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PREFACE

This book has been written in accordance with the new syllabus for
class XII prescribed by the Board of Secondary Education, Rajasthan Ajmer.
In presenting the book the basic object of the syllabus has been fully kept in
mind and an attempt has been made to acquaint the students with the
contribution of Indian Mathematician towards the development of scientific
traditions. The contribution of Indian Mathematician have been mentioned at
appropriate places. Every effort has been made to present the subject in simple
and lucid manner Important principal have been explained in detail.

In the interest of the students sufficient number the illustrative
examples have been given. At the end of each chapter a summary of the chapter
is given in the form of important points, which will help the students in
revision. In each chapter objective, short and essay type questions have been
given in sufficient number in the miscellaneous exercise.

We hope the book will be useful to students. Students, teachers and
reviewers are requested to send their comments, suggestions and to point out
any shortcoming in the book, so that the desired improvement in the book can
be made in the subsequent edition.

Authors



SYLLABUS

MATHEMATICS

Class-XII

Question paper
Single

Marks for question paper
80

Sessional Marks
20

Max. Marks
100

Time- 3.15 hours

Max. Marks - 80

Details of the Syllabus

Unit I. Composite Function

1. Function

S.N. Name of Unit Marks
1. Composite Function 7

2. Algebra 10

3. Calculus 38

4. Vector and Three-Diamensional Geometry 14

5. Linear Programming 4

6. Probability 7

Introduction and previous learning, properties of composite function, Inverse function,
Domain of a inverse function, Range, Properties of inverse function, binary operation, modulo

system.

2. Inverse Circular function

Definition, range, domain, principal value, general value, graph of inverse circular functions,

relation and properties between inverse circular functions.

Unit II. Algebra
1. Matrix

10

Concept of matrix, notation, order, equality, type of matrices, null matrix, a tranpose of matrix,
symmetric and skew-symmetric matrix, Addition of matrices, properties of addition operations,
multiplication, properties of multiplication operation and properties of scalar product. Existence of
non-zero matrices whose multiplication is a null matrix (the limitation of square matrices upto 2
order). (Here the elements of these matrices are real numbers).

2. Determination

Determinant of a square matrix (upto 3 x 3 square matrices) properties of determinants, minor,
co-factor and expansion of determinants, elementary operations, multiplication of determinants.



3. Inverse Matrix and Linear Equations

Introduction, Non-singular matrix, singular matrix, Adjoint of a square matrix, inverse of a
matrix, some important theorems, application of determinants - area of triangle, condition of co-
linearity of three points, equation of a line passing through two points, solution of system of linear
equations - (1) by Cremer’s rule (2) help of matrix principal.

Unit III. Calculus 38

1. Continuity and differentiability, Derivative of composite functions, chain rule, inverse
trigometrical functions, Derivative implicit functions, concept and derivative of exponential and
logarithimic functions, derivative of parametric functions, second order derivatives, Roll's and
Lagrange's mean value theorem (without proof) and geometrical meaning of these theorems.

2. Application of derivatives

Application of derivatives : rate of change of quantities, increasing and decreasing functions,
Tangents and normals, Approximations from the derivatives, methods to find maximum and
minimum values. Simple applications of maxima and minima. (which shows the basic concepts of
the subject and related to the real life)

3. Integration

Integration is the inverse process of the differentiation, integration of the different type of
functions - by substition, integration by resolving into partial fractions and integration by parts. To
evaluate the integrations as follows :-

dx dx
J. m,‘[ \/xziaz"’. \/az—xz’J. ax2+bx+c’J. Jax® +bx+c

px+q px+q
————dx,| ——————=d Va' tx’d d [ 2=
J ax> +bx+c J Nax? +bx+c xj @ kxdx an J X" —a’dx

I Vax* +bx+c dx, j e™ sin bx dx, Ie“ cosbxdx
11 1 1T 1
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Composite Functions

1.01 Introduction and Previous Knowledge

We have studied the notion of relations and functions, domain, co-domain and range have been
introduced in previous class along with different types of specific real valued functions and their graphs. As the
concept of function, we would like to extend our study about function from where we finished earlier. In this
section, we would like to study different types of functions.

Function : A function from a non-empty set A to a non-empty set B is defined as a rule in which every
element of a set A is uniquely associated with the element of set B.

Domain, Co-domain and Range of a Function : If fis a function from set A to set B then set A is
called as domain of f and set B is called as co-domain of f. All those elements of set B which are the images
of elements of set A are called as range of f. It is written as f(A).

Constant Function : In this type of function, every element of domain is associated with only one
element of co-domain.

Identify Function : A function defined on set A in such a way that every element of A is associated to
itself is known as identity function of A. It is written as /,

Equal Functions : Two functions f'and g are called equal if.

(1) Domain of f = Domain of g (i) Co-domain of f = Co-domain of g (ii)) f(x)= g(x), V x e domain
Type of Functions on the basis of association of elements
(i) One-One function : Let f : A — B is a function, then f is one-one if every element of set A has distinct

image in set B

(i) Many-One function : Let f : A — B is a function, then f'is called many-one if two or more elements
of set A has the same image in set B.

(iii) Onto function : A function f : A — B is said to be onto if every element of set B is the image of some
element of set A under the function f i.e. for every element of B, there exist some pre-image in A i.e. is
onto function if f{A)=B.

(iv) Into function : A function f : A — B is said to be into if there exist atleast one element in set B which
is not the image of element of set A under the function fi.e. fis into function if f (A) #B.

(v)  One-One onto function : A function f : A — B is said to be One One-Onto if f is one-one and onto.
This is also called bijective function.

1.02 Composition of Function

Let A, B, C be three non-empty sets and let f : A— B and g: B— C are two functions.

Since f'is a function from A to B therefore every element x of A threre exists a unique f (x) in set B.

Again since g is a function from B to C therefore every f(x) in set B there exists g [ f (x)] in set C.

Thus we see that for two functions f and g we get a new function defined from A to C. This function is
said to be a composition of functions and represented by ( gof ) . It is defined as follows.

[1]



Definition : If f : A— B and g: B — C be two functions. Then the composition of f and g, denoted by gof,
is defined as the function (gof): A— C,

(sof)x=g[f(x)]. V xeA

"’-

gof
Fig. 1.01

Note : By the definition of g o f, when every element x of set A have f(x), element of domain of g. so that
be find image of g. Hence g o f'is defind if the range of f'is the subset of domain of g is necessary.

Ilustrative Examples
Example 1. If A={1,2,3},B={4,5},C={7,8,9} and f:A—>B and g: B — C be the functions defined
as f(1)=4, f(2)=4 f(3)=5; g(4)=8, g(5)=9 thenfind gof .
Solution : We have (gof):A—C

(s0 1) = 5[ F(1)] = 2(4) =8
(s0f)(2) =8/ (2)]= g(4) =8
(s0)(3)= [/ (3)] = ¢(5) =9
(s0)={(1.8).(2:8).(3.9)

Example 2. If f:R—>R, f(x)=sinx and g:R—> R, g(x)=x" thenfind gof and fog.
Solution : Here the range of f is the subset of domain of g and range of g is the subset of domain of f. There-

fore (gof ) and ( fog) both are defined.
(gof )(x g[f ]:g(sinx):(sinx)2 =sin’ x
(fog)(x f[g ]zf(xz)zsinx2

Here (gof )= (fog)
Example 3. Iff:N—>Z,f( )

and g:Z—)Q,g(x): x+1 /2 thenfind fog and gof .
Solution : (gof )(x g[f } g(2x)=(2x+1)/2, ~xeN

here ( fog) does not exist.
[2]



1.03 Properties of Composite of Functions
(i) The composite of functions is not necessarily commutative

Let f:A— B and g : B —» C be the two functions, then composite function ( gof ) A—>C
exists and defined because range of f is a subset of domain of g. But here ( fog) does not exist as range of

g is not a subset of domain of A of f, thus if C Z A, ( fog) will not exist.

If C=A then f:A— B and g:B—> A

In this case (gof ): A—> A and (fog): B— B both will exist and (gof ) #( fog) as the domain
and co-domain are different.

If A= B=C then (gof ): A— A and (fog): A— A ,but it is not necessary that both will be equal.
Example : If f:R—R, f(x)=2x and g:R— R, g(x)=x" then (gof ):R—> R, (fog):R— R but
(8of )(x)=g[ £ (x)] = g(2X)=(2x)2=4x2
(fog)(x)=1[g(x)]=f (+*)=2
(fog)=(fog)

Note : ( gof ) and ( fog) are equal only in specific conditions.

)
(
Example : If f:R>R, f(x)=x’

g:R—)R,g(x):x3 then (gof):R—)R,(fog):R—)R

and (s0r)(x)= [ £ (x)]= g (x*)= (") = o

(e -

(fog)(x)=fLs(x)]= (")
(fog)=(gof )

This condition does not occur every time.
(ii) Composite of Functions is Associative

Thorem 1.1 If three functions f,g,h are such that the function fo(goh) and (fog)oh are
defined then

fo(geh)=(fog)eoh
Proof : Let the three functions f, g, h are such that:
h:A—>B, g:B—>C, f:C—>D

Now both the functions fo(goh) and ( fog ) oh are defiend from A to D.

ie. fo(goh):A—>D and  (fog)oh:A—D

[3]



Clearly the domain A and co-domain D of both the functions are same, hence to compare them we

have to prove that

[ fo (g0h)](x)=[(fog) oh ](x), +xe A
Let xe€A, yeB, zeC suchthat

h(x)=y and g(y)=z

[fo (goh)](x)z f [(goh) x)]
=r1s(»)]=1(z)

then f[g{h(x)}
[ fo(goh))(x)=1(z)
again [(og) oh] (x)=(og) [ (x)]= (fog)(»)
=fLs(»)]=1(z)
from (1) and (2)

[fo(goh)] (x) = [(fog)oh](x), »xeA

fo (goh) = (fog)oh
This can be shown through the following figure:

(fog)oh or fO(goh)

Fig 1.02
(ii) The composite of two bijections is a bijection

¢y

(2)

Theorem 1.2 If f and g are bijective functions such that (gof ) is defined then (gof') is also a bijective

function.

Proof:let f: A— B and g : B— C are the two one-one onto functions then composite function

(gof) is defined from set A to set C such that,
( gof ) A C
To prove that (gof) is one-one onto function:

One-one : Let gq;,a, € A be such that
(80 ) () =(s0r) (a2)
= gl fla)]=¢l f(a)]

[4]



= fla)=f(ay) [ g is one-one]
= a, =a, [+ f 1S one-one]
(gof) is one-one
Onto : If ¢ eC then
ceC = JbeB issuchthat g(b)=c [ g isonto]
again beB = JaeA issuchthat f(a)=b [+ f is onto]
similarly ceC = Ja €A is such that

(gof)(a) =gl f(a)]=g(b)=c

i.e. every element of C is the image of some element of A, in other words A has the pre-image of every element

of C. Therefore (gof) is onto.

(gof) is One-one onto function.

Theorem 1.31f f : A— B then fol, =1z0f = f . where I, and I, are identity functions defined in

set A and B.

i.e. composition of any function with the identity function is function itself.
Proof : v I,:A—>A and f:A—>B o (fol,):A>B
Let x € A then
(o 13) ()= [1a(2)] = 1(x) [ 1,(x)=x.VxeA]
foly=f (1)
again f:A—>B and I;:B—> B .. (Igof):A—>B

Let xeA and f(x)=y, where yeB

(IB Of)(x)le [f(x):IZIB (y)=y [ IB(y)zy, VyeB]
=f(x) )

from (1) and (2) ~ (Izof)=f=(f<1,).

Ilustrative Examples

Example 4. If f:R—)R,f(x)=x3 and g:R—)R,g(x):3x—1 then find (gof)(x) and (fog)(x) .

Also prove that fog # gof .
Solution : Clearly (gof ):R— R and (fog):R— R

(gof )(x)= g[f(x)] =g (x3)=3x3 -1
(fog)(x)=f[&(x)]=f (3x=1)=(3x~1)
(3" 1) % (3x-1)’

(8of ) = ( fog)
[3]



Example 5. If f:R—R, f(x)=x"+2 and 81R—>R,8(X)=Ll then find (gof) and (fog) .

Solution : Clearly (gof ) :R— R and (fog):R— R both exist
Let xeR

X+2 X +2
¥4+2-1 x*+1

ad (f02)(x)= s ]f[ J (_szU

x—1 (x—l)

then (go fHx)=glf ()] =glx*+2] =

Example 6. Verify the associativity of the following functions:
fiN>Zy, f(x)=2xg: Z,>0Q.8(x)=1 and h:0 - R.A(x)=
Solution : fiN—>Zy,g:Zy—>0Q, h:Q—>R
(¢of):N—>Q and (hog):Z,—>R
(hog)of :N—>R
and h:Q—>R,(g0f):N—>Q .. ho(gof):N—>R

Thus both the functions (20g)of and ho(go f) are defined on the set from N to R . Now we have to show
that

[(hog)of:l(x) =[h0(g0f):|(x), VYV xeN

Now [(hog)of ](x)=(hog £ (x)])=(hog)( x)=h[g(2x)]=h[2%j:e1/2x O
and [ho(gOf)](x)=h[(g0f)(x)]=h[g(f(x))]
=h[g(2x)]=h[2ixj=el/2x )
from (1) and (2)

[(hog)o f:l(x) = [ho(gof)](x).
Thus the associativity of the function f,g,A is verified.

Exericse 1.1

1. If f:R—R and g:R—> R are the two functions defined below then find (fog)(x) and (gof)(x)
(1) f(x) =2x+3, g(x) = x> +5 (i1) f(x) =x° +38, g(x) =3x> +1

(iii) f(x)zx, g(x)=|x| (iv) f(x)=x2+2x+3,g(x)=3x—4.

[6]
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If  A={ab,}, B={uv,w}
and f:A— B and g: B— A are defined as
f={(av),(bu). (c.w)} 5 g={(u.b).(v.a),(w.c)}
then find ( fog) and (gof) .
3. If f:R" >R and g:R" > R are defiend as
F(x)=x" and g(x)="x
then find gof and fog . Are they equal ?

(x—4) then

W —

4. If f:R— R and g: R — R are two functions such that f(x)=3x+4 and g(x)=

find (fog)(x) and (gof)(x) also find (gog)(1) .
5.  If three functions f, g,h defined from R to R in such a way that f(x)zxz, g(x)=cosx and

h(x)=2x+3 then find the value of {ho (gof )}N27 .
6. Iffand g are defiend as given below then find (gof)(x) .
(i) f:R—>R, f(x)=2x+x7, g:R>R g(x)=x*+2x+4.
7. I A={1,2,3,4), f:R—>R, f(x)=x"+3x+1
g:R—>R,g(x)=2x-3 thenfind
(i) (fog)(x) (i) (gof)(x) (i) (fof)(x) (iv) (g0g)(x).

1.04 Inverse function

(a) Inverse of an element
Let A and B be two sets and fis a function from A to B. i.e. f: A— B If an element 'a’' of set A is
associated to an element 'b' of set B under f then b is the f image of @ under the function fis expressed as

b= f(a) and element 'a' is called as pre-image or inverse of 'b' under f and is denoted by a= f~' (b) .

Inverse of an element may be unique, more than one or no one under a function. In fact, this all depend
upon the function is one-one, many one, onto or into.
The function fis defined as shown in the figure.




We see that

W) ={-11, £ (4)={-2.2}, /7 (6)=¢ and f7(9)={3}.
Example : If f:C—>C, f(x)=x>-1 thenfind f'(-5) and f~'a8¢ .

Solution : Let f™'(-5)=x then f(x)=-5

= X-1==5 = =4 = x=+-4

= x =+2i. both are in C.

again let /7' (8)=x then f(x)=8.

= x*-1=8 = x*=9, x==3 botharein C
£ (®)={-33)

ie. f7(-5)={2i,-2i} and f7'(8)={-3,3}.

(b) Inverse function

Let A and B be two sets and f : A — B. If we correlate the element of B to their pre-image in A

under any rule then we find that there is some element in B which is not associated with any element in A. It
happen when it is not onto. therefore, it is necessary that f'is onto if all element of B would associate any element
of A. Just like that if f is many-one then some element of B is associated with one or more element of A

Therefore, an element of B is associated only one element of A only if fis one-one.

Thus we see that if f: A— B is One-One Onto function then we can define a new function from

B to A in which every element y of B is related to its pre-image ! (y) inA. This function is called as Inverse

of fand is denoted by f~! .

Definition : If f : A— B is one-one onto function and inverse of fis f~', then B is a function defined

in Ain which b e B, isrelated to a € A where f(a)=b.
fiB>A f(b)=a o f(a)=b
It is represented as f~' :{(b,a)|(a,b) € f} in terms of ordered pair.

Note: The function 7~ is said to be the inverse of f, only when it is one-one onto.

[8]



1.05 Domain and Range of inverse function
It is clear from the definition that

Domain of f~! = Range of f
and Range of f~! = Domain of f

For Example : If A={1,2,3,4}, B={2,510,17} and f(x)=x>+1 then
f()=2, f(2)=5, f(3)=10, f(4)=17
£={(1,2),(2,5),(3.10), (4.17)}
Clearly f is one-one onto therefore its inverse exists i.e. f :B—> A and
£ ={(2.1).(5.2).(10,3),(17.4)}.
For Example : Let f:R— R, f(x)=3x+4, then we can easily prove that f'is one-one onto function.

Therefore f:R — R exists
Let x e R (Domain of ) and y € R (Co-domain of f)

Let f(x)=y, Lox=110)

Now f(x)=y:>3x+4=y:>x:T

= S

_ _ -4
SRR () =222 s defined.

