil changes duetoits current.
This phenomenon isused in transformers and induction
coils.

9.13.1 Coefficient of Mutual Inductance

Ifposition, shape and orientation of primary coil
C, and secondary coil C, remainsunchanged and current

in Coi1l C 1s [, than magnetic flux ¢, associated with coil
C, isdirectly proporticnal to .

¢x1

6. =Ml ... (933)

Here M 1s a constant of proportionality called
coeflicient of mutual induction or mutual inductance
between the coils. It depends on number ofturns mboth
the coils, area of secondary coil and nature of medium.

It current incoil C, changes with time than flux ¢,
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linked with coil C, also changes, therefore induced emfin
coil C,is

&, = —

or ‘ ... (9.34)

dr

Negative sign shows that the direction ot induced
emfinsecondary coil is such that it opposes variation of
current in primary coil -

Fromeq. 9.331f [ = 1 thanM — ¢, , numerical

value of mutual inductance between two coilsis equal to
the flux linked with secondary coil when unit current
passes through primary coil.

Fromeq. 9.34

£ 1 than | =M
dt
Hence numerical value of mutual inductance is
equal to induced emtin secondary coil when there is unit
rate of change of current in primary coil. STunit ot M is
Wb/4 or V's/A or Henery (H) and its dimension are
[M'LAT A ?].
9.13.2 Mutual Inductance between Two Caoxial
Solenoids1

Suppose there are two air cored coaxial solenoids
S,and S, Number of turnsin S, and S, are N, and N,
and lengthand area of cross section of boththe coils are
and A respectively. Boththe coils are wound in such a
way that when current flowsin coil S, it produces
magnetic flux which is completely linked with coil S ..
Magnetic tield at the axis of coil S when1 current flows
throughit-

N
B = ﬂuF s = pn

Magnetic flux associated with S dueto field B, -

N.g, =N, BA=(uml)N.A= M

According to defination of mutual induction
N.¢, =Ml
Hence mutual inductance



M=

ﬂuf\f’!] Ny

£

Example 9.16 : Seltinductance of acoil is20 H.
For obtaining 100 V induced emf'to what value the
current isto be reduced in it in 1 second from an initial
valueof 10 A

) df A
Solution : Inducedemf e =1——=/1—
dt At
Here given L=20H
[=10A,T =1
E=100V
dit=1s
'100:20[]0_12}
1
10-1,=5
L,=10-5=5A

Example 9.17 : Inthe fig showncurrent at some

instant in circuit 1s / — 5 Aand is decaying at arate 10°4

S.Thenfind V-V .

7
A—MWWWA——] | >— T ——B

10 15V 5 mH
Solution : Rate of change of current in coil
dar _ ~10" A/s
ot

Voltage accross resistance R
V=IR=5x1=5V
Voltage accross termials of cell= 15 )

Voltage acrossindutance coil

dif e 3
:_ng—(smo 3)><(—|0--):5\/

terminal B is at higher potantial
V=V, =5VHISVH(-5)V =15)

Example 9.18 : Anair cored solenoid of radius 1
cmhas 100 number of turns. Its lengthis 60 cm. Find self
inductance of solenoid.

Solution : Selfinductance /. = ﬂ')!ﬂ

Given N =100, £=0.60m,
A=7xr’ =3.14x(01yYm’

;4w x10 7 x(100)° x 7(0.01)
0.60

=06573 x 107
=06.573 x 10*H

Important Points

1.  When vectorarea 4 isplaced in magnetic field 5 , 4 isat anangle 8 with 2 , magnetic flux passing

through 4 isgivenby

$,=B-A=BAcoso

2. FaradayLaw :-Accordingto Faraday's law of electro magnetic induction induced emtin a coil of N turnsis
equalto rate of change of magnetic flux passing through the coil

o
Induced emf &€ = —N %

3. Whenmagnetic fluxlinked with a circuit changes, emfisinduced in the circuit. If circuit is closed currentis also
induced. The phenomenonis called electro magnetic induction.

4. Lenz'slaw :- Inelectro magnetic induction, direction of induced emt'and current is such that they oppose the

cause due to which these are produced.

5. Inelectro magneticinduction



11.

12.

13.

15.
16.

) N dé
7= __ 1
Induced current —1 : —] , —dt

-N
Induced charges ¢ = 7 df = ?dés

Right hand rule :- According to this rule the index finger, central finger and thumb of right hand are held out
perpendicular to each other. Itindex tinger showns direction of magnetic field and thumb shows direction of
motionthen central finger shows direction ofinduced current.

If conducting rod of length /moves with velocity vinuniform magnetic field B perpendicular to direction offield
and its own length than induced emfaccross the rod

€ =Bvl

Induced emfina rod moving at an angle @ withthe direction ofmagnetic field 1s given by -
g =Bvlsing

Induced emfdue to motion of rectangular loop with velocity v in non unitorm magnetic field
£ =(B, - B)vl

here B, and B, are magnetic field on the two arms respectively.

Work done formoving a rectangular loopn magnetic field appears as electrical energy i thecircuit and finally
spent in theform ofheat energy

(B, — B,y £V At
R

W=H =

Due to rotation ofa conducting rod of length L with with angularvelocity ¢ inuniform magnetic field B, induced
emfbetween the endsis given by -

= %Ba)ﬁ = BAf

Induced emf between centre and circumference of a metallic disc of radius r rotating with angular velocity ¢ in
unitorm magnetic field B

e =12Bwpl?=BAf

It a rectangular conducting coil of N turns and area of cross section A rotates with angular velocity ¢ in
unitorm magnetic tield B then induced emf

e =NBA@w sinwt

Circulating currents are induced in bulk metallic pieces placed in changing magnetic field. In these loops,
electrical energy is spent in torm of heat, these currents are called eddy currents. They are used in brakes of
electric train, inductionfurnace, galvanometer etc.

Inductance s equal to ratio of linked magnetic fhux and current. It isof two types (1) selfinductance (i1) Mutual
inductance.

Seltinductance ofa coil is equal to the magnetic flux associated with coil when unit current flows in it.

When current through a coil changes it produces an opposing emf whichs given by
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17.  Work done against induced emf'to maintain current Lin the coil
W= lU :
2
18. Selfinductance ofa solenoid of length / and number oftunrs per unit length s2is
L=pu,n Al
here Ais area of cross section of solenoid.
19, When current inacoil or circuit changes then associated magnetic flux in another coil mits vicinity also changes
dueto this change, emf or currentis induced in the second coil. This phenomenon s called mutual induction.
20. Induced emtduetophenomenon of mutual induction
)
- /]
here M, is mutualinductance of second coil relative to first coil.
21.  Mutual inductance between two coaxil solenoid.
LA
My =M, = E n_}nd H
Questions for Practice
Multiple Choice Questions - (a) 20Bx (b) 10 Bx?
1. Aconductingrod is moving with velocity Vina (¢) 20Bx*cos @t (d)40Bx?

magnetic field B. An emfisinduced across its ends
when -

(a) vand B are parallel

(b)vand B perpendicular to each other

(c)vand Bare in opposite direction

(d)All ofthe above

A squareloop oflength X. Loop is rotating with
angular velocity @ about its diagonal in a
perpendicular magnetic field as shownin fig. Find
magnetic flux associated with loop at any moment
number of turnsintheloopis 20.