1.06 Properties of Inverse Functions
Theorem 1. The inverse of a bijection is unique.
Proof : Let f: A— B is one-one, onto function then to prove that inverse of f is unique.
If possible let g: B— A and h: B— A, f are two inverse function of . Let y be any element of B.

Let g(y)=x and h(y)=x,
Now g(y)=x = f(x)=y [ -- g is the inverse of f]
and h(y)=x, = fxy)=y [-+ h,is the inverse of f]
f(x)=rf(x,) = X=X, [ -+ fis one-one]
ie. g(y)=h(y), V yeB
g=h

Thus inverse of fis unique.
Theorem 1.5If f: A — B is bijective function and f~': B— A, f is the inverse of fthen fof ' = I

and f'of =1,, where I, and I, respectively are the identity function on A and B.

[9]



Proof : f:A>B and f B> A
fof ':B—>B and flof:A>A
For every a € A there exist a unique b € B .
Where f(a)=b or f'(b)=a
(for ) (B)=£| £ (b)) = £ (a)=b
(for ')(b)=b,  VbeB
fof =1y
similarly ~ (fof ™' )(a)= £ [£(a)]=F " (b) =a

(fof_l)(a)za, YaeA
flof =1,

Theorem 1.6 The inverse of a bijection is also a bijection.

Proof : Let f : A— B is one-one, onto function and g: B — A is the inverse function of f. To prove
that g is also one-one onto function.

Let a,,a, € A; b,b, € B are elements such that

g(b)=q ie.  f(a)=b [-- gis the inverse of f ]
and g(b,))=a, ie.  f(a)=bh, [-- g is the inverse of f |
Now g(b)=g(b,) =  aq=a
= f(ay)=f(ay) =  b=h

.. g 1S one-one

againa €e A = 3b eB for which f(a)=0b

Now fla)=b=g(b)=a

a€A = 3beB suchthat g(b)=a

.. g 1s Onto

Thus inverse function g is also one-one onto.

Theorem 1.7 If f and g are two one-one, onto functions such that the composite function gof is defined
then there exist an inverse of gof i.e.

(sof) ' =1 og™!
Proof : Let f: A— B and g: B— C are two one-one, onto functions. Given that (gof):A > C is
defined therefore from theorem 1.2, gof exist and given by
(gof )71 C—>A

To prove that (gof) "' = flog™
[10]



Now f:A— B isone-oneonto function = f71:p_ A exists
Again g:B — C is one-one onto function = g~ C— B exists

(f_108_1)1C — A exists

similarly domain and co-domain of ( gof)’1 and ( S _log_l) are same.
Let aeA,beB,ceC areelements such that
f(a)=b  and g(b)=c
(s0f)(@)=8[ f(a)]=2(b) =

= (gof) " (c)=a
again f(a)=b = [(b)=a
&(6)=c = 0
(£70g)(e)=r"[&7 () ]= 7" (b) [ from (3)]
~a [from (2)]

Therefore from (1) and (4), for any element x of C.
(gof) " (x)=(f"og™")(x)
This proves that (gof)% =flog™

Illustrative Examples

Example 7. If f:R — R, f(x)=x"+5x+9 then find the value of f~'(8) and f7'(9) .

Solution : Let f‘l(g)zx = f(x)=8
= 2 45x+49=8 = X’ +5x+1=0
- Lo T5EV25-4 54421
2 2

£ 0)= {35+ B1) L (-5

again Let f_1 (9) X = f(x)=9

= P +5x+9=9 = x=0, x=-5

£7(9)={0,-5}.

Example 8. If f:R — R, f(x)=x"+1 then find the value of f'(~5) and f'(26).

Solution : Let f(-5)=x then  f(x)=-5

= x2+1=-5 = xt=-6 = x=24-6

)]
)
©)

)



then /—6 is not a real number

+J/-6 R L f(-5)=9¢
again let f1(26)=x then f(x)=26
= X41=26= x*=25= x=15

77 (26)= {55
Example 9.If f:R—> R, f(x)= x* +2 then prove that fis one-one onto function. Also find the inverse of f.
Solution : Let x;,x, € R then f(x;)=f(x,)

= X +2=x3+2 = x=x3 = X=X
.. f 1s one-one

1/3

againlet y eR then 3 (y-2)’" eR is such that

rl6-2)"]=(-2)+2=y

Thus function is onto
f 1s one-one onto function

since f is bijective then f~': R — R is defined as
F=x & flx)=y

but f(x)=x3+2 = 2=y

= =020 = S =(-2)”
FURSR N (x)=(x-2)".
Example 10.If f:Q0—0Q, f(x)=2x and g:0—Q, g(x)=x+2 then verify the following

(sof) ' =1 og™!
Solution : Since f and g are two linear functions therefore f and g are one-one onto functions thus their inverse
F!and g7! exist
fleoso W=,  vxeo ()

g'=0->0. g'(x)=x-2 VxeQ ©)
We know that composition of two bijective functions is also bijective, therefore (gof):Q — Q is also

bijective and its inverse exists
(sof) 100 v (gof)(x)=g[f(x)]=g(2x)=2x+2
(gof) ' (x)=(x-2)/2 3)

[12]



agein R e

and (£ og™)(x)=r e (x)]=F " (x-2) [ from (2)]
=(x-2)/2 [ from (1), (4)]
from (3) and (4) (gof)" (x)=(f"og")(x), VxeQ
(gof) ' = fog™".

Exericse 1.2
If A={1,2,3,4},B={a,b,c} , then define four one-one onto functions from A to B and also find their
inverse function.

If f:R—R, f(x)=x"—3 then prove that r~! exists and find formula of ¢! and the values of
7@ 1)

If f:R— R is defined as follows

(i) f(x)=2x-3 (i) f(x)=x"+5.

then prove that f'is bijective and also find £~!.

If A={1,2,3,4},B={3,57.9},C={7,23,47,79} and f:A—>B, f(x)=2x+1,g:B—>C,g(x)=x>-2

then write (gof)™' and f~log™! in the form of ordered pair.

If f:R—>R, f(x)=ax+b,a=0 isdefined then prove that f'is bijective also find the formula of f-! .
If f:R—>R, f(x)=cos(x+2) thendoes s~ exist?

Find ¢! (if exist) when f : A — B, where

(i A={0,-1,-3,2},B={-9,-3,0,6}, f(x)=3x.

(i)  A={13,579}, B={0,1,9,25,49,81}, f(x)=x".

(1) A=B=R, f(x)=x3.

1.07 Binary operation

Let S be a non-empty set. A function defined from S x S to S where S is a binary operation i.e. set S

is defined in such a way that for every ordered pair (a, b) of set S there exist a unique element in S Generally

the binary operation is denoted by symbols * 0 or ® . We denote *by a=b forall (a,b) € SxS .

Definition : A binary operation * on set S is a function * : §x§ — S we denote *(a,b) bya * b

aecS,beS = axbeS, Vabel

For Example :

Addition (+), substraction (—) and multiplication (x) of integers are the binary operation on a set of

integers Z which relates the elements a, b of Z with (a+5),(a—b) and ab

[13]



2. For a power set of any set S, the union of sets (U) and intersection () are binary operations in P(S)
because
AeP(S), BeP(S) = AUBeP(S) and ANBeP(S)

3. In a set of rational number Q, *, is defined as
axb= %b, YabeQ

Q is a binary operation as for all a €0,b €Q = ab/2 €Q
4. In a set of real numbers R, *, where * is defined as
a*b=a+b—ab, Ya,beR
R is a binary operation as
aeR, beR = (a+b—ab)eR

5. Inaset of natural numbers N addition and multiplication are binary operations

aeN, beN = (a+b)eN, YabeN
aeN, beN = (a-b) eN, VabeN

But difference and divsion are not bianry operations on N.
6.  Division is not a binary operation in any of the sets Z, 0, R,C, N butin Q, R, and C, it is a bianry
operation.
7. Let Sis aset of all defined function in a set A, then composite funcion § is a binary operation as
f,geS = f1A>A g:A> A
= ( gof ) Ao A
1.08 Types of binary operations
(i) Commutativity
Let S be a non-empty set in which a binary operation * is defined a,b €S then we know that
(a,b)#(b,a) untill we have a =b . Thus it is not necessary that (a,b) and (b,a) defined under * have same
image. In other words it is not ncessary that
axb =b*a, Va,b,eS
If axb=b*a, V a,b,eS then * is commutative operation is S.
Defintion : A bianry operation in set S is said to be commutiatve if a*b =b*a, V a,b,eS.

For Example 1. In a set of Real numbers R addition and multiplication are commutative operations but
difference is not.

2. In a power set P(S) of Set S Union of sets (U) and intersection (1) are commutative operations

but difference of sets is not commutative.
(ii) Associativity

Let S be a non-empty set in which a binary operation * is defined. Let a,b,c,eS. If three elements
a, b, c are there but binary is defined for two numbers but here are three elements of S.

Therefore we have to foucs on a*(b*c) or (a*b)*c its not always true that

[14]



ax(bxc)=(axb)*c, V a,b,ceS. If ax(b*c)=(a*b)*c,Vab,c €S then operation * is asso-
ciative.

Definition : A binary operation * defined on set § is said to be associative if
a*(b*c) =(a*b)*c, Ya,b,ceS.

For Example
1. Addition and multiplication of set of integers Z are associative but difference is not as

a+(b+c)=(a+b)+c, Yab,ceZ

a-(b-c)z(a-b)-c, Ya,b,ce”Z
but a—-(b—-c)#(a-b)-c
2. For a power set P(S) of set S the union and intersection of sets are associative as for A, B, C € P(S) we have
(AUB)UC=AU(BUC)
and (ANB)NC=AN(BNC).
3. If Ais a non-empty set and S is a set of all functions defined on A then operation defined on set S is a

composite function and is associative as

(fog) oh = fo(goh), vV f,g,hes.
(iii) Identity element for a binary operation
Let *, be a binary operation in set S. If there exist an element ¢ in S such that
axe=e*a=a,Vacs,
then e is called as identity element in S under the operation *
For Example 1. In a set of integers Z, 0 and 1 are the identity elements of A under addition and

multiplication because
foralla eZ O+a=a+0=a
and lra=a-1=a
2. In a set of natural numbers N there is no identity element in addition operation but for mulitplication

operation 1 is the identity element.

3. For power set P(S), S and ¢ are the identity elements of Union and Intersection because for all A € P(S)
ANS=SNA=A and AUg=9UA=A.
4. For a set of rational numbers Q, * is a binary operation defined

a*bzﬁ, YabeQ
2
Here 2 € Q is an identity element as for all a € Q
2-a a2

2xqg=——=uq d a*2=—=aqa.
2 an 2

Theorem 1.8 If an identity element of a binary operation in a set exist then it is unique.
Proof : Let e and €' be the identity element in the binary operation * in a set S

[15]



exe' =¢ =¢'xe [- eisidentity in S and ¢' € S] (1)
again e'xe=e=exe' [-+ e'is identity in S and e € S] )
from (1) and (2) e=¢
Thus if the identity element of any operation exists then it is unique.

(iv) Inverse Element
Let *, be the binary operation in set S and let e be its identity element. Let a € S. Let b be an element
in set S such that
a*b=bxa=e
then b is known as the inverse of a and is denoted by al.
The inverse element of a exist in S then a, is known as invertible element, therefore

a S isinvertible < a'eS

Note: Let * be the binary operation in set S and let e be its identity element then e *e = exe = e.
For Example 1. In a set of integers Z for every element a, (—a) <€ Z, is an inverse element
a+(—-a)=(-a)+a=0 (identity)
Thus every element of Z has inverse in addition operation.
2. In a set of rational numbers Q every non-zero number has inverse for multiplication operation and
acQ aa#0t = a ' =1/a because a-(1/a)=(1/a)-a=1
3. For positive set of rational numbers ¢* a binary operation is defined as
a*b=ab/2, Va,beQ'

We know that identity element of this operation is 2. The inverse of 4 e Q" is (4/a)e Q" as

4 ax(4/a)

4 4/
dg-Blaxa_, (identity) and - a*—==————=2 (identity)

a

Theorem 1.9 : Inverse of any invertible element with respect to a associative operation is uniuge.
Proof : Let *, be a binary operation in Set S, which have identity element e. Let a is an inverse ele-
ment of S. Let b and ¢ are inverse element of a under S, is possible.

Now, b*(a*c):b*e:b [...C:afl]

and ab*atxc=e*c=c {'.‘bzail]
But by property of Associativity,
b*(a*c)z(b*a)*c
thus b=c
So, inverse of an invertible element is unique.
1.09 Addition and Multiplication operations in modulo system

If a and b are integers and (a—b) is a positive integers divisible by m then a = b (mod m) is denoted

by a symbol and read as a is congruent to modulo m.

[16]



therefore a=b (mod m) < ml(a—D)
For Example : 18=6 (mod 2) 18— 6=12,2 is divisible by 2
-14=6 (mod 4) —14-6=-20,4 is divisible by 4
again if m is a positive integer and a, b are two integers then by division algorithm there exist r, ¢ such
that

a+b=mg+r, 0<r<m
then r is called as the remainder of addition modulo m of @ and b and symbolically a+b = r (mod m)

ora+,b=r

a+b, ;ifa+b<m

therefore ~ a+, b= ’ [ifa+b>m > where r, is the non-negative remainder obtained by dividing

a+bbym
For Example 2+,3=1 [+ 2+3=5=1x4+1]
-10+,3=1 [+ —10+3=-7=-2x4+1]

similarly m is a positive integer then for two numbers a, b if
ab=mq+r, 0<r<m
then r is called as the remainder of multiplication modulo m of a and b, symbolically it is written as
a-b=r (mod m) or is denoted by ax,, b=r

ax b:{ab, ;ifab<m

r. iifab>m > Where r is the remainder when (a, b) is divided by m

Example 5%,3=3 [ 15=4x3+3]

5%46=0 [ 5%x6=30=10x3+0]
1.10 Composition table for a finite set

When a given set A is finite, we can express a binary operation on the finite set A by a table called the
operation table or composition table for the operation. For example:

Example 1. S = {(l,a),a)z); x} where @ is the cube root of unity

x| 1| oo

11| o| e

o|lo || 1

ol | 1] o

2. S = {(07 17 27 3); +4}

+, |0 1]2] 3
O[O0 1]2 3
1111213 0
2121310 1
31131011 2

[17]



Just like we have following result from composite table:

@ If table is symmetrical with respect to principle diagonal then defined operation is commutative under
the set.
(i1) If row initiated from @, is superimposed to uppermost row and column initiated from a; is superim-

posed to left most column then, identify element of operation is in set S.

(ii1) Any element of S is invertible if there is an identity element in corresponding row and column of table.

Illustrative Examples
Example 11. In a set of real number R, * operation is defined as
axb=a+b—ab, ¥ a,beR and a#1
)] check the commutativity and associativity of *
(i1) find the identity element in * if any
(i) find the inverse element of * with respect to R
Solution : (i) If a,b € R then by definition
a*b=a+b—-ab=b+a—-b-a
=bx*xq
* 1S @ commutative
again (a*b)*xc=(a+b—ab)*c
=(a+b—ab)+c—(a+b—ab)-c
=a+b—ab+c—ac—bc+abc
=a+b+c—bc—ca—ab+abc
and a*ab*ct = axab + ¢ — bct
=a+ab+c—bct—a-ab+c— bct
=a+b+c—bc—ca—-ab+abc
from (1) and (2) it is clear that (a*b)*c=a*(b*c)
* 1s associative
(i) Let e be the identity element of * then for a e R
a*e =a , by definition of identity
= at+e—ae=a = e(l—a)=0
= e=0€eR
0 is the identity element of *
(ii1) Let @ € R and let x be the inverse element of a then by definition
a*x=0 (identity)

= at+x—ax=0 = x(a—l)za

a
= x=——€eR, .. g=z1
a—1

a€R (a#1) is invertible

[18]
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Example 12. If §={(a.b)|a.beR, a=0} and an operation * is defined in S in such a way that

(a, b) * (c, d) = (ac, bc + d) then

) check the commutativity and associativity of *
(i) find the identity element in * if any
(i) find the inverse element of * with respect to R

Solution : (i) Let (a,b),(c,d)eS

then (a,b)*(c,d)=(ac,bc+d) and (c,d)*(a,b)=(ca,da+D)
similarly (a,b)*(c,d)#(c,d)*(a,b)
-, operation * is not commutative
again let (a,b),(c,d),(e.f)eS
now [(a.b)*(c.d)]*(e. f)=(ac. bc+d)*(e. f)
=(ace, (bc+d) e+ f)=(ace, bce+de+ f) (1)
and (@b)*[(c.d)*(e.f)]=(ab)*(ce,de+ f)
=(ace bee+de+ f)
- from (1) and 2)  [(a.b)*(c.d)]*(e.f)=(a.b)*[(c.d)*(e.f)] )

Thus * is associative operation.

(ii) Let (x,y) be the identity element in S then for all (a,b)e S
(a,b)*(x,y)=(a,b) [by the definition of identity]

= (ax,bx+y)=(a,b)
= ax=a and bx+y=b
Now ax=a = x=1 ['ca=0]
and bx+y=>b = b+y=b [.x=1]
= y=0

(x,y)=(L0)eS
identity element of S'is (1, 0)
because (a,b)*(1,0)=(a,b) and (1,0)*(a,b)=(a,b).
(iii) Let (a,b)eS and inverse element of (a,b) is (x,y) then by the definition of inverse
(a,b)*(x,y)=(1,0) [identity]

= (ax, bx +y) = (1,0)
= ax=1, bx+y=0
ax=1, = x=(1/a) (a#0)

and bx+y=0= y=(-b/a) (a#0)
inverse of (a,b) is (1/a,-b/a)
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Example 13.If S ={A,B,C,D} where A=¢,B={a,b} C={a,c},D={a,b,c} prove that the union of
set U is a binary operation in S but intersection of set  is not a binary operation in S.
Solution : We see that

AuB=¢U{a,b}={a,b}=B, AVC=C,AuD=D

BuC={a,b}U{a,c}={a,b,c}=D
BuD={a,b}u{a,b,c}={a,b,c;=D, CUD=D

Thus union of set U is a binary operation is S but BNC ={a,b} n{a,c}={a} ¢S therefore intersec-
tion of set ~ is not a binary operation in S
Exercise 1.3
1. Determine whether or not each of the definition of : given below gives a bianry operation. In the event
that * is not a binary operation, give justification for this.
1 axb=a onN (i) axb=a+b-3, onN
(@) axb =a + 3b, on N (iv) axb = a/b, on Q
(v) axb =a-b, onR
2. For each binary operation * defined below, determine whether it is commutative or associative?
(@ *onN where gxp=29% (i) * on N where a*b=a+b+a’b
() *onZwhere ax*b=a—b (iv) * on Q where a*b=ab+1
(v)  *onR where axb=a+b-7
3. Ifin a set of integers Z an operation * is defined as *,a*b=a+b+1, Va,b €Z then prove that *, is
commutative and associative. Also find its identity element. Find the inverse of any integer.

4. Abinary operation defined on a set R—{1} is as follows:-
axb=a+b—ab, Va,beR—|]q
Prove that * is commutative and associative also find its identity element and find inverse of any element

a.
5. Four functions are defined in set R, as follows

hi)=x f(0)==x f(x)=1/x, fy(x)=-1/x
Form the composition table for the ‘compositive functions f,, f,, f3, f, also find the identity element

and inverse of every element.

Miscellaneous Exercise — 1

. If f:R>R, f(x)=2x-3; g:R—)R,g(x)=x3+5 then the value of (fog)fl(x) is

1/3 1/3 /3 _7 1/3
o) els) el o5

2. If f(x):lfxzi, then the vlaue of f(y) is

[20]



10.

11.

12.

13.

14.

15.

1-—x

(a) x () x-1 (©) x+1 (d) 2x -1

X —

If f(x) =x—+? then the viaue of f [ f{f(x)}] is equal to

(a) x (b) 1/x (c) —x @ —1/x
If f(x)=cos(logx) then the valeu of f(x)~f(y)—%|:f(x/y)+f(x-y)] is
(a) -1 (b) 0 (©) 1/2 (d) -2.

If f:R—>R, f(x)=2x+1and g:R—>R,g(x)=x", then (gof)*1 (27) is equal to
(a) 2 (b) 1 (c) -1 (d) o.

If f:R—>R and g:R—>R, where f(x)=2x+3 and g(x)=x>+1 then the value of (gof)(2)

is

(a) 38 (b) 42 (c) 46 (d) 50.

If an operation * defiend on Q, as *,a*b = ab/2, Y a,be(Q, then the identity element is
(a1 (b) 0 (c) 2 (d) 3.

A binary operation defind on R as a*b =1+ab, Va,b eR then * is

(a) commutative but no associative (b) associative but not commutative
(c) neither commutative nor associative (d) commutative and associative

In the set of integers Z the operation subtraction is

(a) commutative and associative (b) associative but not commutative

(c) neither commutative nor associative (d) commutative but not associative

If an operation * defined on a set of rational numbers Q as *, a*b=a +b—ab, Ya,b eQ . The inverse

of a(#1) with respect to this is

a a a-1 1
(@ — (b) () (d —
a-1 1-a a a
Which of the following is commutaitve defiend in a set of R
(@) a*b=a’ ®) a*b=a" ©) a*b=a+b+ab  (d) a*b=a+b+a’b

For the given three functions justify the associativity of composite function operation
fIN>Z, f(x)=2x; g§:Z,—>Q, gx)=1/x; h:Q—>R, h(x)=¢"

If f:R" > R" and g:R" — R" are defined as below

f(x)= X2, g(x)= Jx then find gof and fog , are these functions equal ?

If f:R—R, f(x)=cos(x+2) then justify with reason that whether it is invertible or not.

. TX
If two functions f and g are defined on A={-1,1} and A where f(x)=x, g(x)=sin [7} then

prove that ¢~! exist but s~! does not. Also find g7!.
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16. If f:R—> R and g:R— R are functions such that f(x)=3x+4 and g(x)=(x3—) , then find

(fog)(x) and (gof)(x) . Also fidn the vlaue of (gog)(1) .

r [Important Points} ~

If f and g are two functions then gof is defined only when range of f is the subset of domain of g.
Composite functions need not satisfy commutative law.

Composite function obeys associative law i.e. (fog)oh = fo(goh)

If two functions are bijective then their compsoite functions are also bijective.
Inverse of bijective function is unique.
The inverse of one-one onto function is also one-one onto.

(sof) ' =flog™!
In set A a binary operation is defined from A x A to A

A S AN o

Anelement e € S is the identity element for binary operation *
If gre=exa=a, VaeS

10. If g%b = b*a = e, then b is inverse of a under * on S.

11. Inverse of a is denoted by a™'

12. Inaset S defined an operation *

a*(b*c)z(a*b)*c, Yab,ceS

then * operation is associative

Answers
Exercise 1.1

1. (i) (gof )(x) = 4x? +12x +14,( fog)(x) =2x> +13 (i) (gof )(x) = (x +8) +1,( fog)(x)=9x° +6x° +9

(iii) (gof)( ) | | (fog | | (iv) gof)( ) 3x? +6x—13, (fog)(x) =9x> —18x +5
2. fog={(u (w.w)}s gof ={(a.a), (b.b). (c,c)}
(

3. (fog)(x)= x,(gof) x, Yes, its an identity function

4. (fog)(x)=x,(gof ) = x,(g0g)(1)=-5/3 5.5
6. (i)(gof)(x)=(2x+x72)4+2(2x+x72)+4

7. (D) (fog)(x) =4x? —6x+1 (iD) (gof)(x) =2x2 +6x-1

ii)( fog) (x) = (x)* +6x° + 14x> +15x+5 (iv) (gog)(x)=4x-9
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Exericse 1.2

L A=10a)20) GG £ ={(@]).(b2).(c.3).(4.4)]

fr={(1.a).(2.0).3.0).(4.d)}s £ ={(a1).(c,2).(5:3).(d4)}

f={La).(30). (2.a)(&)s £ ={(d1).(3)(.2). ()

fi={(1).(30).2.0) ()5 £ ={(@1).(a3).(5:2).(c:4)}

_ 3
2. i (x)=(3+x)7, 1 (24) =3, £ (5)=2 3. f( )—% ()= (x-5)"
4. (gof) " ={(7,1),(23,2),(47,3),(79,4)} = fog™! 5. [ (X)=x;b
6. NO
7. @) f ={(-9.-3).(-3,-1),(0,0),(6.2)} (i) ' does not exist Gii) £ (x) =x"3
Exercise 1.3

1. (i) yes (ii) no (iii) yes (iv) no (v) yes
2. (1) commutative but not associative (ii) neither commutative nor associative

(iil) neither commutative nor associative (iv) commutative but not associative

(v) commutative and associative
3. e=-1, a_lz—(a+2) 4. e=0, 6171=aci1

Miscellaneous Exericse 1
1. (d) 2. (d) 3. (a) 4. (b) 5. (b) 6. (d) 7. (¢)
8. (a) 9. (c) 10. (a) 11. (c) 13. (fog)(x)=(gof)(x)=x 14. No
_ 2. =5

5. ¢ (x)=—sin"'x 6. (fog)(x) =(of )(x) =2 (g08)(1)=—
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Inverse Circular Functions

2.01 Introduction

If sin@=x then we say x is the sin of 6 and 0 is the sine inverse of x. This statement is written

mathematically as 6 =sin"' x or @ =arcsinx is read as sine inverse x.
2.02 Inverse circular functions

We know that sin@, cos 0, tan 6 are trigonometrical circular functions, which for every value of 0 gives
a fixed value

If sin@ = x then 6@=sin"'x
sin”' x is said to be an inverse circular function. The simialr inverse function are
cos'x,tan"' x, cos”' x and cot™ x
Note:

. .1 -1 . . . .
1.  In functions sin~ x,cos  x , —1 is not a exponent but representation of an inverse function as

1
. 1 . . _
(sinx)” = m therefore sin ™' x # (sin x) ™'

. ,l . .
2. sin” x denotes an angle whereas sin@ denotes a number where 6 is an angle.

Inverse circular function:
To find the inverse to fie. f~' the function f must be one-one onto.

It is clear from the study of trigonometric function that normally they are not bijective. Therefore it is
not possible to find their inverse under normal conditions, but on restricting the domain of these function, they
become one-one onto and we can easily derive their inverse, under these conditions.

the domain and range of inverse trigonometric function can be understood by the following table-
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Table 2.1

Function| Domain Range Curve
y =f(x)
sin x xeR yel-1L1]
Or £l A : 2
3z |_mm Y
27 2| 272)
z 3
> |
cosx | xeRr yel-L1] vl,
Y = cos X
...[—71', 0], [O, 71'], [71', 27r]... |
T y=tan (x}
|
tanx | xeR-Qn+DZ. VneZ |yeR | o le | |
R
[ [
o e
[ 3 ﬂj [ T ﬂ] | Loz ) |
TTH T APl A ) | | | |
2 2 2 2 o ap WS %
| | -2 |
z 3 | | |
27 2 oo : | B | :
| | | I
I
cotx | xeR-nmr VY neZ yeR ! ! | !
| I |
or : 1 | ! :
HEAVPRAVERY
(=7, 0), (0, 7), (7, 27)... ! f-a | !
| -6 I |
. v 7 n
sec x xeR—(2n+1)E V neZ y € (=0, —1]U[l, ) o -
or i.e. range does not exist . -\iz\“/, E E .
- S T
w7, 0] —{-m 12}, between —1 and 1 ’ \-7-'2L: o :12'5_ -
\ : i : ' ‘\-_ :
[0, 71~ {z/2}, el &0 Al
i b o .
[z, 27]— {37 /2} ” ‘:,_ . .
y=sCcCcx
cosecx| xeR—-nnr ¥V neZ y € (=0, —1]U[l, ) ¥
V= euses K
B2, - 21— {-n}, i.e. range does not exist ) I,l ;]'.
-7 /2, m/2]-{0}, between —1 and 1 " . __,/f ‘
[7/2,37/2]-{x},... N 2
i _\:1 /’__.-\\. :
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Analysing the above table we see that

(1)  Circular functiosn are not bijective in their entire domain.

(i) tan,cot,sec,cosec functions are not defined on some of its points in their domain.

@) In sine and cosine functions range is restricted to [—-1, 1] whereas in sec and cosec functions range do
not lie between the interval (-1, 1)

Now if we have to find the inverse of these functions then we have to restrict their domain and make
them one-one onto, for that from the above table the trigonometric fucntions become bijective itself by restricting
their domain to any of the given intervals and then their inverse can be found out.

The following table shows the domain and range of inverse trigonometric functions under these bounded
conditions. Every interval of range have a branch of inverse function. In these branches there is a principal branch,
their range and shape represented by dark black colour.

Table 2.2
Functi¢n Domain Range Curve
y =
3t 7w =1,
sin"x [ ¥x=[-L1] =TS TS
/2
_r T
2727 « o x
=2 =1 1 2
T 3 i
> {
,I\?I’T
Y
2r
3n/2
00571 X X e [—1, 1] ...[—ﬂ', 0], n
/2
[0, 77]; i 43210 71/22 3 4 >
[7T, 271'],... :l:n/Z
-2n
3r & v
tan'x | xeR _7’_5’
__________ miZ_______
o) (7 3 -
27 2) 2 2) el
Note: function is not defined on
¥ =arctan o] X
SElEzESE L e et
27 2°2° 2 //—
—/—n
=3mi2
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r
________ eml__________
ot x| xer (=, 0); \ /2
T
O, 7); —i ——————————
(7, 27),... O@tx
Note: function is not defined on X X
w7, 0, 7, 27... x
2 k
=1
Y
¥
h
ml Z#.
T .
sec’ x| xe (=0, ~1UML @) | .-z, 0]~{-7/2}; %
.
[0, 7]—{x/2}, .v-".:'t] ...........
e
- 7 X
[z, 27]-{37/2},... X — = g
Note: function is not definedon | ~  ~=2I27° _"EE: ----------
wm w12, m12,3712,... Y=
wwr
%'
¥ =o'y
Y
3n
2
L
cosec ' x| x€(—0, -1U[l, 0) | ...[B7n/2, =7 /2]-{-x};
T
[-7/2, m12]-{0}; [y=acesz] 3 k
(7/2,3n/2)—{r},... o '
A . =32 -1 |01 2 3 4=
Note: function is not defined on .
7,0, 7,... i _%
-7
y'

Note : If y= f(x) then we get x= f'(y) ie. in the graph of trigonometric functions if we

interchange the X and Y-axis then we get the graph of inverse trigonometric functions.

(1)  If the branch of inverse circular function is not defined then we mean the principal branch of the function
only.

(i) If the value of inverse circular functions lies in the principal branch then that value is termed as its principal
value, See table 2.3
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General values

We know that sin 6 = sin {nn +(-1)" 0} , where n eZ is the set of integers.

Now if sin”' x=6 then the general value of sin"' x is nz+(~1)"sin™ x and is denoted by sin'x
Thus Sin"'x=nx+(-1)"sin"' x, neZ
Similarly Cos'x=2nmw+cos'x, neZ
Tan 'x=nz +tan”' x etc.
where by Cos'x, Tan'x we mean the general value of cos™ x,tan” x . Similarly

Sec™'x, Cosec'x, Cot™'x we mean the general value of sec™ x, cosec™'x, cot™ x
Principal value
The Principal value of inverse circular function is the smallest positive or negative value of & which

.1 .o 1 .
satisifies the equation sin6 = x, cos@ = x For example sin 1(;)230 ,sin 1(——) We denote this by

V2

sin”' x, cos™ x, tan"' x etc.

The intervals of inverse circular functions are different:

Table 2.3
Function Principal Value Domain
. T T
y:su’f X _ESySE —-1<x<1
y:cosfl_x 0<y<rm —-1<x<1
-1 7[
y=tan  x _E<y<5 —00 < X < 0
-1 O<y< d
y=sec x yEmy#Eo (—o<x<-1U(l<x<x)
. T T 0
y=cosec'x Sy SYs<5.y? (—o<x<-1U(l<x<x)
y=cot'x O<y<rm —00 < X < 0

Note: (i) If x>0 then the principal vlaues of all inverse circular functions lie in the first quadrant [0, 77 /2]
(ii) If x<O then the principal vlaues of sin™' x, tan™' x and cosec'x lie in the fourth quadrant

[—7 /2, 0] whereas the values of cot™ x,sec™ x lie in the second quadrant [ /2, 7]

[28]



2.03 Relation between Inverse Circular Functions
Let @=sin"'x then sin@=x then ¢os@ = +/1— 2 ( sin’ @ +cos® 0 = 1)

O=cos'\I-x*

imilar tan @ = sinf _ = 0= tan" —=
S ly cos® «/ —x? 1—x2
NI 1-x°
cotf = C?SH = Y 5 0=cot” al
sin @ X X
1 1 1
secH = = =0 =sec”

cos0 JI—x* I

1 o1
cosecd =——=—=0=cosec”' —
sinf x X

2
sin”' x =cos™ (\/1 —x’ ) =tan"' al =cot™ =X sec”! ! =cosec! 1
V1= x* X 1-x2 X

Note: The validity of these formulae is for certain interval.
2.04 Properties of inverse circular functions

@ sin(sin’l x) =x, —1<x<1 and sin”'(sinf)=x, —% <6 S%
Proof : “ssin”' x=0 then sin@=x [by definition]
putting the vlaue of 0, we have sin(sinfl x) =x
again if sinf=x,-1<x<1
. T r
then stlnlx,—ESQSE;O:sin’l(sinG)

thus from the given table for the values of x and 8 we have

cos (cos*l x) =x cos ™' (cos 0) =0
tan (tan ™' x) = x tan”' (tan 6) = 0
cot (cot x) pt cot™! (cot) =6
sec (sec x) sec! (secO) =0

S——"
N

cosec (cos ecilx) =x cosec ' (cosech)=

. 1 2w\ 2rm 2w
Note: sin sm? # 3 Since the principal value of sin™' x is not 3

[29]



.1 [ . 27[] o1 . [ 7[] . [ . 7[] T
Sin SIn—— | = S1n smm| 7——| | =811 SIN— | =—
3 3 3 3

.1 _
(i) sin”' —=cosec”'x, R~(-11)
X
. 1 ) 1 _ . _
Note: sin'—=60=sinf=—=cosecd=x=60=cosec 'x =sin"'—=cosec'x
X X X
71 . 711
cosec x=sm —,x<-1,x2>1
X
cos x=sec —, x<-1,x2>1
X
1 1
sec x=cos —,x<-1x2>1
X
-1 a1 -1 gl
tan” x=cot” — x>0 and cot x=tan —, x>0
X X
. .1 _ _
(i)  sin”'(—x)=—sin"'x and cos™ (-x)=7—cosx,~1<x<1