X X X X X X

X X X X, e % X

= = = ,"X = =
® <| % x x <R
® ® x x ®
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The unit ofratio of magnetic flux and resistance is
same as which ofthe tollowing quantity -

(a) Charge (b) Potential difference
(c) Current (d) Magnetic field

In electromagnetic induction the magnitude of
induced emf depends only on -

(a) Resistance of the conductor

(b) Magnitude of magnetic field

(¢) Orientation of conductor realtive to direction of
magnetic tield

(d) Rate of change oflinked flux

When a bar magnet enters inside acoil, the induced
emtincoil does not depends on

(a) Velocity of magnet
(b)Number of turnsin coil



(c) Magnetic moment of magnet 10.

(d) Specific resistance of wire of coil

A copperwire coil is moving mauniform magnetic
field parallel to the field then what is the value of
induced current -

(a) Infinite (b)Zero

(c) Equalto magnetic field

(d)Equalto area of cross section of coil
Lenz's law gives -

(a) Magnitude of induced current

(b) Magnitude ofinduced emf
(c)Direction ofinduced current

(d) Magnitude and direction ofinduced current

both 11,

A copper wire coil C and a wire are place in the
plane of paper as shown infig. If current in wire
Increases from 1 Ato 2Aalong the direction shown
infig, than what isthe direction ofinduced current
incoil -

(a) Clockwise {(b) Anticlock wise 12.
(c) Current will not be induced
(d) None of above

If a disc is rotated about its axis and it magnetic
tield is unitorm and along the axis of rotation than
what the potential difference between the edges of
diameter AB -

14.
(a) Zero
(b) Half of potential difference between centre and
circumterence 15,

(¢) Double of potential difference between centre
and circumference

(d)Noneofabove
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A conducting wire is moving towards right in
magnetic field B. If direction of induced current is
as shownin figthen the direction of magnetic field
is-

(a) Inthe plane of paper towards left

(b) Inthe plane of paper towards right

(c) Perpendicular to the plane of paper, downward
(d)Perpendicular to the plane of paper, upward

In a electric transmission line current is flowing
along north direction. On considering earth
magnetic field negligible be find the direction of
magnetic field above the electric line -

(a) Along east (b) Along west
(c) Alongnorth (d)Along south

A collisrotating in a unitorm magnetic field. What
1s the phase difternce between induced emt and
linked magnetic flux-

A b
(a) 1 (b) 5

i
(c) 3 (D~

Current in a coil of self inductance 2> 10~ H rises
uniformlyinO.1 sec 1 Athanwhatisthe magnitude
ofinduced emf.

()2V (b)0.2V
(c)0.02V (d) Zero

Itacoil having 100 turns produces a magnetic tlux
5x10°Maxwell, by 5 A current. What 1s its self
inductance

(2)0.5x10~H (b)2x10°H
(c)Zero (d)10*H

The magnetic flux passing perpendicularly through
acoil changes withtimeas ¢ = 10" + 5¢ + | heres

1sinseconds and ¢ mWh theninduced emfatt=
S5sis-



(a)1v
(c)2V

(6)0.105V
(d)oV

Very Short Answer Type Questions -

1.

15.

If current in inductance is doubled than how many
times the stored energy increases?

When an electric circuit is suddenly breaked than
why thereis sparking?

How the mutual inductance between two coils can
beincreased?

On doubling the area of cross section while
keeping the some number of turnsin a coil, what
will be the value of selfinductance?

How we canreduce the effect of eddy currents in
the core of transformer?

A metallic and a non metallic coins are droped
from same height towards earth surface. Which
coinreaches earlier on earth and why?

Why seltinductionis called electrical inertia?

On what factors and in what way the the self
inductance of a solenoid depends?

Ina wire current flows at high voltage. As current is
swithed on inthe wire why the bird sitting on wire
fly?

Write down dimensions of L/R here L is self
inductance and R 1s resistance.

When a rectangular loop moves in a uniform
magnetic tield with constant speed than what is the
magnitude ofinduced emt?

In what way two coils are wound so that induced
emfis maxmum?

It a coil or rectangular loop rotates in magnetic
field what factors eftects theinduced emfin it?

A straight and long wire is dropped freely in
gravitional field keeping in north-south direction,
why emfisinduced in the wire?

How eddy currents are used to make the
galvanometer dead beat?

Short Answer Type Questions -

1.

What do youmeanby electro magnetic induction?
Write down Faraday's laws tor electro magnetic
induction and magnitude ofinduced emt?

If acolis removed from magnetic field (1) with hugh

10.

rapidly (i) slowly, thenin which situationinduced
emfand work doneismore.

Write down Lenz's law for electro magnetic
induction and explain that Lenz's law tollows the
law ofenergy conservation.

When a metallic plate is pulled cut of a uniform
magnetic field or entersin auniform magnetic field
why we experience opposing force?

What is the reason

(1) Resistance wire coils are doubly twisted in
resistance boxes

(i) In wheatstone bridge why cellkey is pressed
tirst and then galvanometer key?

Write down Fleming's right hand rule for the
direction ofinduced current?

Define mutual inductance and write its unit and
dimensions.

A conducting rod of length L is rotating with
uniform angular velocity » inmagneticfield Bin
such a way that the plane of rotation is
perpendicular to magnetic field then find out
induced emfbetweenits ends?

Coils Aand B are placed perpendicular to each
other as shownin fig. If current in any one coil
varies than will current be induced in other coil and
why?

What factors effects the mutual inductance
betweentwo coil S_explain?

Ifthe selfinductance of acoilis | H, what do you
understand by t.

N
Provethat induced charge ¢ = = (¢ —¢,)

when flux associated with a coil changes from



@ to ¢, . Here Nis number ofturnsincoil, Risits
resistance.

Prove that law of conservation of energy holds
good whenarectangular coil moves perpendicular

to a non uniform magnetic field with constant
velocity?

Essay Type Questions -

1.

Find out induced emt due to motion of conducting
rod in unitorm magnetic field with a constant
velocity. How, we can find the direction of induced
emf.

A rectangular loop 1s moving perpendicular to a
nonunform magnetic field with constant velocity.
Find out expression for induced emfand current
and also prove that the law of conversation of
energy holds good here.

Itarectangular coil of area A and number of turns
Nis rotating in a uniform magnetic tield with a
constant angular velocity ¢ . Provethat induced

emfinthe coil is NBAwsin ot

What 1s meant by seltf induction? Explain the
phenomenon selfinduction through an experiment
and find out selfinductance of solencid?

What are eddy currents? Write down thier two

uses. How unwanted eddy currents are reduced in
transformers?

Answer (Multi Choice Questions)

1.(b) 2.(c) 3.(a) 4.(d) 5.(d) 6.(b)
7.(c) 8.(a) 9.(c) 10.(c) 11.{(a) 12.(b)
13.(c) 14.(d) 15.(b)

Numerical Questions

1.

A window of metallic frame (120 x50 cm)isona
wall which is parallel to magnetic meridian. Total
resistance of frame is 0.01 £2. When window is
opened at 90" then find the amount of charge lown
inthe frame.

(IfH=0.36G)
The magnetic flux passing through a coil of 50 turns
isgivenby @, = 0.02 cos 1007/ Wh
Find out -

(a)Maxamuminduced emf
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L

10.

11.

(b) Inducedemfattimet=0.01$

(c) Induced current at t= 0.005 S (if external
resistance 1s 100 Q)

(3.14V,zero 13.14 A)

A coil of 50 turns and area 0.2 m- in placed
perpendicular to a 0.6 T magnetic field the
resistance of circuit of coil is 10 € then find out
induced charges - (a) When coil rotates by 180°
(b) Coilis pulled out of magnetic field

(1.20 C, 0.60 C)

A conductor of length “3kmis moving with

velocity £ + 27+ 3km/sini + 3_}‘ +ET magnetic
field. Find out potential difference across the ends
of conductor.

Acrectangular coil of 1000 turns and 0.02x0.1 m?
sizeis rotating with 4200 revolutions per mintues in
0.2 T magnetic tield. Find the maximum induced
emtin coil.

(1758.4 V)
One meter long conducting rod rotating with
angular velocity 50 rotations/sec in a place
perpendicular to a magnetic tield of0.001 T about
its one ofend. Find the induced emtacross it ends.

(0.157 V)

Length and diameter of a solenoid are 1 mand
0.05 mrespectively there are 500 turns/cmin the
solenoid. Find the magnetic tflux when 3 A current
tlows throughit.

Length of a solenoid of radius 2¢m and 100
number of turnsis S0cm. Find the selfindicates of
solenoid invacuume.
Two coils are wound oniron core. Their mutual
inductanceis 0.05 H. If current through one of the
coil changes from 2 Ato 3 Ain 10~ sec than find
out induced emfin the other coil.
(-50V)

Wires are wound on a soft iron rod oflength 0.1 m
and radius 0.01 m, to form a coil. If relative
permeability ot sott iron is 1200 then find out
number ofturnsin coil.

(Selfinductance of coil 0.25H )

A metallic disc of diameter 15 cmisrotatingin



12.

14.

15.

6--

Cutrent
(Amp)

A ]

100
horizontal plane with rotations per minutes. It

3
vertical component of magnetic field 1s 0.01Wb/m*
than find out induced emf'between centre and
circumterence of the coil.

(9.75%10° V)
A 20 cm conducting long wire is placed
perpendicular to 5x10 * Wb/ m? magnetic field.
Wire is moving perpendicular to its length and

magnetic tield. If wire moves 1mis 4 s than tind
induced emfbetween its ends.

(2.5x10° V)

A 12 mlong metallic rod is moved from west to
east with speed 15 km/hby keeping it (1) vertical
(ii) horizontal. Ifhorizontal component of earths
magnetic fieldis 0.5x10 * Wb/ m?’there find out
induced emf across rod in each situation.

(41631077 V, 0)

Ifcurrent through primary coil is reduced from 5 A
to zerois 2 ms than induced emtinthe secondary
coil is 25 kV. Find out mutual inductance of the
coils.

(10H)
Seltinductance ofacoilsis 2 H, variation of current
with time inthe coil is shownin tollowing graph.

Draw graphtorthe variation ofinduced emt'with
time.

Ting(s) —m»
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Chapter - 10
Alternating Current

Whenever a voltage source 1s connected to a
circuit, then freeelectronsin conductors have amoticnin
aparticular direction, along with randommotion. Therate
of flow of charge at any point of the circuit is called
current. In direct current circuits, the current sourceisa
cell or abattery and aresistor R isused to control the
current. Generally, the electrical energy is generated as
alternating current due low cost of production and
conveniance intransmission to long distances. It canbe
converted to direct current easily when required.
Generally alternating current and voltage varies sinusoidal
with time, To control 1t capacitor C and inductor Lare
also used, together with R, Ina R-L-C circuit it isnot
necessary that current and voltage arein phase, t.e. it1s
not necessary that the current to be maximum when
voltage is maximum. Atransformerisused to step-up or
step down the AC voltage, sothat itstransmission over a
long distance is possible economically and at low energy
loss.

In this chapter we will study phase relationship
between AC voltage and current in different circunts,
power, watt less current, transformeretc.

10.1 Direct Current

The current/voltage whose direction of flow does
not change withtime is called Direct Current. This current
is produced by the such voltage sources whose terminals
have constant polarity with time. Ifthis current is ploted
with time we get a straight line parallel to the time axis.
This current (or voltage) is called unidirectional or direct
current (or voltage) . Its frequency fiszero. (tig. 10.1)

A

curreni

()

+

O >/

time

Fig 10.1 : Dircct current

If the current from some special devices like

rectifieris studied than it 1s found that it has a defenite
direction but 1ts value has a small peroidic/
pulsatingchange such currents are called direct current
(orvoltage) ofunequal fluctuationsor pulsating DC.

cwrEat

(M

P

0 g
_ Timc_ (t)

Fig 10.2 : Nonuniform DC
10.2 Alternating Current

The current (voltage) which changes its direction
peoriodically with time and alternatively becomes positive
and negative in each half cycle is called alternating
current. It is obtained from the sources whose terminals
change their polarity periodally withtime.

Alternating current may be of many types
according to their wave forms-tew of them are
tollowing-

10.2.1 Square Wave Current

A

/

mn

Y

_l’_
: . . t
it O 1a 1z 374]T

_‘Tm
Fig 10.3 : Square ac wave
In this type of current, current will remain [
(maximum) fromt=0tot=T/2and at T/2 it suddenly
becomes - [, (minimum)whichremainssameuptot=T,
againbecomeszeroattime T,



Thus  for 0<¢=<77, I=1_
for i<t<T | 1=-1_

10.2.2 Triangular ac Wave Current

m

_l’_
7 T Of— t — m', t
14 1N 3114 /T

—

I

Fig 10.4 : Triangular ac wavc current

Inthistype of current, the current linearly increases
fromOtol , fromt=0tot="T/4: thenlinarly decreases
to 0 at T/2 andbecomes-1_at t=3T/4. Ultimatelyatt
=Titbecomeszero. (Fig 10.4)

at =0 1=0
at t=", I=1
at t="1 I=0
at =37, 1=-1
at i=1 I=0

10.2.3 Sinusoidal Wave ac Current

,r
1
t
0 177 Tf\.j*y T

Fig 10.5 : Sinusoidal wave ac current

Thisis thesimplest and basic form of ac It varies as
sine or cosine functions. (Fig 10.5), hence are called
sinusoidal current,

Inthis chapter, we will study sinusoidal ac.Itis to
be mentioned that all forms ofaci.e. square or triangle all
are mathematically produced by super position of
sinusoidal waves of difterent amplitude and frequencies.

The trequecny of ac used tor domestic useis SO0 Hz
inIndia. InU.S. Aitis 60 Hz. At any instant { the ac
current and voltage are given by the equation :-

[ =1 sin(of+¢) (101

V=V, sin(of) ...{102)

herel andV_arethe maximuf@value ofac current
and voltage and are also called peak values of current
and voltage.

The symbol ofa.c. voltageis ~

This type of ac can be produced by a rotating coil
in uniform magnetic field or by electronic oscillatory
cireuits.

10.3 Instantaneous, Peak, Average and Root
Mean Square of Alternating Voltage and Current

10.3.1 Instantaneous Value

The value of current or voltage at anyinstant in an
ac circuit is called instantaneous value. It can be zero,
positive or negative. Equation(10.1)and (10.2) gives
instantaneous values in a simple periodic form. Here ¢
18 the phase difference in voltage and current at any
nstantt.

10.3.2 Peak Value

The maximum value of ac voltage orcurrentina
complete cycleis called its peak value. It also represents
the amplitude of alternating change. In equations (10.1)
and (10.2)I andV_ arethepeak values ofalternating
current and voltage respectively.