Proof : sin” (—x) =60 = —x =sin@ = x = —sin 0 =sin(—0)

or sin” x=-0 =—sin"' (-x)
or sin”!(—x) =—sin" x

Similarly if cos™ (-x)=60 @ x=-cos@
or x=cos(w—0)

cos'x=n—-6

or cos” x=mw—cos” (—x)
or cos™ (—x)=m—cos™ x
Similarly tan”'(—x)=—tan"'x, cosec” (—x)=—cosec x

sec” (—x)=m—sec” x,cot” (—x)=m—cot™ x

2.05 Other important standrad formulae
(i) To Prove that:

(@) sin”' x+sin~' y =sin™’ {x\/l—y2 + y\/l—xz}
(b) 2sin”' x=sin""' {2)(\/1 —-x’ }
© 3sin”' x =sin™ {3x—4x3}
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Proof : (a) Let sin!x=6, sinf, =x and sin”' y=0,

ie. sin@, =y then cos 6, =\/1—sir126’1 =VJ1-x
similarly cos0, =\/1—sin2 0, =\/1—y2
we know that

sin (01 + 02) =sin @, cos B,  cos 6, sin b,

or 0,£0, =sin"' (sin 0, cos 0, £ cos 6, sin 6’2)

sin" x+sin”' y =sin”"' [x\/l— v £ yaf1- 22 }

() Let sin'x=0 ie. sinO=x

sin26 = 2sin @ cos O = 2sin O/ 1—sin? O = 2xv/1—x*
— 20 =sin™ {2x\/1— x* }

2sin”' x =sin™ {2)(\/1 —x? }
() We know that sin30 = 3sin 0 —4sin’ 0
30 =sin"' (3sin0 - 4sin’0)
or 3sin”' x =sin™ (3x - 4x3)

(ii) To Prove that

(a) cos” x*cos™ y:cosfl{xy$\/1—x2\/l—y2}

(b) 2cos ' x=cos™ (2x2 — 1)

(©) 3cos x=cos™ (4x3 — 3x)
Proof : (a) Let cos'x=0, ie. cos 0, = x

and cos'y=0, ie. cosf, =y

then sin@, =+1-x* and sin@, =/1-y’

Now we know that

cos (01 + 02) =co0s 6, cos O, Fsin b, sin b,

or 6,0, =cos™ (cos 0, cos 0, Fsin G, sin 6’2)

cos” xtcos ' y= [xy$\/1—x2\/l— yz}
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(b)  Let cos'x=0 ie cos@=x - cos20=(2cos’0)-1=2x"-1

or 20 =cos™' (Zx2 - 1)
or 2cos”' x=cos”' (2x2 - 1)

(c) We know that cos30 =4cos’ 6—3cos O -.30=cos™ (4 cos’ @—3cos 9)
or 3cos™ x=cos™ (4x3 - 3x)

(ii1) To Prove that

+
(a) tan”' x+tan"' y=tan" { al y}
1—=Xxy
(b) tan”' x—tan”' y =tan”’ {u}
1+ xy

1 ,1(X+y+Z—xyZ\

(©) tan”' x+tan”' y+tan~' z =tan L
l1-xy—yz—2zx
2
(d) 2tan”' x =tan"' [ al 2]
1—x
3
() 3tan”' x =tan”' {3)( xz\
1-3x

Proof : (a) Let tan"' x=0, ie., tang, =x and tan"'y=0, ie., tanf, =y

We know that
tan 6, + tan 6 +
tan (6, +6,) = il 2 X7
l-tan6 tanf, 1-xy
+
or 6, +6, = tan™" {x_y\
1-xy
» o L x+y)
or tan”' x+tan”' y = tan L—
1—=Xxy
i _ af x- L
(b) tan”' x—tan”' y =tan™’ (H—yj can be proved in a similar manner as (a)
Xy
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(x+y)

(©) Now tan”' x+tan”' y = tan" L—

_ _ _ x4+ _
tan”' x+tan' y+tan~' z = tan 1L—yJ+tan 'z

— tan {(x+y)/(1—xy)}+z
_1—z{(x+y)/(1—xy)}
gt X+ y+z—xy7)
I-xy—yz—zx
(d  Let tan" x=60 ie. tanf=x
tan 20 — 2tan2¢9 _ 2x2
I-tan" 60 1-x
2x
20=tanl[ j
or 1-x°
or 2tan1x=tanl[ 2x2j
1-x
© Kiow that an 30 < 3tan 6 —tan’ 0
e we know tha STy
30 = tan”! 3tan6 —tan’ @
1-3tan’ 0
3
or 3tan” x-tanl{3x xz}
1-3x
(iv) To prove that
1
() cot” x+cot™ y=cot™ L i }
X+
1
(b) cotl)c—cotlyzcotl(xer j
y—x
Proof : (a) Let cot”' x=6, and cot™ y= 0,
then cotf, =x, cot, =

cot6, coth, —1

we know that cot(91+02): v v
cot 6, +cot 0,

[33]
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[ cot 0, cot 0, — 1

or 0,+0, =cot
cotf, +cotb,

_ _ S xy—1
cot ' x+cot™ y=cot 1( Y j

or
X+y

xy+1
y—x

(b) cot” x—cot y=cot™ ( j can be proved as (a)

(iv) To Prove that

1

1 -1 T -1 -1 T
X+ cot XZE (c) sec x+cosec xZE.

. . T i
(a) sin”' x+ cos lx:E (b) tan
. . . T
Proof : (a) Let sin”' x=0 then sin l)c:0:>)c:sm0:cos[5— j
LT
= cos x=—-0
2
LT
= COS X:E—Sln X
. . T
=sin” x+cos x=—.
2
_ T
(b) Let tan"' x=6 then tanlx:0:>x:tan9:cot[5—9j
_ T
=cot'x==-6
2
.,z o
= cot x=5—tan X
_ I
= tan~' x+cot lx:E.
. . T
(c) Let sec” x=0 then sec 1x=0:x=see0=cosec[5— j
I
= cosec leE—G

4 »
= cosec x:E—sec X

1 4
—=sec x+cosec x :E.
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Ilustrative Examples
Example 1. Find the principal value of

(a)shll(—é) (b) mn*(—JE) (¢) sec! (¥2),

. 1 . 1
Solution : (a) Let sin”' (_EJ =0, sinf= -3

. T . T
since the principal vlaue of sin™ x lies in the interval ) <sin”' x< =
Tep<Z
2 2
But sin @ is negative
“Z<o<0
2
— sin@z—l:—sinzzsin —EJ:NE’:—E
2 6 6 6
. Y
-, the principal value of sin ) is —¢

(b) Let tan™ (—\/5) =0, = tanf=-/3

- .. . T _ T
since the principal value of tan "X lies in the interval ) <tan™ x < >

_£<H<£
2 2
But tan 6 is negative
~2<6<0
2
= tan@:—\/gz—tan%:tan(—gJ = ez_g

.. the principal value of tan” (—/3) is —7/3

(©) Let sec ' (\/5) =0, = secO=+2
Here since x >1 i.e. for | < x the principal value sec”' x lies in the interval 0 <sec™ x < r
0<6< z
2
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= sec@zﬁzsecn/él = 0O=nxn/4

. Thus the principal value of sec™'(+/2) is 7/4

E le 2. P that 4tan"l—tan’li+tan"i—z

xample 2. Prove tha 5 0 59" 2
o1 L1 L

Solution : L.H.S. =4tan” ——tan  —+tan —99

=2 [2 tan™' lj - [tan1 1 tan ' Lj
5 70 99

o 2/5 tan”! 1/70-1/99

=2tan —tan ' ——— — 7~
1-1/25 1+1/70%x1/99
:2tan*l——tan*lﬂ
12 6931

L 2x5/12 L1
et

an
1-25/144 239

1201
a1 22 o ) 119 239
=tan t 539 tan 120 1
1+—
119 239
28561 T
=tan '=——=tan '()===
28561 O 4 (RHS)
Example 3. Prove that
/ -b (b+acosx}
2tan”! tan— = _
+b a+bcosx
b
Solution : Let { a- tan }
a+b
tan@ = _b i
a+b 2
1—tan* 0
20=——
= €08 1+tan* @
1_a—btan2£ b(1+tan j+a(1 tan xj
a+b 2 2 2

-b
1+27%@n* Y gl 1+ tan® X |+ 5| 1-tan? >~
a+b 2 2 2
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al—tanz(x/2)
1+ tan’(x/2)

N 1—tan*(x/2)
1—tan*(x/2)

_b+acosx
a+bcosx

b+acosx

J

20 =cosl(
a+bcosx

-
2tan™" a-b tan =\ = cos
a+b 2

1 1
Example 4. Prove that tan [E +-cos” ﬁj +tan [Z —cos
4 2 b 4 2

i b+acosx

a+bcosx

- a
Solution : Let cos'—=0, gg cos20= Z

| =
SRR

LH.S. = tan [%m} +tan (%_aj

T T
tan —+tanf tan——tan@
4 n 4

1—tan£tan6’ 1+tan£tan9
4 4

3 1+tan9+1—tan0
l1-tanf 1+tané

B (1+ tan 0)2 +(1-tan 0)2
B (1-tan 0)(1+ tan 0)

_2(1+tan20\ 2

L a

)

[dividing Nr and Dr by 1+ tan” x/2 ]

2b

2 2b
—=R.H.S.

B Ll—tanzé’J - (1-tan0) -
1+tan’ @

2

2xy

a

1 X _
Example 5. If cos™ —cos : % =a then Prove that
a

X _
cos~ —+cos

Solution : Given 1Y _ g
a b

[37]
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2
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2 2
Xy / X / Yy

= ——1=—, /-5 =cos«
ab a’ b’

= [%—cosaY:{l—Z_z}{l_Z_z]

2.2 2 2 2.2
XyT 2xy Xy Xy
= —=cosa+cos’a=1-"5—+
a’h®  ab a> b a’b’
2 2
X~ 2xy y
— ————cosa+-5=1- cos’ a
a®> ab b’
2 2
x 2x .
. —2——ycosa +y—2=s1n2 a.
a ab b
Example 6. Solve the following equation :
1-a? L 1-b? _
cos™ —+cos ——==2tan" x.
l+a

Solution : Let a=tan6,b=tangd, = O=tan'a,d=tan'b

l1-a®> 1-tan’0
1+a> 1+tan’6

0s 20

1-b> 1-tan’¢
= =Co0s2
= 1+b*> 1+tan’ ¢ ¢

from the given equation

cos ' (cos20)+cos™' (cos 2¢) = 2tan ' x

= 20+2¢=2tan"" x
= O+¢=tan"'x
= tan 'a+tan 'h=tan ' x
L a+b 4
- tan =tan  x
1-ab
_a+b
l—ab’

Example 7. Prove that

cos [tan’1 {sin (cot’1 x)}} = ;Cz :;
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Solution : Let cot™ x=0, then cot@=x

1 1 1
cosecd Jeot?9+1 xP+1

If cot@=x, sinf=

O=cot” x=sin"

L.HS. =cos| tan”’ {sin(cot*1 x)}]
=cos _tan*1 sin (sin’1 L)
L X+ IJ

:cos_tan*( ! q
L\/1+x2J

1
We know that tan ¢ = then €OS ¢ =
V1+x° 2+ x°

Example 8. Solve the following equation :

41 o1 » 1
tan” ——=tan~ —+tan  ———.
a—1 X a —x+1
41 o1 4
Solution : tan” ———tan~ —=tan ————
a—1 X a —x+1
(1 1)
= tan”' le =tan" — .
1+ a — X+
(a—l)x
x—a+1 _ 1
= ax—x+1 a*—x+1
= (x—a+1)(a2—x+1)=ax—x+1
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=

j—
Example 9. Solve the following equation :

. o pis
sin ' x +sin 12x:§

Solution :

= 2

= 2

2

3

1
thus the solutionis X = —
us the solution is 7

2 3 2 2
xa —a —x +a +x—a=0

az(x—a)—(x+a)(x—a)+(x—a) =0

(x—a)[az—(x+a)+1]

=0
(x—a)(az—x—a+1)=0

X=a and x=a’—a+l.

. o pis
sin ' x +sin 12x:§

[E —cos™ xj + [E —cos™! 2xj _Z
2 2 3

_ _ 2w
cos™' x+cos 12x:?

cos™' [x.2x —J1=x*1-4x* J = 2?7[

x? _mm:cos%
M%;Jﬁm
1
4x' + 242 = (1-%)(1-4x%) [by squaring]
4)c4+i+2x2 =1-5x" +4x*

1 /3

2\7

3
-= \/; does not satisfy the given equation
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10.

11.

12.

13.

14.

Exercise 2.1
Find the principal value of the following angles:

(i) sin~'(1) (i) Cosl[—%j (iii) sec*‘(—\/i)

(iv) cosec™ (-1) ) cot{ \/TJ (vi) tanl( ! j
iv —~ v —|= vi — |
3 3

Prove that [from 2- 8 ]

2tan” 1 tan™' 1z
2 7 4
17 L2 1
tan ' ——tan ' = =tan"' —
19 3 7

cos™! 63 +2tan”" 1_ sin™' 3
65 5

sec’ (tan*l 2) +cosec’ (cot*1 3) =15

2
,ll_x
2

2tan ' x =sin™

= COS
g

1+ x
tan”! ax . |bx o fex
an~ ,[—+tan  ,[—+tan" ,[— =7, where a+b+c=x
bc ca ab

1
. 1{1+\/1+x2 }2

1
—tan  x=cos
2 241+ x*

If cos™ x+cos™ y+cos™ z=r, thenprove that x*+ y* + z> + 2xyz = 1.

If sin”" x+sin”' y+sin™' z = 7z, then prove that wWl-x? + y\/l — " +zd1-7" =2xyz.
(Hint : If A+ B+C =7 then sin2A+sin 2B +sin2C =4sin Asin BsinC)

) . ) T
If tan™' x+tan”' y+tan IZ:E, then prove that xy + yz+ zx =1.

1 1-y> 1 -7
If —sin™ L +—tan*13Z £

1
+—cos — 5. _
2 l+x* 2 1+’ 3 135 then prove that x+ y+z = xyz.

(J1+y2) 1
If sec™ (\/1 +x’ ) +cosec” L—yJ +cot™ [5] =37, then prove that x+ y+z = xyz.
y

Prove that tan™' x+cot™ (x+1)=tan™ (x* + x+1).
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15. If tan™'x,tan™' y, tan”' z are in A.P, then prove that y*(x+z)+2y(l-xz)—-x—z=0
16. If the roots of X'+ px’+gx+p=0 are a, B, v , then prove that (except one situation)
tan" @ +tan”' f+tan”' ¥y =n7 and also find the situation when it does not happen.

Solve the following equation [Q. 17 to 25]

17. sec™ [ij —sec” (%] =sec'b—sec ' a
a

18 cosl(x2_1\+tanl[ 2x j_2_7r
' Lx2+1J x> -1 3

-1 1 -1

tan +tan =tan —
19. 1+ 2x 4x+1 x*
20. tan"' > 7 +tan’ x-1_ z—tan' 7
x—1 X
1 T
21. sin™’ [—] +cot ' x=—
V5 4
22. 3tan’ L tan™' 1_ tan™' !
2++3 x 3

23. sin Z[COS’1 {cot(Ztan’l x)}} =0

24, tan” [lj +2tan”" [lj +tan”' [lj +tan”' [l] -z
: 4 5 6 )4

. . 2w 4 O T
25, sin” x—sin y:?; CcOoS™ xX—cos yzE.

Miscellaneous Exercise - 2

1. The principal value of tan™' (—1) is

(@) 45° (b) 135° (©) —45° (d) —60-
2. 2tan"'(1/2) equals
-1 3 -1 3 -1 5 -1 1
BT C R R |
3. Iftan"'(3/4)=0 then the vlaue of sin@ is
3 3 4 1
@) 3 (b) 3 © 3 @ 7
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10.

11.
12.

13.

14.

15.

The value of cot [tan*l o +cot™! a] is

(a) 1 (b) oo (c) 0
. a1
If sin l[zj = X, then the general value of x is
T T T
2nw+ — — +—
(@) 2t G () nrsZ

The value of Ztan(tan*1 x+tan™ x3) is

2x
1—x*

(a) (®) 1+x° (c) 2x

If tan™'(3x)+ tan™' (2x) = E, then the value of x is

4
1 . 1
OF- b) 3 © 15
(J3) (J3)
The value of sin™ LiJ +2cos™! Lij is
2 2
z w = 2
@ 5 b) 5 © 3
i a1 - .
If tan (1) +cos [—] =sin" x, then the value of x is
J2
(a) -1 (b) 0 (c) 1
-1 afl 4
If cot " x+tan [gj = 5 then the value of x is
1
(@) 1 (b) 3 (©) 3

If 4sin”' x+ cos™ x = 7, then find the value of x

Find the value of cos [(ﬂ /2)+sin”! (1/3)]
If sin™' (3/4)+sec™ (4/3) = x, then find the value of x
Find the value of sin™' (4/5)+2tan"' (1/3)

If sin™' (5/x)+sin™' (12/x) =90°, then find the value of x

[43]

(d) None of these

(@ m(-1) 2

(d) None of these

N | =

(d)

@ r.

d —3.