10.3.3 Average Value

In an ac circuit the magnitude and direction of
voltage/current changes periodically with time. The
average of all these values fora complete cycleiscalled
average value of AC. Foracompletecycle the average
15 -

av T
4

_ 1.
I _(For a complete cvcle) = L—="2= D’ sin of dl}

I (—cosat) ~I
= ﬁ[ j =—"(cosT —cos0)
{ ¥4



I _(tora complete cycle) = i;‘ (0)
)

«n®

(wol =27 and cos27=1)
I _(forcompletecycle)=0

Hence the average of AC for a complete cycleis
always zero.

Averagevalue for first positive half cycle-

[ 1, sinwrdr

1, =
far
i

o

2/

— L

= [cosﬂ—cos{)]:ﬂ—”‘zﬂﬁ%lm
oT 2 Fia

similarly, for second half cycle the value willbe
{ =-0.6361

10.3.4 Root Mean Square Value

Inan ac circuit for a complete cycle the square root
ofaverage of squares of current and voltage s called root
mean square value of currentand voltage current /7 and
voltagel”

15

T
J'f 2di
i

1]"
o - —IF sin” @t dt
‘Tl‘] "

I ]-[1—0032(%] I [ sin ZQJIT
= [2|| ————dt=,-2|t-
P 2 2r 200 J,
_ Q T_sm2a)1' :_\/£(T—O): I
21 2@ 27

. = Ly =0.7071 -
AR \/5 : n P (IO.J)
Similarly }_ = Vo _ 07071 (10.4)

AR JE : m T :
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The values shown by all ac metersin acircuitare
the RMS values of these quantities.

The rms valueis also called virtual or effective value
which means that rate of heating effect in a resistor is
same as that of equivalent value of dcand / . Therate
otheat generated by acina completecycleis -

T
jFRdr

&)

-7 T
Idr
0]

from a dc the rate current the raate of heat

=7 xR

FIRN

H

oy

producedis =7, R

=17

VRIS

Hencebothratesare equal - 7

file

!

ni

=] ==
s ‘\/E

1f'we want to measure the ac voltage and current
using dc moving cotl meters, they will give zero reading,
since the torque on the coil changes so rapidly, that it will
not respond due toinertia ofthe coil.

Thus [ =1 .. (10.5)

To measure ac we use hot wire meters, which are
based on heating effect. The heat produced depends on

V?’;’T.\'
marked. The relative distances between the making will
beintheratioof1:4:9: ... etc. forthe currentsI, 21 31,

... ete.

or 72 hence the scale of meters is nor linearly

The domestic supply of ac in India has
V. =220V Henceits peak value will be

Vo=v2F, =\2x220=311V
10.3.5 Properties of ac

Merits ; -

(1)  Alternating voltage can be steped up or steped
down, so the transmission of electri power is
possible at high voltage and low current with very

small power loss tor long distance transmission.

It canbe easily converted to dcby arectifier.
(m) Alternating current generators and motors are
more rugged, and convenient in operation, also

their cost isless than dc generators and motors.



Demerits : -
(i)  Alternating current voltage of any value is more
dangerous thanits equivalent dc voltage, because

its peak valueis /2 timesthe rms value.
()  Skineffect :- High frequency ac current does not
umformly pass through the whole cross-section of
the condctor. It prefersthe surfacelayer (skin) of
the conductor. So a thick wire inreplaced by a
bunch of thin wires to reduce this effect.

It can't be used directly for elecrolysis, electro
plating and making electro magnet.

Example 10.1 : Find RMS value of the AC

current givenby / =/, cosa@f + 1, sinwf .

iy

Solution: 7 =7 coswf+ 1, sinwt

hence

I =1 cos’ @t +12sin” @t + 21 1, sin ot cos ot

ry ry

II’ j([f cos® @! +1; sin” mt) + 27,7, sin et cos o
j-g _ UT _u = dr

[at [dt

0 0
s -1 -1
I"=I"x—+1;x—+0
5

since the average vahie of sin” wt & cos® wt foracom-
plete cycle is 1/2 and that of sin 2e# =0,
1

R d:

Example 10.2 : Therms value of a sinusoidal ac of

N?.'S

frequecny SOHz1s 200+/2 V. Write down the equation
foritsinstantanecus value at time t.

Solution : Given

=200v2V and f =50Hz

=2 v

FRIN

V,

So V. = V2 x200+/2 =400 V
@ =27 f=2%x314x50=314 rad/s

hence 7 =T sinwt
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J'=400sin314'V
Example 10.3 : Find the frequency of ac voltage

givenby V = 400sin 100zt

Solution : General equation of AC voltage1s
V=V, sinpt=V sin2xft
and the given equation of voltage
V" =400sin 1007z¢
comparing the two equations we get
2f= 100
Thus
f=50Hz

Example 10.4 : The peak value of ac currentina
circultis 5 A. What will be the value of current given by (i)
ac ammeter (i) dc ammeter.

Soution : (1) Since ac ammeter always meausres
rms value

5

I,
ARG
(i) dc ammeter meausres averages value for one
cyclehence /=0.

then 7 25xJ2=3535A

FHIS

Example 10.5: The rms voltagein acircuit is 220
V then find peak value of voltage.

J2 <V

Solution : V, =

(Given 7
FHIS

FHIS

=220V

V. =220x+/2=311.08V

Example 10.6 : The ac current is given by
I =3sin 27t A , then tind (1) rms value of current (i)

. 1
instantanecus value of current at # = 5.5‘ i

Solution: (i) /., = 1’; ,then
, 1
Given [ =3A/ 1= 5-5‘
I, =—==212A

FHIS

2

.. . 1 .
(1) / :351n27r><5:3sm7{:0



Example 10.7 : Find the time to reach from zero
toits maximum value of ac current of frequency S0Hz .

Solution : Time taken by current to reach from
zero to its maximum value is

L
=2
thus =

1
af
given f=50Hz

thus =0.005s

x50

10.4 Phase Relation between alternating voltage
and alternating current in different types of ac
circuits and phasor diagram

10.4.1 Pure resistive ac Circuit

(N
p—y

V=V sinof

Fig 10.6 ; Pure resistor in ac circuit
Intig 10.6 a pure resistor R is connected to anac
source voltage I =V sin @f . Ifthe current in the circuit

be I, then using Kirchhoff's loop law, the voltage
developed across R is equal to voltage applied.

V osinef = IR

m

v

I :1—’;sin wt =1 sinwt ... (10.6)

-

here /, = % isthe peak value ofac current. Itis

clear from equation (10.6) that on applying sinusoidal
voltage, we get sinusoidal current, and botharein same
phase. 1t means that value of V and [ will be zero
simultaniously and maximum simultaniously,
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Fig 10.7 : Sinusoidal nature of ac voltage and current
and their phase relation in pure resistive ac circuit

Fig 10.8 : Phasor diagram in pure resistive ac circuit

Fig 10.7 represent the sinusoidal nature of ac
voltage and current. As mentioned earlier itis not always
necessary that V and [ are in same phase in ac circuits.
For such ac circuits the concept of phasor makes the
analysis simple. Torepresent ac quantities(V,[LR, X, Z
etc), arotating vectoris used whosemagmitude equalsto
the peak value and rotational frequency is equal to the
frequency of ac voltage or current. Sucharotating vector
1s called phasor, and the related diagramis called phasor
diagram. If the tail of rotating vector is at origin, and
vector coincide with X axis at t =0, then at instant t it
makes an angle &= wrwith X-axis, and the y component
gives the instantaneous value at instant t. Fig 10.8 shows
the values of ac voltage and ac current at an instant t,
represented by their respective phasors. These phasor
are shown as making an angle @/ with x-axis. Both
phasor rotates in anticlock-wise direction with
frequency w. The vertical components of the phasor
represents instantaneous vahies of AC voltage or current
that's why they are taken in Y-axis. Fig 10.8 shows the
phasor diagram for a pure resistive circuit, V and l arein
same direction and phase difference between them s
zero. But as you will see later, they will notbe in same
phase for inductive or capacitive circuits.