(d) None of these



16. P that sinfli—cosflz—sin’lﬁ
. Prove that : 5 T 5
17. If tan' x+tan™ y+tan~' z = 7, then prove that x+ y+ z+=xyz.
-1 1 -1 -1 2
18. Prove that : tan [EtanZAj+tan (cotA)+tan (cot A)=0_
19. Prove that : tan"' x=2tan™' [cos ec(tan’1 x) —tan (cot’1 x)]
L ox3 - .
20. If ¢=tan ! and @ =tan”! 2x-K , then prove that the value of ¢—6 is 30°
K—-x K3
_ [ sin2a +cos
21. Prove that: 2tan 1[tan(45° —a)tanﬁ}zcos ! ‘ p .
2 1+sin2a cos 8
. Important Points]
1. If sin@=x then @=sin'x and sin”' x=6 then sin0=x.
2. sin(sin’l x) =x, sin”(sinx)=x; cos (cos*l x) =x,cos ' (cosx)=x etc.
. .. s -1 -1 -1 1. T T
3. () The principal value of sin  x, tan " x, cot " x,cosec x is ) to 5
(i) The principal value of cos™ x and sec™ x lies from ( to 7
4. (@ sin"(-x)=-sin"x, tan”'(—x)=—tan"'x, cosec” (—x)=—cosec x
(i) cos(—x)=m—cosx, sec”(-x)=m—secx, cot (—x)=m—cot " x
. . 1 a1 1 a1 -1 1
5. (@ sinT'x=cosec”—, cos'x=sec’—, tan x=cot —
X X X
. -1 | 1 a1 - o1
(i) cosecx=sin"'—, sec’x=cos'—, cot'x=tan" —
X X X
sl -1 T -1 -1 T -1 -1 T
6. sin'x+cos x= tan~' x + cot x=7n sec”' x+cosec'x=—
+y)
7. G4 tan”' x+tan~' y =tan" L
+Xy
+y+
(i) tan” x+tan” y+tan” z=tan" {M\
l1-xy—yz—2zx
. 2x L 1=x? o 2x
8. 2tan'x=sin"' ~=cos” ~=tan" -
+x 1+ x 1-x




,

9. sin”' x*sin”' y=sin"’ (x.«/l —y 2 yAl-x* )
10. cos 'x+cos' y=cos™ (xy FVl-x*V1-x7 )

11. (i) 2sin”' x=sin"' (2x\/1 —x ) (ii) 2cos™ x =cos™ (2x2 —~ 1)

12. () 3sin”' x =sin~* (3x - 4x’) (ii) 3cos™ x=cos™ (4x° - 3x)
(i) 3tan-' x = tan -1 X=X
1-3x2
Answers
Exercise 2.1
N 27 L 37T T 2z N
. > (i) 3 (i1) 1 (iv) > (v) 3 (vi) 6
T -2
17. x:ab 18. x:tan[aj 19. x20,3,? 20. X:11i4\/6
—-461
2. x=3  22. x=2  23. xzil,i(li\/i) M. x=—-
1
=—, :1
25. x > y
Miscellaneous Exericse - 2
1. (¢) 2. (a) 3. (b) 4. () 5. (d) 6. (a) 7. (a)
8. (¢) 9. (¢) 10. (¢) 11. 1/2 12. -1/3 13. ©/2 14. /2
15. 13
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Matrix

3.01 Introduction

In 1857 a mathematician Aurther kelly studied to find the solutions of system of equations and came to
know about the concept of Matrix. In this method arrange the quantities or objects in a rectangular arrangement.
3.02 Definition and notation

A matrix is an ordered rectangular array of same numbers or quantities. It may be real or complex.
The numbers of functions are called the elements or the entries of the matirx. We denote matrices by capital
letters A, B, C. ..

The following are some examples of matrices.

(1 3) 1 3 1 3
Ls 2 J 52 |5 =
0 7 0 7 0 7
Note: Matrix is an arrangement, its value cannot be found out.
3.03 Order of matrix

A matrix having m rows and n columns is called a matrix of order m x n or simply m X n matrix (read

as a m by n matrix).

a, ap a; a,
a, Ay a,; a,,
A=
atl ai2 aij am
L aml am2 amj amn i

This is a general form of matrix.

are the elements of the matrix. @, represents the i th row and j th column of the

‘mn i

Here a,,,a,,....,a

element. In short we represent it as A= [a,j}

mxn

Note: In a;,
3.04 Type of matrix
1. Row matrix

A matrix is said to be a row matrix if it has only one row. For example
([2 53], ()[3-4071],
[46]

i always represents the row and j represents the column.



2. Column matrix
A matrix is said to be a column matrix if it has only one column. For example its order have m x 1

where m number of rows and column is 1.

—4
3 1
@10 G| 5
2 3x1 7

L 6 d5x1

3. Zero or Null matrix
A matrix is said to be zero matrix or null matrix if all its elements are zero. We denote zero matrix by
O. For example

- 0000
(i)o{o o} i) O0=[0 0 0 0
22 0000

3x4

4. Square matrix
A matrix in which the number of rows are equal to the number of columns, is said to be a square matrix.
Thus a m x n matrix is said to be a square matrix if m = n and is known as a square matrix of order 'n'.

In general, A= [a,»j lm is a square matrix of order m.

all a12 aln
=2 . 0 13 | G ay, a,,
(1 3 5 @mi{2 3 7 (1it)
ax2 T e
6 -4 8
3x3 | eececectsctctctctcescccccanns
_anl an2 ann _nxn

Elements a,,,a,,,...,a,, are called the diagonal elements and also termed as Principal diagonal as the

subscripts of all the elements are equal.
S. Diagonal matrix

A square matrix A= [a,»j lm is said to be a diagonal matrix if all its elements are zero except element

of principal diagonal, that is a matrix A = [a,»j lm is said to be a diagonal matrix if a; =0 when i # j.

For Example

4 00
8 0 050
T .
0 [5]., (i) L) 3} (i) 00 8]

[47]



6. Scalar matrix
A diagonal matrix is said to be a scalar matrix if its principal diagonal elements are equal, that is, a

square matrix

0 when i#]j
A:[aij}mxm lf aij _{1 When i: j
5 0 -3 0 0
For Example (i) mjo -3 0
O 5 2x2
0O 0 -3

3x3

7. Unit or Identity matrix
A square matrix in which elements in the principal diagonal are all 1 and rest are all zero is called an

identity matrix. In other words, the square matirx A = [a,»j} . is an identity matrix, if

0 when i#]
I =|a,; a; = ..
" [a’f llxn > {1 when =]

S O =
S = O
- o O

For Example (i) 1o (i)
O 1 2x2
3x3
8. Triangular matrix
(@) Upper triangular matrix

A square matrix in which all the elements below the principal diagonal elements are zero then it is called

as an Upper Triangular Matrix.

Therefore, in A= [a,»j lm , a; =0 when i> j

o s 1 2 6
For Example (i) {O 2} al|o 4 7
2x2 O O 3 s

(ii) Lower triangular matrix
A square matrix in which all the elements above the principal diagonal elements are zero then it is called

as an Lower Triangular Matrix. Therefore, in A = [a,»j lm , ;= 0 when i< j

20 50 0

For Example (i) {_1 3} e 7 0
2x2

9 2 4

3x3

[48]



3.05 Properties of matrx
1. Transpose of a matrix
If A=[a,;],., be am x n matrix, then the matrix obtained by interchanging the rows and columns of

mxn

A is called the transpose of A. Transpose fo the matrix A is denoted by A" or A' . In other words, if

A=[a],., then A" = A'=[a,],,, . For example,
1 0 2 1 5 3 1 3
() A=|5 3 —4| =4"=l0 3 8 @ A=|5 o0 :>Af{1 > 2}
38 6 2 -4 6 2 4 30

3x3 3x3 3x2
2. Symmetric and skew symmetric matrix

@) Symmetric Matrix

A square matrix A =[a,],,, is said to be symmetric it A= A", for example:

mxn

2 -3 . 2 -3
i A= ;A=
-3 4 2%2 -3 4 2%2

A is Symmetric matrix

a h g a h g
G)yA=|h b f| ; A'=|h b f
g f C3><3 g f C3><3

Note: In Symmetric Matrix, All elements are equal at equidisant with respect to principal diagonal means,

(@i) Skew-Symmetric Matrix

A square matrix A =[a;],,, is said to be skew symmetric if A" =—A, for example:

mxn

_ K —2} ; {o 2}
0] A= ;A= =-A
12 0 -2 0

[0 h g 0 —-h -g
(i) A=|-h 0 —f|; A"=|h 0 [ |=-A
¢ f 0 g —f O

Note: (a) In Skew-Symmetric Matrix, a; =—a for all possible values of i and j.
(b) All the diagonal elements of a skew symmetric matrix are zero. If

a;=—a; andif i=1,j=1 then

a, =—dy,
- 2a11 =0
a,=0=a,,=..a

nn

[49]



(© For any matrices A and B of suitable orders, for addition and multiplication, then

() (A B)T =A"+B" (ii) (KA)T = KA”, (where k is any constant)  (iii) (AB)T — BT AT
d) If A is a square matrix then

1) A+ A" isa Symmetric matrix (i) A- A" isa Skew-Symmetric matrix

(i) AA" and A"A is a symmetric matrix  (iv) (AT )T =A

(e) Any square matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.
_1 ry, 1 r
A_E(A+A )+E(A—A ),

where A is a square matrix

A+ AT is a symmetric Matrix

and A— A" is a skew-symmetric matrix
® A matrix is said to be equal if their corresponding elements are equal,
2 -20 b, b, b,
For example: A= and B=
3 -4 2 b, by, b,
= b,=2, b,=-2, b;=0

b, =3, b,=-4, b,=2
Ilustrative Examples
Example 1. The order of Ais 3 x 5 and R is a row matrix of A then write the order of R.
Solution : order of matrix Ais 3 x 5
has 5 elements in each row A
order of matrix Ris 1 x 5

Example 2. Find a matrix of order 2 x 3, A=[a,;] whose elements are (i) a; =2i+j ; (i) a; =i* - j’
Solution : (@) a, = 2i+j Here i=1, 2 and j=1, 2, 3 as the matrix is of order 2 x 3
a =2+1=3,a,=2+2=4, a,=2+3=5
11

4, =4+1=5, a, =4+2=6, a,,=4+3=17

. . 345
Required matrix is A =
567

(i) a; =i’ — j* given matrix is of the order 2 x 3 thus i=1, 2 and j=1, 2, 3.

a =1"-1=0, a,=1"-2"=-3, q,=1"-3"=-38

11

4y, =22 =12 =3, a,, =222 =0, a, =2>-3"=-5

0-3 —8}

. Required matrix {3 0 —5
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Example 3. For what vlaues of x, y and z matrices A and B are equal

2 0 x+3 2 0 6
A= ;. B=
y—-4 4 6 -2 4 2z
Solution : -+ A and B are equal matrices, hence their corresponding elemetns are also equal

x+3=6, y—-4=-2, and 27;=6
= x=3, y=2 and z=3

2x+y 3 x—2y}

3 3 4
Example 4. If { = { } then find the vlaues of x, y, @ and b

a-b 2a+b -5 4 -1 -5
Solution : -» Both are equal matrices, hence their corresponding elements are also equal

2x+y=3 D
x—-2y=4 2

Solving (1) and (2) we have

x=2, y=-1

again a—b=4 3)
2a+b=-1 “)

Solving (3) and (4) we have
a=1, b=-3
x=2, y=-1, a=1, b=-3
Exercise 3.1
1. If the matrix A=[q,;l,.,, then find the number of elements of A
2. Find out the unit matrix of order 4 x 4
3. If {k+4 - }:{a _1} then find the vlaue of a
3 k-6 3 4
4.  Find the possible orders of matrix with 6 elements.

5.  Find a matrix A =[a;] of order 2 x 2 whose elements

2i—j (i+2j)
N a. = 1 —
(1) g 3l+] (11) aij - 21

(iii) @, =2i-3]
. . L,. .
6.  Find a matrix A=a, of order 2 x 3 whose elements are @; = 5|2l -3j| .
at+b 2 6 2

7. It 7 ab |=| 7 8 | then find the vlaues of ¢ and b,
-3 4 -3 4

[51]



2 n 2x 3x+y B 4 5 o i the o1 ) ;
' x4z 3y—2p| |-4 3| " e vlaues of x, y, z and p.

9. For what values of a, b and ¢ , matrices A and B are equal matrices where.
a-2 3 2c b ¢ 6
A= ;. B=
12¢ b+2 bc 6b a 3b
3.06 Operations on matrix
1. Addition
In general, if A=[a;],., and B=[b,],,, are two matrices of the same order, say m x n. then, the

sum of the two matrices A and B is defined as a matrix A+ B =[a; +D,],,., , for all possible values for i and ;.

a,, a b, b
For example: ()If A :{ ! 12} and B :{ " 12} then
a21 a22 2%2 21 22 |ox2
A+B={a“ a12}+{b11 b12j|=|:a11+b11 a12+b12j|
a, a4y b, b, ay +b, ay,+b, 22

G)If A {2 : _3} d B {4 2_1} th
1 = an = cn
40 6] 13 5]

2+4 5+2 -3-1 6 7 -4
A+B= =
{4+1 0+3 6+5} {5 3 11L3

In general, if A =[qa,]

2. Subtraction

and B =[b;],,, are two matrices of the same order, say m x n. Then, the

mxn

subtraction of the two matrices A and B is defined as a matrix A— B =[a; —D,;],,, , for all possible values of

i and j.

a, a b, b
For example: () if A= e and B= o then
) b 2x2

a, a,, o by
ay  4p b, by, a,—b, a,-b,
a; 4y b, b, ay —b, ay, —by 22

. 5 37 2 4 6
It A= and B = then
6 2 1], 3.4 1],

5-2 3-4 7-6] [3 -1 1
A-B= =
{6—3 2-4 1—1} {3 -2 OL
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3. Multiplication

For multiplication of two matrices A and B, the number of columnes in A should be equal to the number
of rows in B. Further more for getting the elements of the product matrix, we take rows of A and columns of
B, multiply them elements-wise and take the sum. The product of two matrices A and B is defined if the number

of columns of A is equal to the number of rows of B. Let A=[a,],., be am x p matrix and B =[b,],,, be

a p x n matrix. Then the product of the matrices A and B is the matrix C of order m X n.
Order of matrix AB = No . of rows in A X No. of columns in B

A = [a,‘j] and B = [bij]pxn then

mxp

order of AB will be mxxnzmxn

a, a b, b, b
Forexample : () If A= { ! 12} and B = { e 12} then
a 2x2 2x3

21 Gp hi Dp DOn

order of AB will be AB 2x[2___ 2]x3=2x3

AB:_all a12i|{bll by, b13i|

LGy Ap b, b,, by

_ allbll + a12b2l al lb12 + a12b22 allbIS + a12b23 j|
2x3

_a2lbll + a22b2l a2lbl2 + a22b22 a21b13 + a22b23

2 3 5 4
(i) If A= then B =
-1 4 2x2 6 0 22

order of AB will be AB 2x[2  2|x2=2x2
(2 3] [5 4
AB = X
-1 4|6 ©

[ 2x54+3x6 2x4+3x0
| —1x5+4x6 —1x4+4x0

[10+18  8+0 28 8
|—5+24 -4+ o} B {19 —41 i
4. Scalar Multiplication
In general, we may define multiplication of a matrix by a scalar as follows: if A =[q,],,, is a matrix
and # is a scalar, then nA is another matrix which is obtained
A=la;l,,, then nA=[na],,,

mxn

" a, a, a
For example (i) if A= { T 13} then
Ay Ay Ay |y,
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a, 4, Q4 na,, na, na;
nA=n =
Q) Gy Ay na, —nd, ndy

A {2 3} ar 3A 6 9

i) If = =

. I =5 2x2 3 15 2%2
-10 -1

and —5A = 0 >
-5 25 e

3.07 Properties of matrix addition

(i) Commutativity
If A and B are matrices of same order then A+ B=B+ A
Let A=la,l,., and B=[b;],,, thenclearly A + B and B + A are matrices of same order

mxn mxn

[A+B]

mxn = [aij ]mxn + [bz] ]mxn

=[a; +b,;]

mxn

=[b; +a;],.. (Commutative law of addition)
= [sz ]mxn + [aij ]mxn

=[B+A]

mxn

. A+B=B+A
(ii) Associativity

If A, B and C are matrices of same order then (A+ B)+C=A+(B+C)

Let A=[a;] B =[b,] and C=[c;]

mxn? mxn mxn

then clearly (A+B)+C and A+(B+C) are

matrices of same order
[(A+B)+C]  =(1a;], #1510 )+ ]

=la, +b;],,., +1c;]

mxn mxn

= [(ay +bij ) +Cij j|m><l‘l

= [a,»,- +(b; +¢; )] (Associative law of addition)

mxn

= [aij ]mxn + ([bz] ]mxn + [Cij ]mxn)

=[A+(B+C)]

) (A+B)+C=A+(B+C)
(iii)  Additive identity
A zero matrix O, m x n is known as the identity matrix of A as
A+O0=A=0+A
[54]



(iv)  Additive inverse

For matrix A=laq;l,., ,if ~A=[-a;],,, then-A is the additive inverse of matrix A
as A+(-A)=0=(-A)+ A, where O is the zero matrix of order m x n
Let A=lq;],., then —A=-q,],., =[-aq;l,.,
A+(-A) =lq;l,., +[-a;],., =0
and (-A)+A=A+(-A) (Commutative law of addition)

A+(-A)=0=(-A)+A
v) Cancellation law
If A, B and C are three matrices of same order then
A+B=A+C=B=C (Left cancellation law)
and B+A=C+A=B=C (Right cancellation law)
3.08 Properties of Matrix Multiplication
@) Commutativity
Generally matrix multiplication does not obey Commutative law due to conditions given below:

(a) If A=[a,l,., and B=[b,],,., then AB and BA can be found out but they are not necessarily equal.

mxn mxn

1 0 1 0
for example let A= and B = then
1 0 0 0
1 0|0 1 01
AB = =
1 olo oo ]
oy [0 1] 0] [1 0
and “lo o]t o] |0 o

AB # BA
(b) If A=[a,l,., and B=[b,],,, then matrix AB can be found but BA cannot be found so no question of
proving commutative law.
(¢ If A=layl,., and B=[D;],,, then AB and BA can be found out but their order will not be same so
AB # BA

Note: Under certain conditions AB = BA is possible.
(ii) Associativity
If matrix A, B and C are favourable for AB and BC then associative law is verified
ie. (AB)C = A(BC)
(iii)  Identity
If 7 is an unit matrix and A is a matrix of order m x n then
I A=A=Al,

where I, ,m is the unit matrix of order m and I, ,n is the unit matrix of order n
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Note: For square matrix, A, Al = A=A where I has same order as A.

(iv)

(@)

(b)
3.09

3.10

Distributivity
If matrices A, B and C are favourable for addition and multiplication then they obey distrbutive law.