A pure resistance obstructs the flows of current
which 1sindependent of the frequency of applied ac.

o

Resistance 4

R

.

O

-
frequeeny

Fig 10.9 : Dependence of R on frequecny
10.4.2 A Pure Inductive ac Circuit

(N
N

V=1 _sin o

I

Fig 10.10 : Pure inductive ac circuit

Fig 10.10 represents pure inductor (coil of thick
copper wire of resistance, R=0) is joined to an ac

voltage /' =V sin @/ . Inductance ofthecoilis L. Since

the voltage changes with time, the current will also
change. The voltage developed

!
across the inductor [_,{ Ej .FromKirchhoff's

law V. sin@f = ld
aw m i dl‘ ]

v

dl :%sin wtdt . (10.7)

Voo
® 31n @i ot
L

The current jdf = I

7 Ti[_ cos of j
L &
. T
=7 sin| ot ——
” [ 2] .. (10.8)
here/, = o The Lo has the same dimensions

Lo’

as resistance and called Inductive reactance,
represented by X .

X, =Lo ... (10.10)
_r
and " X RN (1011)

I

X_ controlls currentin accircuit inthe same way as
aresistor, (but with a different mechanism given later).
Unit of X isohm.

Fromequation (10.8)it is evident that the current in
pure inductive circuit 1s also sinusoidal with same
frequency that of applied voltage, but lags behind the
applied voltage by a phase of z/ 2. Which means that
the current gets its maximum value compared to voltage
after atime interval of T/4; (Fig 10.11).

Fig 10.12 : Phasor diagram for purc inductivc circuit
X4

» (D

O

Fig 10.13 : Variation of X| with frequency
Fromequation10.10 X, = Lo
X, =Lx2xf ... (10.12)
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Fig 10.13 represents graph between X and o .
Slope of'this graph tan ¢ , represents cotficient of self
inductance ofthe coil.

For direct current, =0, hence X, =0, so apure
inductor short circuits the dc circuit, but opposesthe tlow
ofac current.

In a pure inductive circuit alternative voltage is

V"=V sin ot andthe currentis givenby

i T
[ =1, sin(er - E) so voltage leads the current

by /2 or 907,
Themagneticflux ¢ = L1 ; ¢ > [ andthepower P
=VL
F 3
7/
/
O 5
T/4 T/2 3712 T =
\\ //
~ //
v

Fig 10.14 : Graph of Power in pure inductive ac circuit

Fig 10.14 shows all the tour quantities in one
complete cycle ofac, for aninductor.

()

Fig 10.15 : Change in and for an inductor for one
completc cyele. (a) 0 to T/4 (b) T/d to T/2
(¢)T2t03T/4(d) 3T4/4to T

To understand the power and flux change in an
inductive circuit. Letus consider the fig 10.15 in which
changencurrent is considered withitsrespective change
influx.

241

In fig (A) the current enters at A and reach the
maximum value, so the flux. The core 1s magnetized,
voltage and current are both positive hence their product,
powerisalso positive. It means thecircuit absorbs energy
from source.

Fig (B) current decreases from T/4to T/2. At T/2
the core 1s demagnetized and the total flux becomes zero.
Voltage isnegative and current is positive, which means
that power is negative, it implies that circuit returns rhe
absorbed energy to the source.

Fig (C) the current is increasing in opposite
direction during T/2 to 3T/4 and tlux also, core 1s
magnetized in opposite direction. Both voltage and
current are negative, their product power is positive. The
circuit absorbs energy from source.

Fig(D)trom3T/4to T current decreases to zero,
Vis positive while I1s negative, Powerisnegative, corels
demagnetized and the circuit returns the absorbed energy
tothe source.

Foracomplete cycle, average powermaninductor
1s zero. We will prove thisin section 10.7.

10.4.3 Pure Capacitive ac Circuit

F=VF_ sinont

m

Fig 10.16 : A capacitor connected to ac source
Fig 10.106 shows a capacitor of capacity C is
connected to ac voltage I =V sinw/ . Ifthecurrentin

the circuit 1s [, and voltage developed across the
capacitoris V, then from Kirchhoff's law I’} =0; If
change on capacitor in q at time t, then instantaneous
voltage accross 1t 18

4
C

v

9 _ o ;e
SC (— =V sin@lor g=V, Csinwl
Thus, current in the circuit s

_dg _

7=
dt

d .. ...
—(F 7
dt( Csin o)



I=V Cecoswt

. T
coswt=sin(wt + E)

since
. T
hence 7 =7,sin [WHEJ .. (10.13)
where / =V Cao
__V .
or !m—_”(',m .. (10.14)

The dimensionot 1/ C'ew isthat otaresistorand its
unit 1s ohm, and it 1s the measure of obstacle produced
by a capacitor in the ac circuit. It is called capacitive
reactance, and expressedas X_..

Fig 10.17 (A) Phasordiagram for pure capacitive ac

cireut
Y —_— i
\ |
- .
N, FAlN
N, . Y
N 7 Y
\:\ — A Uil
n =T
Y ;’
A s
\"'h.._

Fig 10.17 (B) V and I plotted against o1

X

[

[
-

N—»

Fig 10.17 (C) Variation of X . with @

Asitisevident from the equation 10.13, thatita

sinusoidal voltage is applied to a pure capacitor the
current will also be sinusoidal, but leads the voltage by
7/ 2. It means that current reach the maximum value
earlier by time T/4 compared to the voltage.

1
From equation (10.15) X, = o and graph
‘o)

(10.17) (C) show the variation of X with @. Fordc,
JS=0 (=2 xf=0) X. == sodcisnotallowed bya

capacitor. But for ac, X, has some finite value, so a
capacitor allowsit to pass through.

For a pure capacitive circuit

, P4
V =V _sinot; and  f=/ sin(of +5) .

hence the voltage lags the current by 7/ 2 radian.

q=CVand P — 7. All the four quantities are
plotted against timein fig (10.18) for a complete cycle.

Fy P

q

=

Ti4 T:2

Fig 10.18 : Graph for power in a capacitor

Ap B Ar ~B
=2 -]
{2\ Fgm
Y, Y,

@ )

Ar-uB Ar-B
ba 1.
{3 Y
NS Ay

(c) {d)

Fig 10.19

Fig 10.19:(a) showsthat fromt=0to T/4 current
increases from zeroto maximum, hence the charge onthe
plates and the potential. Plate a becomes positive while B



isnegative. Circuit absorbs energy from the source.

Fig 10.19(b) the current is in opposite direction,
the charge on the plate decreases to zero hence the
potential. Circuit returned energy to the source from 774
to 772. Fig 10.19 (¢) the charge on the plates rises to its
maximum value, hence the potential and field between
the plates. The circuit absorbs energy from the source
from 772 to 37174. Plate Abecomes negative while the
plate B is positive. Voltage and current both are negative.
So power 1s positive.