A(B+C)=AB+AC

(A+B)C=AC+BC

Properties of scalar multiplication of a matirx
If A and B are two matrices of same order and let k and ¢ are two constants then

() (k+0)A=kA+(A (i) k(A+B)=kA+kB
(i) k(¢A)=1¢(kA)=(tk)A (iv) LA=A
V) (-1)A=-A

Multiplicative Inverse Matrix
If the product of two square matrices of same order A and B is a Unit matrix then B is known as the

multiplicative inverse matrix of A and A is known as the multiplicative inverse matrix of B i.e.

If AB=1=BA then A and B are multiplicative inverse matrix of invertible matrices, for example:

1 2 2 3 4 2
It A=[2 5 4 and B=|-2 1 0 then
3.7 5], [ B
(1 2 2][3 -4 2
AB=|2 5 4||-2 1 0
13 7 5|1 1 -1
[3-4+2 —4+2+2  2+40-2
=16-10+4 -8+5+4 4+0-4
_9—14+5 —12+7+5 6+0-5
(1 0 0
=0 1 0| =1,
_0 0 13><3
3 4 2171 2 2
and BA=|-2 1 0|2 5 4
1 1 -1/|3 7 5
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[ 3-8+6 6-20+14 6-16+10
=|-2+2+0 —4+5+0 —4+4+0
| 1+2-3 2+5-7 2+4-5
1 0 0
=0 1 0| =1
_O O 13><3

AB =1, = BA thus A amd B are multiplicative inverse matrix of each other.
3.11 Zero Divisors

If the product of two non-zero matrices A and B is a zero matrix then A and B are divisors of zero

1 3 -1 1
A= and B = are divisors of zero
1 3 1 -1
1 3|-1 1
AB
B
[-1+1 1-1] [0 0 o
T|-3+3 3-3] [0 0]

A and B are divisors of zero.
3.12 Positive Integral Power of a Square Matrix

If a square matrix A is multiplied by itself then we get A” , againif A is multiplied with A then we get
A’ similarly when A" is multiplied with A then we get A" i.e.

AA = A? A*A=A°
and AnflA — An

At 3]
If Ty 4] then

oaa |t 3L 3]_[re 3+12]_[7 15
2 4|2 4] |[2+8 6+16] |10 22

. . [7 1571 3] [7+30 21+60] [37 81
10 2212 4 10+44 30+88 54 118
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Ilustrative Examples

2 -1 2 0
E le5.1f A= B= hen find 24 — 3B
xample {3 5} and {_1 3 4} then find 3
_ a2 4
Solution: -- 13 2 5
4 17 [4 8 =2
2A=2 = )
2 5 6 4 10
2 1 0 6 3 0
and 3B=3 =
-1 3 4] |-3 9 12
-6 -3 0
3B =
'3 -9 -12
2A-3B=2A+(-3B)
H 8 2], [6 3 0
16 4 10/ 3 -9 -12
[ 4-6 8-3 2+0] [2 5 =2
| 6+3  4-9 10-12] |9 -5 -2
—~ 0 2 0 -
Example 6. If B = 3 4 and C = 7 1 6 then find A where 2A-3B+5C =0, and
Ois a zero matrix of order 2 x 3.
Solution : -+ 24A-3B+5C=0
2A=3B-5C+0
2 2 0 2 0 =21 [0 0 O]
=3 +(-5) +
31 4 71 6/ [0 0 0]
[-6 6 0 [0 o 10'+‘0 0 0]
19 3 12) |35 -5 30| |0 0 O
_[-6-10+0 6+0+0 0+10+0
1 9-35+0 3-5+0 12-30+0
[-16 6 10
|26 -2 -18
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1/-16 6 10
A=—
2126 -2 -18

[-8 3 5
o133 -1 -9

6 -7 0
4 -5
Example 7. If A= L 3 } and B=|-1 2 5] then find AB, and BA if exists.
1 0 3
Solution : - order of Ais 2 x 3 and order of Bis 3 x 3

AB exists but BA does not
6
4 2 -5
AB = -1
1 0 3 1

24-2-5 -28+4+0 0+10-15| |17 -24 -5
6-0+3 -7+0+0 0+0+9 9 -7 9],

-7 0

Example 8. Find the value of x for which

1
or [1+2x+15 3+5x+3 2+x+2] 2l=0

X

1
or [2x+16 Sx+6 x+4] 21=0

X

or [2x+16+10x+12+x2+4x]=0
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or [x2+16x+28]=0

or  x*+16x+28=0
or  (x+2)(x+14)=0

= x+2=0 or x+14=0

= x=-2 or y=-14
-1 -2 3
Example 9.1f A—2I=| 2 1 -1/ thenfind AA" where I is the identity matrix of order 3 x 3.
-3 1 0
-1 -2 3
Solution : - A-2=12 1 -l

A=2 1 -1{+2/0 1 O
-3 1 0 0 0 1
-1 -2 3 2 00 1 -2 3
=12 1 -1|+/0 2 O0|=}2 3 -1
-3 1 O 0 0 2 -3 1 2
1 2 3
Al=1-2 3 1
3 -1 2

1+4+9 2-6-3 -3-2+6 14 -7 1
=| 2-6-3 449+1 —64+3-2|=|-7 14 -5
-3-2+6 —-6+3-2 9+1+4 1 -5 14

1 -1
Example 10. If A = { | } then verify the following:

(i) A* =24 (i) A*=4A
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. . 5 1 1|1 -1] [1+1 -1-1
Solution : (i) LH.S. A" =AA= =
-1 1][-1 1] |-1-1 1+1
12 2,0 —1'_2A_
- _2 2 - _1 1__ _R.H.S.
) e 2 201 -1
(i) L.H.S. = =l 5 5l
[2+2 2-2] [4 —4 A 1 -1 A
Tl2-2 242 7|4 4|71 1T TOTRHS
Example 1LTE A=| > > 1B=| L 2 2| aac=|’ S| then verify the followi
xample 11. Il 2PPT| 3 o 4| @ =l { then verify the following.

A(B+C)=AB+AC

Solution: LHS.  =A(B+C)

2 3] [[1 =2 2] [2 3 6

= X +

12 |3 2 4] |1 4 1

[2 3] [3 1 8] [6-12 2+18 16+15

= X =

1 2] |4 6 5] [3-8 1+12 8+10

_[-6 20 31

-5 13 18 @)

R.H.S. =AB+AC

2 371 —22+‘23 2 3 6

1 2]|-3 2 4] |1 2]-1 41

[2-9 —4+6 4+12‘Jr 4-3 6+12 12+3

11-6 —2+4 2+8 ] [2-2 3+8 6+2

-7 2 16| [1 18 15

-5 2 10] |0 11 8

_[-6 20 31

|5 13 18 @)
from (1) and (2) L.H.S. = R.H.S.
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Exericse 3.2
-3 2 1 3 5 =2
If A= and B = { 4 2 then find A+ B and A-B.

} then find matrices A and B.

If A={2 1| and B=|1 2| then find matrix C where A+2B+C=0 and O is a zero
matrix.

3 2 -1 7

2 -1 0 4
If A= and B = then find the value of 34% —2B.

01 2 3 B=
If A= and then show that AB # BA

32 10

w o = O
S = N W

cosx —sinx 0
If f(x)=|sinx cosx O thenshow that f(A)f(B)=f(A+B).
0 0 1

6 -7 0
4 2 -5
If A=L 0 3 } and B=|—-1 2 5| then prove that: (AB)T =BTA”
1 0 2

8 X
flly z[ax2+by2+CZ2+2hxy+2]‘yZ+2gzx],
cllz

Prove that [x y Z]

R T 9
- - =

1 -2 3

If A= 2 3 —1| and I s the identity matrix of third order then prove that
-3 1 2

-6 1 2
A*-3A+9I=| 5 4 4

2 8 3
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10.

11.

12.

13.

14.

15.

a

4 |=0, where O is a zero matrix then find the value of a.
4|1

11 a 1 )
If A= 5 , B= and (A+B) = A>+ B* then find the values of @ and b

12 -1 b -1
0 —tan—
If A= and / is a unit matrix of order 2 x 2 then prove that
X
tan — 0
L 2
cosx —sinx
I+A=(I- A){ - }
sinx cosx

1 0 1 0
If A={ 7} and / :{O J then find the value of K where A> =8A + KI .

-1
1 O 1 -4 3
If 2 —-11A=|-2 —-10 6 | then find the value of A.
-3 4 13 20 -9

cosa sina . | cosna  sinna _ S
If A= then prove that A” = » where n is a positive integer

—sina cosa —sinno  cosno

Miscellaneous Exericse - 3

-1 1
If matrix A:{ . J then find A”.

4 o
If A= | thenfind (A-2I).(A-3I).
1 2] 5
If A= 3 4 and B = then find AB .
If A= - 0} and B:{O_ l},wherei=\/—_1 then find BA .
o 1 1 0

1 1 -1 3 5 -7
IfA—-B=|{1 1 0| and A+B=|-1 1 4 | then find matrices A and B.
1 0 O 11 8 0
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10.

11.

12.

13.

14.

15.

16.

-2 31 +2 -3 1
If =* then find the values of x and y.
-y=2 -1 4 5 -1 4

The order of matrix A is 3 x 4 and B is a matrix such that A’ B and AB" both are defined then find the
order of B.

-2 -1 1
If A= -1 7 4 | is a symmetric matrix then find the value of x.
I —x 3

Write a 3 x 3 matrix B =[b,] whose elements are b, = ()(j) .

-1 2

2 3 -4 ,

If A= { 2 3 and B=| 3 4 | thenfind A+B" .
-5 -6

6 2
Express the matrix A as the sum of symmetric and skew-symmetric matrix where A = { } .

5 4
2 1 1
If  A=|-1 0 2| thenprove that
0O 1 3
H @AH =A.

(i) A+A" isasymmetric matrix.
(i) A—A" is a skew-symmetric matrix.

(ivy AA” and A"A are symmetric matrices.

4 2 -2 1
If A= { } B= { } and 3A—2B+C is a zero matrix then find matrix C.

1 3 3 2
i+27)?
Write a matrix B =[b,] of order 2 x 3 whose elements are b, = % :
1o 1 1 0 O -1
If A= { 5 3 _2} B={0 -1 2| and C=| 0 | then find the elements of first row of the matrix
0O 5 7 1
ABC.
cosf sinf ;
If matrix A= ) then find AA" .
—sin@® cosf

[64]



17.

18.

19.

20.

21.

22.

23.

24.

1 2 3|1
If[l x 1]|4 5 6|/2|=0 thenfind the value of x
3 2 53
fa b ) 1 0
If B= J then prove that B° —(a+d)B=(bc—ad)l,, where I, = o 1l
c
1 0 0 1
If A= and B = then write (aA +bB)(aA—bB) in the form of matrix A.
10 1 -1 0
2 1 1 4
If A= . 2} and B:{ . J then prove that (A—B)2¢A2—2AB+BZ.
3 2
If A= 4 | and A’ = kA -21,, then find the value of k.

i o 0 -1 o i ) ) )
If A= |, B= L ol C=| . where ;i =+/—1 then verifty the following expression.
0 i i o

G A’=B*=C’=-I,.
(i) AB=-BA=-C.

31
IfA{_1 2} and f(A)=A>-5A+71 thenfind f(A) .

Prove that

cos’cc  cosocsinoac || cos’B  cosfBsinf| o
cosBsinfB  sin’f

COS oC §in oc sin’ oc

where oc—ﬁ:(Zm—l)g;m eN.
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e S

11.

12.
13.

14.

. Transpose Matrix: If A=[a,]

[IMPORTANT POINTS]

A matrix is an ordered rectangular array of number or functions.

Types of Matrices: Row Matrix, Column Matrix, Zero Matrix, Square Matrix, Diagonal Matrix, Scalar
Matrix. Unit Matrix, Upper Triangular Matrix, Lower Triangular Matrix, Symmetric and Skew-Symmetric
Matrices.

Addition and substraction of matrices. Addition and substration of two matrices of same order is obtained
by addtiion and substraction of their respective elements.

Multiplication of Matrices : Let two matrices A and B, their multiplication AB is possible when number
of column in A is equal to number of row in B and element of AB is obtained by sum of product of

element of i column in A with element of /™ row in B.

Scalar Multiplication : When a non zero scalar is multiplied with matrices A then we have new matrices
nA in which all elements is n™ time of element of A.

Addition of matrices follows commutative and associative law while substraction is not.

Multiplication of matrices follows associative law but it doesn't follow commutative law.

A matrix having m rows and n columns is called a matrix of order m x n.

A m X n matrix is a square matrix if m = n.

w then A" =[a;],. .
Symmetric Matrix: A’ = A
Skew-Symmetric Matrix: A" =-A
If A 1s a square matrix then
@ A+A" is a symmetric matrix
() A-A" isskew symmetric matrix
(i) AA" and ATA are symmetric matrices
1 1

(iv) A:E(A+AT)+E(A—AT)
If A and B are two matrices then
@0 (AtB) =A"+B’

i) (A=A

i) (AB) =B".A"

(v) (kA) =k.A", where k20
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100
1.8 2.10 1.0
00 1

00 0

4 07 92 2502
W lg7 g @),

7.a=4,b=2 or a=2,b=4

- O O O
(98]

|

Answers
Exericse 3.1

e _1 _4
AU IR /2 1
8. x=2,y=-1,z=-2,p=0
Exericse 3.2

1/2 2
6.

4. 1x6, 6x1, 2x3, 3x2

07 -1 6 -3 3 -2 -1 -5 R
1. A+B= |, A-B=| 2 A{ }B{ } 3.| 4 -5
00 5 2 -8 9 I -1 [
-1 1
3 =20 -
4 |38 _11 10. a=-2,— 11. a=1,b=4 13. k=—7 1 4
1 -4 3
A=
L 2 0}
Miscellaneous Exercise - 3
— 1 2 =
oo 3 0 1 2 3 —4 3
1.A2:2{ } 2.0 3| |, 410 o 5.A=|0 1 2 |,B=|-1 0 2
- 6 4 0 5 4
23 1 6 -9
6. x=—4, y=-7 7. 3x4 8. —4 9.12 4 6 10. L6 3
369
6 7/2 .\ 0 -3/2 16 -4 9/2 25/2 49/2
11. 72 4 32 0 13. 3 s 14.| ¢ 18 1 15. 8

Lo or I, 17.-9/8
0 1

16.

0

19. (a’ +b’) A .

21. k=1 23. {
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Determinants

4.01 Introduction
Consider the following pair of equations

ax+by=c
a,x+b,y=c,,
The equations can be solved to find the unique solution if we find ab, —ba, . Therefore number

a,b, —ba, 1is very important and it can be represented as the matrix obtained from the cofficient of x and y

al bl
a, b,
The number ab, —b,a, which determines uniqueness of solution is associated with the matrix A =

a, b

1 . .
a, b, This determinant

a, b
|:a1 bl } and is called the determinant of A or det A or symbolically we write | A | =
2 2

has two rows and two columns hence it is of order 2.
Note :
1.  Only square matrices have determinants

2. Amatrix A is said to be Singular matrix if its | A | =0

3.  For matrix A, | A | is read as determinmant of A and not modulus of A.
4.02 Definition of determinant

Let A= [a,.j ] is a square matrix of order n we can associate a unique number | a | (real or complex)

called determinant of the square matrix A, where a,; = (i, j)the element of A. it is denoted by | A|.

4.03 Value of determinant
(i) Determinant of a matrix of order one

Let A= [a] is a square matrix of order one then determinant of A = | A| =a,
For Example : If A=[3] then determinant A = | A| = | 3| =3
If A=[3] then determinant A=|A|=|-3|=-3
(ii) Determinant of a matrix of order two

a b
al bl } is a matrix of order 2, then determinant
2 2
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A=|A| o b,
=a,| by |-b|a, |
=ab, —a,b,, value of determinant A. (D

| A | = of order 2 = Product of diagonal elements — Product of off-digonal elements.

E 1 A 23 th
: = , then
xample 14 e
2 3
Determinant A=|A|= 14 =2-(4-3(-1
=8+3=11.
(iii) Determinant of a matrix of order 3 x 3
al bl Cl
Let A=|a, b, c,| isamatrix of order 3, then
a, by ¢
al bl Cl

Determinant A=|A|= a, b, c,

a by
—a b, ¢, b, a, ¢ e, a, b, ‘
by ¢ a; G a; b
=aq, (b2c3 -byc, ) -b, (a2c3 —a,c, ) +c, (a2b3 —a,b, ) 2)
= ( ab,c, +bc,a, +ca,b, ) - ( ab,c, +b ,c,a, +c,a,b, ) 3)

Here numbers a,,b,,c,; a,,b,,c,; a,,b;, c, are called the elements of the determinant. There are a

total of 3° =9 elements in a matrix of order 3. Thus the determinant of a square matrix of order 3 is the sum

of the product of elements a, in first row with (=1)'*J times the determinant of 2 x 2. Sub-matrix obtained by

leaving the first row and column passing through the element.

4.04 Rules to expand third order determinant

(1  Write the elements of first row in consecutive positive and negative sign.

(1)  Multiply first element with the second order determinant obtained by deleting the elements of first row
(R)) and first column (C ). Then multiply 2nd element and the second order determinant obtained by
deleting elements of first row (R,) and 2nd column (C,). Now multiply third element and the second
order determinant obtained by deleting elements of first row (R,) and third column (C,) and third column
(C)). To get the value of the determinant add all the three terms.
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@) The result will be the value of the determinant of order 3.

1 20
Example : Evaluate the determinant (2 3 1
30 2

Solution : 3 2 3 0

W N =
S W N

:1_‘3 1‘_2_‘2 1‘+0_‘2 3‘
=1(3x2-1x0)—-2(2x2-3x1)+0(2x0-3x3)

1(6)-2(1)+0
-2

6
4.

4.05 Sarrus diagram to determine the value of third order determinant
Yy v v

a b ¢ a b Ci & bl
|A|: a, b, ¢ |=| q bz 62 R b,
a; by ¢ a; by Ry bj.
. ’A ,A ‘
= ( a,b,c, +b,c,a, +c,a,b, ) — ( ab,c, +b,c,a, +c,a,b, )
Note: To evaluate determinant from Sarrus diagram, Like given diagram, we have substract the sum of
product of element of leading diagonal to sum of product of element of non-leading diagonal.

L, AFS /
12 -1 | "2, ,a1 T 27
Example : Determinant | 3 5 7 |= 3 5 7 '3 5
2 4 6 2 4 “16 o R
N ‘a 4
(30 +28-12)~(~10+28+36)
=46—54 =-8.

4.06 Difference between matrix and determinant

(1  Matrix is a proper representation of number and does not have a numerical value while determinant has
a unique numerical value.

(i)  Matrix can be of any order while determinants are square matrices where number of rows and columns
are same.

@) If we change the number of rows and columns of the matrix we get a new matrix whereas the value of
determinant unchanged.
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4.07 Minors and cofactors of a determinant
Minors : Minor of an element a, of a determinant is the determinant obtained by deleting its ith row and
Jth column in which element g, lies. Minor of an element a, is denoted by A, .

al bl Cl
Example : A=|a, b, c,|.Hereelement a,, lies in the second row and first column then leaving the
a, by ¢

second row and first column in A we get the respective determinant.

a b ¢
1 1 . . .
........... a, b, ¢ | o b . | Whichis the minor of element a,
a; by« >0

similarly the' minor of element c; of A will be

a b ¢ a b
a, b, ¢ or al bl
........... a, b, ¢ 22

Minor of an element of a determinant of order n(n > 2) is a determinatn of order n — 1.

Example : The minor of element 1 in the determinant ‘ _i i is|2].
1 2 3 70 3
The minor of element 3 in the determinant | 7 (0 5| 1 3 ‘ and element 7 is | | 4 ‘
3 -1 4 T

Cofactor : Cofactor of an element a; denoted by F p is defined by
F; =(-1)"/ Minors
j— Fl] = (_l)Hinj 5

here A; and F; denotes the Minors and Cofactors of element a,

A, 5 i+ jiseven

Le- 77 |-A, ; i+jisodd
7 4 -1

Example: If A=|-2 3 0] then

I -5 2
w| 30

Cofactor of 7 =(-1) 5 =6-0=6
3+2 7 -1

Cofactor of 5 =(-1) 5 0 ‘——(0—2) =2
1+2 -2 0

Cofactor of 4 =(—1) | 2 ‘=—(—4)=4




Note: For easy calculation in a matrix of order 2 and 3 the signs of elements to find the cofactor is

4.08 Expansion of determinants

all alZ a13
A=|a, a, a, | isadeterminant of third order
a; Gy 4y
Expanding along first row we get
Gy Ay ay Ay

A=a,
Gy, Ay

+ag;,

a; 4y a; a4y
=a,, A, —a,A, +a,A,,where A, A, and A, are the minors of corresponding elements
=a, F, +a,F,+a,F,,where F,, F,, and F,, are the cofactors of corresponding elements

Similarly we can see that

A =a, Fy +a,F,, +ayF,,
A=a,F, +ay,F, +ayF;,
A=a,F s +a,Fy; +ayF, elc
Thus the value of the determinants is the sum of elements with its corresponding cofactors.
Note:

) The expansion can be done along any row or column in determinant.
(i) This rule is valid for any type of determinant.
(i) Expansion should be done with any row or column with maximum zeroes.

Ilustrative Examples

Example 1. Evaluate the determinant j 43 ‘
2 4
Solution : s 3 ‘=(—6)—(8)=—14.

) cosd —sinf
Example 2. Evaluate the determinant

sinf cosf

cos@ —sinf
Solution :

sinf  cos6 =(00520)—(—sin20)

=cos’ O +sin’ 0 =1.
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3 11 -1
Example 3. Evaluate the determinant | 5 2 0

10 3 0
3 11 -1
Solution : 5 2 (| expanding alogn third column
10 3 0
5 2
=—1 -0+0=—(15-20)=5.
o 3oro=-0-)

Example 4. If determinant

i ‘ =4, then find the value of k.

) ' k 8| 4
Solution : Given 2 al”
= 4k-16=4
= k=5.
Example 5. If determinant k3 ‘ — 7 then find the vlaue of k.
-1 k
) ‘ k3] ;
Solution : Given 1kl
= k*—(-3)=7 = k*+3=17
= k*=4 = k=42,
2 4 1
Example 6. Evaluate the determinant A=| 8 5 2| and write the cofactors and minors of elements of
-1 3 7
second row.
2 1 4
Solution: Minors : A,, =‘ ;t 71 ‘=28—3=25, A, =‘ - ‘=14—(—1):15,A23 =‘ 1 3 ‘= 6-(—4)=10

. Cofactors  F,, =—A, =-25, F,,=A,, =15, F,,=-A,,=-10
Thus the vlaue of determinant Ais =8-F,, +5-F,, +2-F,,
=8(-25)+5(15)+2(-10)
=-200+75-20=-145.
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3 -7 13

Example 7. Evaluate the determinant |5 0 0
0o 11 2

Solution : Expanding along second row as it has two zeroes
3 -7 13

5 0 0[=5x(-1)

‘—7 13
0 11 2

+0-0
11 2

=—5[-14-143]=785.

Exercise 4.1

k2
1. For what value of k is the value of the determinant | , 5| zero?
Xy .
2 If ) 4 =0 then find the ratio x : y.
2
3. If 3 =4 and S ‘ =7 then evaluate x and y.
y X

x-1 x-2

X X—

4. If

‘ =( then find the value of x .

5. Evaluate the determinant and also find the minors and cofactors of elements of first row

1 -3 2 a g
G |4 -1 2 G |" S
305 2 8§ |«
3 —11 1
6. Evaluate the determinant 5 00
-10 30
1 a b
7. Prove that | —a 1 cl|=1+d*>+b*+c*-
b - 1
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4.09 Properties of Determinants

(i) The value of the determinant remains unchanged if its rows and columns are interchanged.

al bl Cl
A=|la, b, ¢
Proof : Let 2 2 )
a, b, ¢
a a, da
and Ay=|b b, by,
¢ G G
NN e A
@ by e a b
A= a, 'bz"x ’Céi N‘aé‘ b2
az” by ey B '
© A
A= (atlbzc3 + b,c,a, + c,a,b, )— (a3bzc1 + b,c,a, + c,a,b, )
NSRRI e A
a. 612\‘“:613*, 4, a,
and A=l b .bzl ~b3 b} b,
SG R e G
<A

A= (a1b2c3 +a,b,c, +abc, ) — ( ¢b,a, +c,ba, +cba, )

from (1) and (2) A=A,

- |A"|=| A|, where A", is a transpose of square matrix A.

(by Sarrus figure)

(D

(by Sarrus figure)

@)

(ii) Ifany two rows (or columns) of a determinant are interchanged, then sign of determiant changes,

but value remains unchanged.

a b ¢
Proof : Let A=la, b ¢
a, b, ¢
b a ¢
and A=\b, a, c|,
b, a; «c

(by interchanging the first and second columns of the determinant)

A= ( a,b,c, +b,c,a, +ca,b, ) — ( ab,c, +b,c,a, +c,a,b, )
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RN SR AP
bI . &1;“o'(;1" "bl "'al
and A, =|b, ".“Q, ‘5'2. .bz: a, (by Sarrus figure)
b @ C:a b x

A= (b1a2c3 +a,c,b, +c,b,a, ) — ( b,a,c, +a,c,b, +c;b,q, ) 2)

. from (1)and (2) A, =-A

1

(iii) If any two rows (or columns) of a determinant are identical (all corresponding elements are same),
then value of determinant is zero

oo N Y oo
a b ¢ a b ‘e a b
Proof : a b cl=la b ¢ a b : (by Sarrus figure)
X Z X z’ x N
y y y e
=(abz+bcx+cay) (xbc+yca+zab)
=0.
.o  ~
X a x X a-, x X qx'v
and y by |=|Yy ’b y : hoy ‘b (by Sarrus figure)
z ¢ 2 Z° ‘c %1% e,
e ‘4 ‘4
=(xbz+ayz+xyc) (sz+cyx+zya)
=0.

(iv) If each element of a row (or a column) of a determinant is multiplied by a constant &, then its
value gets multiplied by k.

al bl cl
Proof : Let A=la, b, c,
a3 b3 c3

and A=|a b ¢,
ka, kb, kc,
By Sarrus figure (multiplying the third row by k)
A =(ab,c, +bicya, + c,a.by ) —(asb,c, +byc,a, + cya5b,) (1)

N Sel P 4
nr.‘ br:"'cb ZYIHI
and A=l a, ‘b, RN b,

(by Sarrus figure)
kay kb, kéy| kay Kby
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A = (c11192kc3 +b,c,ka, + c,a,kb, ) - (ka3b2c1 + kb,c,a, + kc,a,b, )
=k { ( a,b,c, +b,c,a, +ca,b, ) - ( ab,c, + b,c,a, +c,a,b, )}
= kA

A, =kA

Corollory :: Let A be the determinant obtained by multiplying the each elements of A by k then
A, = kA, when the order of A is one

A, = k*A, when the order of A is two
A, = k’A, when the order of A is three
A, =k*A, when the order of A is four

Le. A, =k"A when the order of Ais n

(v) If each elements of a row or column of a determinant are expressed as sum of two (or more)
terms the determinant can be expressed as sum of two (or more) determinants.

a+d, b ¢
Proof : Let A=|a,+d, b, c,
a,+d, b, c,

Expanding along first row
b, c b b c
A=(a,+d))| > 72 |-(ay+d,)| " '|+(ay+d,)| '
(al 1) b, Cs‘ (a2 2) b, ¢, (a3 3) b, c,
:{al b, ¢, _a, b ¢ a, b ¢ }4'{‘11 b, «c, _d, b ¢ d, b ¢ }
b, ¢ b, c, b, «c, b, «c b, ¢, b, «c,

a b ¢ d b ¢
=la, b, c,|+|d, b, c,
a, b, ¢ d; by «c

(vi) If the elements of any row or column of a determinant is added or substracted with any of other
row (or column) with a multiple of constant, then the value of the determinant does not changes.

al bl Cl
Proof : Let A=|a, b, c,
a3 b3 C3

a,+kc, b
and A =|a,+ke, b, c,]|,
a,+ke, b, ¢

(by adding first column with k times the third column)
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=A+kx0

=A.

Cl
€2 [ Property (v)]
G
[ Property (iv) |
[ Property (iit) ]

(vii) If elements of one row (or column) are multiplied with cofactors of elements of any other row

(or column), then their sum is zero.

all Cl12 a13

Proof : Let A=|a, a,, ay (1)
a31 a32 a33

= A=a,F, +a,F, +a,F, (Expanding along first rows) 2

substituting in (1) of a,,,a,, and a,; by a,,,a,, and a,,

a21 Cl22 a23
Ay Gy Ay |=0
a31 a32 a33

thsu from (1) and (3)

similarly

0=a, F, +a,F, +ay;

[ Property (i) ] (3)

O0=a, K, +a,F,+ayk,

F, etc.

(viii) If the elements of any row or column of a determinant are zeroes then the vlaue of the

determinant is zero.

al bl Cl
Proof : A= 0 0 O
a3 b3 C3

= —0 X

expanding along second row




(ix) In a Triangular matrix the value of the determinant is the product of the elements of the

diagonals.
a b
For example: (i) 0 ¢ =ac—0=ac
0
(i) Z =ac—-0=ac
c
a
b
(i) 0 x vy =€g =/((ax)=alx
00 ¢ *
a 0 0
x
(iv) b (2 =a y g‘—a(xé—O)—aﬁx

Corollory : | I, | =1, where I , n is the identity matrix of order n

L 0o 1 00
i} oo o
0 0 1

(x) If a determinant has polynomial with variable x and if by substituting a in place of x the value
of determinant is zero then x—a will be a factor of the determinant.

1 x x°

Forexample : In A=|1 a a”| ifby substituting x=a and x = b the value of A becomes zero
1 b b

then (x—a) and (x—»b) will be the two factors of the determinant.

.". To solve for A subtracting second row from first and third row from first we have

1 X x* ) s
A=|0 a-x a*—x*|= amx a=x
0 box bpP_g2| |b7X DX

1 a+x




4.10 Elementary operations

If the order of A is n>2 then R, R,, R, ... represents first row, second row, third row. . . and
C,.C,,C,,...

@

represents first columns, second column, third column . . . etc.

Operation R; <> R; means ith and jth rows are mutually interchanged and C; <> C; means that ith and

Jjth columns are mutually interchanged.

(i)  Operation R, — kR, means that every element of ith row is multiplied by k& whereas C;, — kC, means
that every element of ith column is multiplied by k.
(i) Operation R, = R, + kR, refers that every element of ith row is added to k times the elements in jth row

similarly C; = C, + kC; refers that every element of ith row is added to k times the elements in jth column

4.11 Product of determinants
L The product of second order determinant can be done as given below:

a, b y a, B aa, +ba, apf +bp,
= Row multiply by column
a, b, a, B, a,a,+ba, a,p +b,p, ( Py Y )
al bl % al ﬁl alal + blﬁl alaZ + blﬁZ
and = Row multiply by Row
ay by | @ By| |4 +bB aa,+bp, ( ply by Row)
|47 =l4]
II. The product of third order determinant can be done as given below:
a b ¢ a B aa, +ba, +co;  af +bp,+c By ay +by,+qy;
a, b, ¢ |x|la, B, v,|=|aotba,tc,a; a,B+b,p,+c,B; ay, +by,+c,y,
a; by ¢ a, By 7, a,a +ba, + 0, @ +bB, B, ay +hy, ey,
a b ¢ a B ao, +bp +cy,  aa,+bp,+cy, aoa,+bp+cy,
and a, by o |xla, B, 1, |=| @ +bpi+cy a0, +bp, oy, a0+b,fi+oyy,
a; by ¢ a, By 7, a,a, +b,B +cyy,  aa, +b B, +eyy,  aas+bfi+cyy,
Note : The product of two different order determinants is also possible.
1 2 3
1 2
For example : A, = and A,=/ 2 1 3
2 1
1 2
) 1 2 3
A A, = 5 1 x|2 1 3
1 2 4
1 00 1 2 3 1 2 3
=0 1 2|x|2 1 3|=(4 5 11
0 2 1 1 2 4 5 4 10
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=1(50~44)-2(40-55)+3(16-25)

=6+30-27=09.
A = b2 =1-4=-3
NOW 1 2 1 - - *
1 2 3
and A,=12 1 3 :1(4—6)—2(8—3)+3(4—1)
1 2 4
=-2-10+9=-3.
from (1), (2) and (3)
A A, =09.
Ilustrative Examples
49 1 6
Example 8. Evaluate the determinant | 39 7 4 | without cxpansion.
10 2 1

Solution : Using operation C, — C, —8C,

N Q=
N Q=
- ~ O
Il
()

1 a b+c

Example 9. Evaluate the determinant |1 b ¢+ a | without expansion.
1 ¢ a+b

a+b+c
c+a+b
a+b+c

1 a b+c
Solution : 1 b c+al=
1 ¢ a+b

—
a S Q

[

=(a+b+c)|1

a & Q
—_— = =

(a+b+c)(0)

I
(e

[81]
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)

©)

[ C, =C, Property (iii)]

(C,—>C,+C,)

[Property (iv)]

[ . C, =C, Property (ii1)]



a-b m-n x-y
Example 10. Evaluate the determinant | b—c n—p y—z | without expansion.
c—a p-m Z7—Xx
a-b m-n x-y
Solution : b-c n-p y-z
c—a p-m Z7—X
Using operation R, = R, + R, + R,
0 0 0
=|b-—c n-p y—-z|=0 .
[ Using Property (viii) ]
c—a p-m Z7—X

1 x x°
Loy ¥ |=(x=y)(y-2)(z-x)
1 z 7
1 x x
Solution : LHS.=[1 y ?
1z 27

Usign R, > R —R, and R, > R, - R,

0 x—y x*—y

O y_Z y2_Z2

1z z
0 1 x+y
=(x=y)(y=2)] 0 1 y+z [property (iv)]
1 z 27
Expanding along first column

I x+y

=(xy)(yz){00+1

|

1 y+z

=(x=y)(y-2)(y+z-x-y)

=(x=)(y=2)(z=x).
=R.H.S.
[82]



Example 12. Without expanding, prove that

Solution :

b+c c+a a+b a
A=|qg+r r+p p+q|=2|p
y+z Z+x Xx+Yy X
b+c c+a a+b
A=|g+r r+p p+q
y+z Z+x Xx+Yy
2c c+a a+b
=| 2r r+p p+q
27 z+x x+y
c c+a a+b
=2|r r+p p+gq
Z Z+x Xx+Yy
c a a+b
=2\ r p+q
7z X x+y
c a
=2|r q
Z Xy
a c¢c b
==2lp r q
X zy
a b c
=2lp q r
Xy z

Example 13. If x, y, z are different and real,

then Prove that

X X2
2
y y
2
Z I

1+ x°
1+y3
1+ 7

=0

xyz=-—1-

A SN

[83]

NN O

(Property C, > C,+C,—-C, )

[Property (iv)]

(operation C, - C,—C),)

(operation C; > C,—C, )

(operation C, <> C, )

(operation C, <> C,)