Fig 10.19(d) again shows that during 37°4toT, the
stored charges decreases, as the voltage. At T,the
capacitoris completely discharged. Currentis positive
while potential is negative, hence poweris negative. It
means that during this interval. Circuit returns the
abrobed energy to the source.

In this way the net energy absorbed during one
complete cycle by a capacitoris always zero.

Example 10.8: A resistanceless coil of inductance

5
L= —m His connected to an ac source of frequency 50

Hz. Find the inductive reactance of'the coil. Ifthe current
inthe circuitis 0.5 A. Find the voltage across the coil.

Solution : Inductive reactance X, = Lo

or X, =Lx2rxf

given f=50Hz, /. =5/zmH,/=05A
5 103

50 X, =—x2xx50x107 =050

T

Voltage developed across inductoris

4

L=

IxL=035x05=025V

Examplel0.9 : Capacity ofa capacitor is 50 pF.
Find its capacitive reactance at 5 kHz.

Seolution : Capacitive reactance
b 1
(o OCx2xf
given ('=50pF=50x10"F f=5x10"Hz

[

1
Xe= 1z 3
50x10 “x2x3.14x5x10

50
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=6.37x10°Q
Example 10.10 : Acapacitor of capacity 1 pF is
connected to a source - = 200\/5 sin100¢ v . Find

the currrent in the circuit.

kd
— Im

i H I'Tms‘ -
Solution : ¥, \/E

given ¥, =200v2V, @ =1007ad/s

C=10°F
20042
Now V., = % =200V
§ K== 2100
an “ Co 100x10°
/:ms‘ 200
hence s e e d 0.02 A

X,

[

10

Example 10.11: A coil is used witha 50 Hz ac
source. What will be value of inductance to obtain a
reactance of 100 2?

Solution : Inductivereactance X, = Lx2x f

gven X, =100Q), f =50Hz

X, 100

=Lk = =0318H
27f  2x3.14%50

10.4.4 L-R Series ac Circuit

R I
—— MAWWA—— T

PO
vy V=V

"

sin @/
Fig 10.20: R-L scrics ac circuit

Alternating voltage J” =V’ sin wr 1sapplied tothe
R-Lseriescircuit, At anyinstant t the current in the circuit
is 1, 7, and I, are the potential at L and R. The net
potential developed across Rand Lis J7, . Then from
Kirchhoff'slaw :-

V-V, =0



From phasor diagram 10.21 (A) wefind that *
and /_arein phase. But }' and }’ haveaphase
difference of z/ 2. They are normal to each other. The

resultant voltage. ) . =V +}
Bu't vah’ = Ir:u‘h’je and V—m.l’. = Im‘X.l’.
hence V . =
Vet
I, = : -
and ... (10.16)

here JR* + X, isthe effective obstacle of the L-

R combintion for ac current; which 1s given by Z and
called impedance of the circuit.

Z=JR+ X} =R +(lay ...(10.17)

A T4
IS S ROY T : A
$ &
4[///
¢ 9 :
- » 7 . Y
O i O I
Fig 10.21 {A) Phasor Fig 10.21 (B} Inpedance

diagram diagram
FromFig 10.21 (A)itisclearthat thecurrentin L-

R series circuit 1s leading the applied voltage by ¢ .

Hence 7 =7 sin{wf—¢) -..{10.18)

Similarly, fromfig 10.21 (B) we find the impedance
Z ofthe circuit. R and XL arein X and ¥ direction. The

resultant Z makes an angle ¢ with X-axis.

v I X X
SO tan¢ — _n __m I3 — iy
I/mR [mR R
X
hence ¢ = tan 1[?’) ...{(10.19)

In R-L series ac circuit, the graph between ac
voltage and current with oz is given by figl0.22 (A)
where the current lags behind the applied voltage by an
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angle ¢ . Fig 10.22 (B) represents phasor diagram of ac
voltage and current.

oot

Fig 10.22 (A) Alternating voltage and current in a
series R-L circuit

Fig 10.22 (B) Scrics R-L circuit phasor diagram

Example 10.12: A0.5Hinductor gives 0.5 Aina
100V de source. Ifthe current in the circuit.

Solution : For d¢ source X, =0,

V
R=—
thus 7
givenis L=05H, =100V
f=50Hz,
R:@:200Q
0.5

Inac circuit, Z =+ R> + ’0°

where @ =27 f =2x3.14x50=314rad/s

50 Z =\/(200)3 +(0.5x314)" =254.26Q
7100
_F =0.39A
Z 25426

Example 10.13 : Anelectricbulb hasrating 100V,
10 A Ifit isused at 200 V; S0Hz ac circuit, then find the
inductance ofthe choke coil used in series.

Solution : Impedance Z = /&&* + (L))" forbulb
V=100V, /=10A



f=50Hz, =200V
Resistance ofthe bulb R =V/1

R="%_100
10
7 - _4c voltage _ 200 _ OW
currcnt 10

@ =27 f=2x3.14x50=314rad/s

7 =R+ (271 A1)

20=/(10) +(314x )’

using

" 314x314

v300
31

e 300

=0.055H

Example 10.14 : Acoil of self inductance 1/7 H
isin series with a 300 O resistor. A200V, 200Hz acis
applied to the combination. Find phase difference
between voltage and current.

Lo 2rnfl
l’ :tan = —
Solution ¢ 7 R
L:lH,fzzoo Hz, R=3000
Fry
) ang o 27X 200x1 _4
enee 300x7z 3
4
=tan '| —
o som(]

Example 10.15: Acoilis connectedtoa 220V
and 50 H_ alternating source develops 200 watt power it
draws a current of 2 A. Find the resistance and
inductance ofthe coil.

Solution: Power? =1_ R

given V=220V, f=50Hz , 7, =2A
P=200W
- L2090 500
!F;?'B' (2)_
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7. 220
7=tm 2204100
RN 2
From Z°=R>+X;

X, =N7Z7 - R = J(110) —(50)° =98Q

X, =Lx2xf
X, 98
27f  2x3.14x50
L=0312H

Example 10.16 : A coil of inductance 0.4 Hand
negligible resistance is in series with 120 ) resistor. Ifit is
connected to 200/ w Hz; 100V ac source, thenfind total
impedance, phase angle and current inthe circuit.

Solution : Impedance 7 = \JR* + (Lo

givenis L =04H R=120 O, f =22 Hz
/A

V.. =100V

FHL

Z = J(120)° + (400 x 0.4)°

0=2000

@ = 2x3,'l4x@:400radfs
Fry

tan l[ﬁ]—tan 1[
=

V100
Z 200

10.4.5 R-C Series ac Circuit

400 % 0.4
120

¢

e

0.5A

FHEF

R
||

()
~ =1 sin of

Fig 10.23 A series RC ac circuit



Infig 10.23 anacvoltage }* =} sin w? 1sapplied
to a series combination capacitance Cand resistance R,
Atanyinstant?, ifthe voltage acrossR and Care }, and
J.and the current is | the resultant voltage developed
across the R-C combinationis 7, . FromKirchhoff's law

weget V-1,.=0.
Vo R
O — ] O — 1
0 - ¢ 7
V.IL\\ I
) L2 :
I o x{: 2 E
RS . l— L AN Ll . A
¥ ~Fy
Fig 10.24 Phasor diagram Fig 10.25 Impedance
of RC scrics ac circuit diagram

From phasor diagram 10.24, it isevident that }_,
isinphasewith/ ,But}’ lags behind the current by 7/
2 . The resultant potential across the combination is

Ve = Y, I:;R + I:;( ButV =7 Rand Vmc - ]mXC
J/,n.IRC‘ = J( !m R)2 + (!m XC)E

=1 JR+X.

7

T
mRCT

m O

)

m

JR+ X7,

here fR* + X is the effective obstacle in the

circuit and is called impedance Z ofthe circuit. Hence

Z=JR+X}

7= R +[;]
Ce

From fig 10.24, it is clear that on applying
sinusoidal voltage to the RC series combination siusoidal
currentis obtained. But the current leads the voltage by

anangle 4.

... (10.20)

-

" R

1

nr

=7

ar

...(10.21)
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7=1 sin(of+4) .(10.22)

Fromfig 10.25 we get the imdepance of the circuit.
Resistance is shown on X-axis,while X . on Y-axis. The
resultant Zis represented by OA, which makes an

angle ¢ with X-axis.

. X X
tan ¢ — i _lmtte &
mlt ImR R
X,
l ) .
and  ¢=tan [—R( ] ... (10.23)
by
| |
m [~ /’h\
N / \\\
0 \\\ - :,f Y,
a Ing
A /
\\\- Fd

Fig 10.26 : V-1 graph for seres ac circuit

Reactanee

Resistance

Fig 10.27 Phasor diagram for the circuit

Thevariation ofac voltage and current in series R-
C circuit with ozisas shownin Fig 10.26. 1tis clear that
both the voltage and current have same fregency, but
current leads the potential by an angle ¢ . Fig 10.27
shows the phasor diagram for the combination.

Example 10.17: Aseries combination of 100 pF

capacitor and 40 £ resistor are joined to 110V, 60 Hz
ac source. Find maximum current in the circuit.

4

Solution: /=

given =110V, (=100 x 10<F
R=40Q, f =60 Hz



7 110

N
(100x10 " x2x3.14%x60)”
110 ~ 110
0y + o J(40Y +(26.54)?
(376.8x10 *)*

=220A
10.4.6 L-C-R Series ac Circuit

=1 sin of
Fig 10.28 : L-C-R series ac circuit

The AC voltage V' =¥ sin wf is applied to the

series L-C-R circuit. At any instant 7, the cutrrent in the
cujrcujt 1sI. The voltage developed across the elements is

VoandV  V, —IRV, —1XLand ¥V —1X . Thenet
voltage dev eloped across the series combmatlon sV, .

FromKirchhoft'slooplaw weget -V, ., =0

v Y

mi

Fig 10.29 : Phasor diagram for X, > X _
From the phasor diagram (10.29) we see that }_
is in phase with [ while I’ leads the current by
+7/2 and V_.lagsthe currentby —7/2 . Voltage

across Land C are opposite to each other, hence V', .=
(V_, - ¥ ). which is perpendicular to V_,

(For X >X.)

SO Ve = + (V) and
V=1 RV =1X andV .=1 X.
osen = R+ (1K, —1,X.)
=1, JR +(X, - X,
I, = Vo

- = (10.24
JR+ (X, - X, ) ( )

\XRE +(X, -X.Y = Z is the effective
resistance of the series combination, and is called
impedance ofthe circuit.

Z=JR+(X, - X,) ..(10.25)
X,-X
tan o = L &
P=TR
_ ; I .
Z:\/R‘Jr(La)— Sy ... (10.26)
Co

Thecurrent/ lagsthevoltages ' byanangle ¢ .

IfX > X, V. >V, thecurrent willlead the voltage.

_ ImXL _‘!mXC

X, - X
¢=tan 1[%] ..(10.27)

Fromeq. (10.26)and (10.27)itis clearthat both Z
and ¢ depends onthe three element R, X and X .

Special Conditions -
Oy >V kX >X,

7 =R +(X, - X,)* Fromeq.(10.25)

¢ = tan” [—XL — e

7 jFrom eq. (10.27)

The phasor diagramisfig. 10.29. Thevalue of ¢



will be positive and havethe value between Oto 7/ 2;the
circuit will behave like L-R circuit and current lags the
potential. In this condition Zis given by fig. (10.30); ac
voltage and currents are given by phasor diagram
fig.(10.31).The current in the circuit is given by

_..(10.28)

! =1, sin{of—¢)

Reaclance
A

R Resistance

Fig 10.30 (X, = X)
mmpedance diagram

Fig 10.31 Phasor
diagram (X, = X )

(i) IfX. =X andV =V  thentrom equation

(10.25) Z =R +(X, - X,y

X, -X
and From (10.27) ¢ =tan ' [fj

Inthis current leads the applied voltage and value
of ¢ will be between 0 tozr/ 2. And the circuit will
behave like R-C circuit. And the current inthe circuit is
givenby

I=1,sin(ot+¢)

v JBeactance

Resigtance

K

Fig 10.33 Phasor diagram
for (X .= X))

Fig10.32 (X = X))
mmpedance diagram

() If X, =X_or} =} _then =0, andthe
resultant voltage and current arein phasei.ethey have the
some phase. This condition is called resonance.

10.5L-C-R Series Resonance Circuit

Ifan accircuit contains L,C and R in series, then
normally a phase diffence exists between voltage and
current due toimdepance of these elements.

If the trequency of the applied ac voltage is
increased @l get increased and 1/ @C decreased
whereas R is unaftected. By decreasing frequency, ai.is
decreases 1/ & increases. Acondition will reach when
X, =X ;sothat the resultant reactance X, - X =0,

¢ =0. The current in the circuit is maximum. This

condition is called resonance. And circuitis called series
resonant circuit.

Forresonance X, — X, .. (10.29)
and X — X, - X.=0 Fromequ. (10.25)
Z—Z —R ... (10.30)

which means the impedance of circuit will be
minimum and equal to resistance.

Fromeq.(10.27) ¢ =tan '(0) =0

which indicates that the resultant voltage and
current are in same phase. Hence from equ. (10.28)

.(10.31)

I'=171 sinwt ...(10.32)

Atresonance angular frequency @, ; X, — X

1 1 . _
Jo,=— ot p =— (o,=2xf)...(1033)
(o T VLC

r

and the resonant frequency /,

1
foe—r= 103
2”\/]? ... {10.34)
. L/m.l’.(.'.f-{
The peak value of currentis (7, ) ., = R
V,
1- ) N — FHIE
Or ( THiY )'I'I'I:i)\ R

For the condition of resonance, impedance and
phasor diagrams are given by Fig. (10.34) and Fig.
(10.35).



XA

‘X.‘ JII

O » K

«Y.-_- ¥ I

Fig 10.34 Impecdance
at rcsonance

Fig 10.35 Phasor diagram
for resonant LCR

The variationof/ andimpedance Z, othe series
L-C-R circuit is given by fig. 10.37 and fig. 10.36. At
resonant frequency (/) willbe maximum and Z will be

JagilaliagIbigan
M
7 | = e bee——e _ Vrms
7. lrm:s : (ln'n:s)mux_ [H
|
|
Zpin=R !
f. r f. r
Fig 10.36 Graph between Fig 10.37 Graph
fand Z between fand 7

Analytical Solution of L-C-R Series Circuit

For L-C-R series circuit the voltage equation is

50 L£+m+@=Vm sin@! byt{ -4
dt ¢ dt
Ld ?+Rﬁ+i:ﬁn5inwr (1)
dr? dt ¢

This equation is similar to the equatition of forced
oscillations, henceits solutionis

g =, sin(of +6) - (1)
and % =g, cos(wi +0) (i)
d’ 2
dr? =—q o sin{(@f +6) A1)

Substituting these valuesinequ. (1)

g, 0[Rcos(at +0)+(X. — X, )sin(wt + )] =V sin ot
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¢,0z £cos(mﬁ +0)+ Ao =&, sin(wf +() | =V, sin o
Z Tz
R X.-X .
Letus — = cosg, ———=L =sin
VA ¢ V4 /
Xr: _ XL

tan ¢ =

gé:tan I[X(.';?XLJ Or

4,02 [cos(a)r +8) cos ¢ +sin{wrf + F)sin gé] =V, sinof

g,0z cos(el+68—@d) =V sinof
Comparing both sides ot the above equation

I”fﬂ = (:{m 0)2 = Ifﬂz

SO ]m = QmGJ
Fia
G—¢=—=
and ¢ 2
8=——+¢
From equatiom (iit)
dg ig
—=7=7 cos(wt+¢——
” » COS(WF +¢ 2)
Or I =1_sin{al+d)
E = COS(E} and u = Sillg{f'
z 7z
Squaring and adding

E-ﬁ- (Xc _:Xx_)z —

- : 1
Z° z

=R +(X.-X))

Z=J(R)+(X.- X,y

Example 10.18: Find the voltage of the given ac
circuit,




2\
N/ T

Solution : From Phasor
Vo=V + 0 -V, )

here  J =40V,
V=40V, 7,=80V

= J(40)* + (80 — 40)’

— 402 =56.56V

Example 10.19 : AseriesL-C-R circuit contains
R=120,X=18 Qand X,=23 Q . Find the
impedance of the circuit and phase ditference.

Solution : Impedance ofthe circuit

7= R +(X,— X,

R=120,X, =230, X, =180

7= J(12)* +(23-18)’

=144+25 =169 =130
and phase difterenceis given by

‘X(.' _‘XL _i
R 12

N
oen ()

Example 10.20 : Avoltage source of 110V, 50
Hz is connected to series combination of R =10 Q;
L=2/nH,and C=1/ 7z uF. Find phase difference
between Vand .

tan ¢ =

Solution : Phase difference is given by

tan & = o L
¢ R

Given R:'IOQ,f:50Hz,I,ZEH,C:LX'IO o
Fis Fis

250

| cix2 g
2 fxC

tan =
¢ R

1.] —2><27r><50
2rx50x  x10° %
tan ¢ = T

10

10*- 980
10-200 _ _ 980

10 10

¢ = tan '(980)
Example 10.21 : For a L-C-R series circuit,
voltage and current are given by 7 = 300sin 100¢
and / = 6sin(100f — ¢) . Ifthe resistance inthe circuit is

of 40 Q, find (i) impedance (i1) reactance (iii) phase
ditterence between voltage and current.

Solution : Impedance

Z=JR+(X, -X.
given ¥ =300V [ =06A,®» =100rad/sand

R=40 Q1
oo 300
: Z=-"= =500
(1) }'m 6
() =R+ (X;—XC)Z
X = (XL—X(_,):\,‘ZE—RZ

= J(50)" —(40)" =300

Phase difference is given by

@) ¢=tan I[L ;X“ ]

Example 10. 22: Find angular frerquency and



frequency formaximum current in anac circut containing
aninductor of L=0.5H and acapacitorof C=8 pF .

Solution : Resosant angular frequency is given by
T NLC

because current is maximum at resonant
frequency,

)

so, @ =2 nf
7=05H,(=8x10"F

1 10°
@, = ——————=——=500rad/s
J05x8x10°% 2
500 250
v 27 2; T

Example 10. 23: At resonance the values of
R=20Q,L=0.1 Hand C =200 pF. Ifthe inductoris
replaced by L = 100 H, find value of C for same
resonance frequency.

Solution : Given for first condition L =0.1 H,
C =200 uF forsecond conditionL=100H,C="7?

Since resonance frequency 1s same
1 1

I = =

T pNLC 2 J1C
C=rc

0.1 x 200 x 10 =100 x C'

0.1x200x107
100

Example 10.24 : Awave of wavelength 300 m is
being transmitted form a center. We have a capacitor of
(C=2.4 pF Find thevalue ofinductor to tune (resonance
circuit) the station.

!

=0.2uF

1

2 IC

Solution: f =

given A4=300m, ('=24pF
- - 3
o= 3 g
A 300

251

L:%
4z f°C

1
L= S -
4x(3.14)" x(10°)* x(2.4x10 )
Example 10.25 : Anac circuit of 220V, 50 Hz
has aresistor of 11 ), inductor of 2 / 7 H. For what

value of C the circuit will be at resonance? At so find the
current inthe circuit.

10°H

hence

1

2 IC

Solution: J =

gven V=220V, / =50Hz R=110,L = = H
b4
YL 4t 2 k50450
=

The current in resonant circuit

— Vrms' — s
s z min R
IMHZE%QZOA

10.6 Half Power Point Frequencies, Bandwidth and
Quality Factor of a Series Resonance Circuit

10.6.1 Half Power Points of Frequency

Fig 10.38 shows variation of current /,_ with
freqency in L-C-R series circuit. At resonance frequency
the current in the circuit 1s maximumi.e. (/) .The

power dissipation willbe (I, ) R and will be

max 7

maxamum,
-
(L) e |
7™
3
A >/

Fig 10.38 : Current T__and frequency fgraph for L-C-R circuit



There exist two frequencies f,< £ and f, > f, at
which the current in the circuit will be 1/2 of the
maximum value. And the circuit comsumes halt'the
power ofits maximum value. These frequencies are thus
called halt power frequencies. At these freqencies the
effective currentisgivenasI .

. | 2
I R=—(I_ )} R
FHS 2 ( FHLE )max

Ry \/E
=0.707(1,,)

Hence the current at halfpower frequencies will be
ofthe maximum value.

10.6.2 Band Width
L-C-R resonant circuit is able to absorb more
energy fromthe sourcein the frequency interval (7,- 7).

This gap between the half power frequencies /-7, is
called band width.

the current at half power frequenciesf and £, is

AR JE
Ilrf'ms — /T?'fH.S'
\/R3+(Lm— Ly V2R
o

or R +(lo-—y =21
[&/)]

or  (o-—y -

o
1
Or [La) - ] =+R
o
K.

for f, Lo, L -R & .(10.35)

co,

| )

for f, lo,——=R .. (10.36)

ced,

2

Adding the equation 10.35 and equation 10.36 we
get

Lo, +(93)—%{L+ ! ]:0

® o,

1w+,
or Lo +o,)=—]—=
L oo,

1
Or oNG I 7 ... (10.37)

Similarly subtracting equ. 10.35 fromequ. 10.36

L((az—(91)+l[i— 1 J:2R
c\o, o,

or  Lo,-o)+~| CT2 o
Cl oo,

We get
2l{0, —w)=2R

R
(@ —o)=+ . .(1038)
. R
hence band width =@, —®, = -
. R
Ay ...(1039
Or J.— A by (10.39)

The above equation gives the expression for band
width.
10.6.3 Quality Factor

Behaviour of L-C-R circuit depends on t