Solution :

given

Solution :

x x* 1 x x* x
y ¥ Ll+|y ¥ ¥y =0

2 2 3

Z 1 z Z Z

x 1 X 1 x x°

y 1 y |+xyz[]1 y y [=0

1y yl+xzl1 y ¥ [=0

(I+xyz)|1 y  »*|=0

(1+02)(x=y)(y=2)(z-x)=0

X#y#7Z = x—-y#0,y—z#0 TdI1 z—-x#0

I+xyz2=0 = xyz=-1-

l/a a bc
Example 14. Evaluate the determinant [1/b b> ca
1/c ¢ ab
l/a a* bc | 1 a' abc
1/b b* cal|=—I|1 b abc
/e ¢ ab abcl ¢ abc
abe 1 aj 1
=—I|1 b 1|=0
abc &1

[84]

[property (V)]

[property (i) and (iv)]

[property (i1)]

[from example (11)]

(Operation R, - aR,, R, = bR, and R, — cR;)

[ C, = C;, property (iii)]



Example 15. Prove that

a+b+2c a b
c b+c+2a b =2(a+b+cf
c a c+a+2b
a+b+2c a b
Solution : L.H.S.= c b+c+2a b
c a c+a+2b
2(a+b+c) a b
- 2(a+b+c) b+c+2a b (opration C, —» C, +C, +C;)
2(a+b+c) a c+a+2b
1 a b
=2(a+b+c) 1 b+C+2a b [property (IV)]
1 a c+a+2b
1 a b
=2 0
(a+b+c) 0 btcta (operation R, > R,—R, and R, > R,—R))
0 0 c+a+b

b+c+a 0

:2(a+b+cj{L

|

0 ct+a+b

at+b+c 0
:2(a+b+c)
0 at+b+c
:2(a+b+CXa+b+cf
:2(a+b+cf
=RHS
Example 16. Prove that
1+a 1 1 L1
I 1+6 1 =abc(1+—+z+—j~
11 l+c a ¢
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1+4a 1 1
Solution : LHS.=| 1 1+b 1

I 1 l+4c¢
1 1
—+] — —_
a a a
1
=abc| — —+1 -—
b b b (taking a, b and c from first, second and third row)
1 1 1
— — 14—
c ¢ c
I 1 1 I 1 1 I 1 1
I+—+—+-— 1+—+—+— 1+—+—+—
a b c a b c a b c
1 1
=abc — I+— —
[1’ 1b b (operation R, - R +R, +R,)
— — 14+—
c c c
1 1 1
I 1 1)1 1
:abc[1+—+—+—J - 1+- -
a b c)ib b b [property (iv)]
1 1 1
— — 1+—
c ¢ c
0 O 1
I 1 1 1
=abc| 1+—+—+—||-1 1 -
a b c b | (Using operation C, - C,~C, and C, — C, —C,)
1
0 -1 1+-
c

-1 1
0 -1

I 1 1
:abc(1+—+—+—J {O+O+1
a b c

1 1 1
:abc(1+—+—+—j (1-0)

a b c
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I 1 1
:abc(1+—+—+—J
a b c

=R.H.S.
x+a b c
Example 17. Solve the equation | ¢ x+b a [=0
a b x+c
xX+a b c
Solution : ¢ x+b a |=0
a b x+c
x+a+b+c b c
x+a+b+c x+b a |=0

x+a+b+c b X+c

1 b c
or (x+a+b+c) 1 x+b a |=0

1 b xX+c

0 —x c—a

(x+a+b+c) 0 x a-x-c

or
1 b xX+c
—X c—a
or (x+a+b+c) =0
X a—-x—c
0 —-X
or (x+a+b+c) =0
X a—x-c
— (x+a+b+c)(0+x2)=0
= xz(x+a+b+c):0
= x’=0 or x+a+b+c=0
= x=0 or x:—(a+b+c)

[87]

(operation C, > C, +C, +C,)

=0 (using operation R, - R, —R, and R, - R, —R;)

(expanding C, )

(operation R, > R, +R,)



Example 18. Prove that

x y z| |1 1 1

2 2 2
Xy T |=|x
vz ozt xy ¥ y3 Z3
x y z
Solution : LHS. =| x* y2 7
yZ X Xy
1 .X'2 y2 Z2
- .X'3 y3 ZS
LYz Xyz Xyz Xxyz
X2 y2 Z2
Xy
:L XS 3 ZS
el I T |
2 2 2
X y Z
=1 1 1
3 3 3
Xy oz
1 1 1
2 2 2
=| X Z
3 3 3
X Z
0 0
2 2 2 2 2
=lx"—-y y -z z
3 3 3 3
X -y y-7z z
2 2 2 2
X =y oy -z
x3_y3 yS_ZS
| G=y)(a+y)
(x—y)(x2+xy+y2)

=(x-y)(y-2)

(y—z)(y2+yz+zz)

X+
X2+Xy+y2

(operation C, = xC,,C, = yC,,C, = zC,)

(taking out xyz from the operation R;)

(operation R, <> R,)

(operation R, <> R,)

(operation C, > C,-C, and C, > C, -C,)

(Epanding R))

(y+2)(y-2)

y+z

v +yz+z
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xX+y Z—X

=(x—)ﬁ(y—Z) Py +yt yzezi— xy‘ (operation C, - C, -C, )
xX+y 7—X

=(x=9)(y=2) X H+xy+y’ (z—x)(z+x)+y(z—x)
X+y 7—X

—(x—yﬂy—z)x2+xy+f (z=x)(z+x+y)

x+y 1

=(x=y)(y=2)(z-x)

X 4+xy+y: z4+x+y
=(x=3)(y=2)(z=0){(x ) (z+aey)=(# 429+ )}
:(x—y)(y—z)(z—x)-(zx+x2+xy+yz+xy+y2 —x’ —xy—yz)

=(r=2)(y=2)(z=%) (o + yz+ )

=R.H.S.
I log,y log, z
Example 19. Evaluate the following | log, x 1 log, z | without expansion.
log, x log,y 1
1
Solution : We know that log, m L
logn

| logy logz
1 1
Lodogy dogoz) | 1gg)zc
log x 1 log, z|= 8% [t
log y logy
log, x log,y 1 logx logy
—= —== 1
logz logz
1 logx logy logz

logx logy logz
logx logy-logz logx logy logz
(operation R, > logx-R;R, > logy-R,;R, > logz-R;)
1
:logx-logy-logz
=0

x0 (- R=R=R))

[89]



Example 20. Prove that
(b + c)2 a’ a*
b? (c+a)2 b? =2abc(a +b+c)3~

c? c? (a +b)2

(operation C;, - C,-C, andC, = C, -C,)

(b+c+a)(b+c—a) 0 a’
= 0 (c+a+b)(c+a—b) b’
(c+a+b)(c—a—b) (c+a+b)(c—a—b) (a+b)2

b+c—a 0 a’

=(a+b+c)2 0 cta—-b b?

) (Taking out (a+b+c) from C, and C,)
c—-a-b c—a-b (a+b)

b+c—a 0 a’
j— 2 - 2
— —2a a
a2
b+c — a
b
2| B’ 2
=(a+b+c)| — c+a b ¢ ¢
p tion C, > C,+—2andC, > C, +—=
‘ 0 2w (operation €, R 2 b)
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a
b+c —

=(a+b+c) {0+0+2ab

— (c+a)

(a +b+c)2 -2ab{(b+c)(c+a)—ab}
(a+b+c)2 -2ab(bc+ab+c2 +ca—ab)
(a+b+c)2 -2ab(bc+c2 +ca)

:(a+b+c)2 -2abc(b+c+a)

= 2abc(a+b+c)3 =R.H.S.

Example 21. Prove that

S
X o &

Solution : L.H.S.

S o

2

2bc—a® c? b*
c? 2ac—-b* a’
b* a’ 2ab—c?
a b ? a b a b c
b al| =|b a |x| b ¢ a
a b c a b c a b
a b a b
b a x(—l) b a
a b b a
a b —a b
b a |x| =b a
a b - b a
—a*+bc+bc —ab+ab+c* —ac+b* +ac
—ab+c*+ab —b*+ac+ac -bc+bc+a®
—ac+ac+b*> —bc+a*+bc —c*+ab+ab
2bc—a® c? b*
¢’ 2ac —b* a’
b* a’ 2ab—c*

=R.H.S.

[91]

(Expanding along R;)

(C, ()

(multiply row by row)



Exercise 4.2

If‘; ”31‘20 then find the ratio ¢ : m

o0 N W
O L A

2
Find the minor of the elements of second row of determinant | 3
1

13 16 19

Evaluate the determinant | 14 17 20
15 18 21

If the first and the third columns of the determinant are interchanged then write the change in the determinant?
Prove that

1 yz y+z
Uz zex|=(xmy)(3-2)(e-x)
I xy x+y

0 b*a c*a
Evaluate the determinant | a0 0 ¢’
a’c b 0

Solve the following determinant:

x—2 2x-3 3x—-4
x—4 2x-9 3x-16 |=0-
x—8 2x-27 3x-—-64

Without expanding evaluate the determinant

a b c Xy z y b ¢

Xy zl|=|p q ri=|x a p|

p q r a b c zZ ¢ r
Prove that

b+tc a+b a

c+a b+c bl=d’+b>+c* —3abc-
at+b c+a c

12 22 32
Evaluate the determinant | 2° 3> 47
32 42 52
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11.

12.

13.

If w is the cube root of unity then find the value of the determinant o’

=4a’b*c*-

Prove that :
a’ bc ac+c?
a’ +ab b? ac
ab b* +bc c’
al bl Cl
If in the determinant A=|a, b, «c,
a; by ¢
Prove that
Al Bl Cl
A=A B, C,
A3 BS C3
al bl Cl Al
[HINT: A-A'=|a, b, c,|x|A,
a; by ¢ A,
A 0 O
=0 A 0|=A’
0 0 A

AA =A% or A'=A?

A.B,,C

12

1>C e

1 3 2

)

2
(4]

S =

are the cofactors of elements a,,b,,c,,... then

Miscellaneous Exericse — 4

The vlaue of the determinant | <°° 80° —cos10
sin 80° sin10°
(a) 0 (b) 1 (c) -1 (d) none of these.
) ) 5 20

The cofactors of first column in the determinant are
(a) -1, 3 (b) -1, -3 (c) -1, 20 (d) -1, -20.

1 2 3 -2 4 -6
If A=|4 5 6| then the value of the determinant | -8 —-10 —12 | is

1 2 4 -2 4 -8
(a) —2A (b) 8A (c) —8A (d) —6A.
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10.

1 0 2
Which among the below given determinants is same as determinant | 3 -2 -1 ?
2 5 4
2 5 4 1 3 2 2 -1 4 2 0 1
(@ |3 -2 -1 (b)y |2 -1 4 (¢ -0 =25 @a|-1 -2 3
1 0 2 0 -2 5 1 3 2 4 5 2
50° sinl0°
The value of the determinant cos o - ol 18
sin50° cos10
(a) 0 (b) 1 (c)1/2 (d) -1/2.
1 bc a(b+c)
The value of the determinant | | ca b(c+a) is
1 ab c(a +b)
(a) ab+bc+ca (b) 0 (o) 1 (d) abc.
1 o o
If w is the root of unity then the value of the determinant o' o 1
o 1 o
(a) @ (b) @ © 1 () 0.
2
I e N R then the value of x is
2 1 I x -
(a) 6 (b)y 7 (c) 8 (@ O.
a4y Gy
If A=|ay ay Ay | and cofactors corresponding to elements ,,,a,,,d;,... are F,F,,F,...
a; Gy 4y

then the correct statement is
(@) a,F,+a,F,, +a,F, =0

(©) anF,+ayF, +ay,F, =A

xX+y
The value of the determinant Z
2

(@) x+y+z (b) 2(x+y

(b) a,F,+a,Fy,+ayF, #A

(d) a,F,+a,F, +a,F, =-A.

y+z z+Xx
X y|is
2 2
+2) () 1 (d 0.
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11.

12.

13.

14.

15.

1 2 3
Solve the following equation | 4 x 6 |[=0.
7 8 9
1 39
Evaluate the determinant | 3 9 1.
9 1 3
1+a b c
Evaluate the determinant | a 1+b ¢
a b l+c
Prove that
—a* ab ac
ab —b*  bc |=4a’b*c.
ca c¢cb —c?

Prove that one root of the equation is x =2 and hence find the remaining roots

Prove that [Q 16 to 20]

16.

17.

18.

19.

a+b+c
—c

y+z

xX+y

X
zZ+x z
y

x -6 -1
2 3x x-3|=0.
-3 2x x+2
—c -b
a+b+c —a =2(a+b)(b+c)(c+a).
—a ct+a+b
2a 2a
b—-c—a 2b =(a+b+c)3.
2c c—a-b

=(x+ y+z)(x—z)2.

[ TR

=(b—c)(c—a)(a—b)(a +b+c).
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20.

21.

22.

23.

24.

a’+b’
c c
c
b’ +c* . ) .
a a =4abc (Hint: using operation R, - cR,, R, - aR, and R, — bR,)
a
b b c+a’
b

Prove that

a a+b a+2b
a+2b  a  a+b |=9(a+b)b’
a+b a+2b a

If p+g+r=0 then prove that

pa gb rc a b c
qgc ra pbl=pgric a b
rb pc qa b ¢ a
(Hint : L.H.S. zpqr(a3+b3+c3)—abc(p3+q3+r3) v oprqgtrr=0 = p3+q3+r3=3pqr

- LHS. = pqr(a3 +b+¢’ —3abc): R.H.S.
Prove that

x+4 2x 2x
2x  x+4  2x |=(5x+4)(x-4)
2x 2x x+4

[96]



1.

2.

[IMPORTANT POINTS} \

. a b
Second order determinant A=| ' ' |=ab,-a,b, -
a, b,
Third order determinant =
al bl Cl
b, c a a, b
A=la, b, ¢, |=a/| > *|-b| * *l+c¢| * ?
b, c a, c a, b
b c 3 3 3 3 3 3
a3 D3 G N . <
@ b cilra b
A= az',:igz G |y b (From Sarrus diagram)
a, bé“gc.'z' -y by

= ( a,b,c, +b,c,itq+ cia,b, )F ( ab,c, +b,c,a, +c,a,b, )

Difference between matrix and determinant.

(1)  There is no value of matrix whereas determinant has a unique value

(i)  Matrix can be of any order while determinant is always of order n X n.

(i) Indeterminant | A|=| A" | whereas in matrix [A]=[A"]-

Minor of an element a, of the determinant of matrix A is the determinant obtained by deleting ith row
and jth column and denoted by Ajj.

Cofactor of element a, =(~1)"" Minor
=  Cofactor of a; =a,, when i+ j is even

= —(a,.j Minor of ), when i+ j is odd

a4 Gy
Expansion of determinant A=| a,, a,, a,,
ay Gy 4y

(1 interms of minors A =a, A, —a,,A, +a,;A;
@) interms of co-factors A =a,,F,, +a,,F, +a,F;

For any square matrix A, the | A | satisfies following properties.

(1) If we interchange any two rows (or columns), then sign of determinant changes, but value remains
unchanged.

(i) If any two rows or any two columns are identical or propertional, then value of determinant is
Z€r0.

@) If we multiply each element of a row or a column of a determinant by constant k, then vlaue of
determinant is multiplied by k.
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( (iv) Multiplying a determinant by k means multiply elements of only one row (or one column) by k)
(v) Ifelements of a row or a column in a determinant can be expressed as sum of two or more elements,
then the given determinant can be expressed as sum of two or more determinants.
(vi) Ifeach element of a row or a column of a determinant the equimultiples of corresponding elements
of other rows or columns are added or subtracted, then value of determinant remains same.
(vii) If all rows are converted into columns or all columns converted in rows in any determinant the
value of determinant remains same.
(viiii) If any row or column contains all its element as zero then the value of determinant will be zero.
(ix) Value of Determinant of triangular matrices is equal to product of element of principal diagonal.
L (x)  Multiplication of determinant is done by row to column and row to row law. )
Answers
Exericse 4.1
-8 -5 3
—_ . _x = —_— . = —3 .=
1. 3 2.1:2 3. > y 4 >
5.0 A,=-12,A,=-16, A, =4
F,=-12,F, =16, F,, =—4, 40
i)  Au=be—f' A =hc—fg, A, =hf -bg
F, =bc—f?, F, = fg—hc, F, =hf —bg;
abc+2 fgh—af* —bg* —ch’
6. 15
Exercise 4.2
1.2:3 2. Mi f3= > Mi f6= 2 d Mi f5= )
L2 - Minorof 3=| o o |, Minorof 6=\ , 5| and Minorof5=| = ¢
3.0 4. The sign of the determinant changes 6. 2a’b’c?
7.x=4 10. = -8 11. 3
Miscellaneous Exericse . 4
1. (b) 2.(d) 3.(c) 4. (c) 5.(c) 6. (b) 7. (d)
8. (a) 9.(c) 10. (d) 11. 5 12. -676 13. 1+a+b+c
15. 1, -3 21. 0 +\/§(a2+b2+c2)
L Y . s — 2
a
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Inverse of a Matrix and Linear Equations

5.01 Non-singular matrix
If the determinant of any square matrix A is non-zero i.e. | A|#0 then matrix A is termed as non-

singular matrix.

2 4
For Example : A= {3 5} is a non-singular matrix

2 4
|A|:‘ ‘:10—12:—2;&0
35

5.02 Singular matrix

If the determinant of any square matrix A is zero i.e. | A|=0 then matrix A is termed as singular matrix.
I 2. . . 1 2
For Example : A= 3 6 is a singular matrix as | A| =15 ol7 6-6=0

5.03 Adjoint of a square matrix

The adjoint of a square matrix A =[q;],,, is defined as the transpose of the matrix [F};] where F;

mxn

is the cofactor of the element a; Adjoint of the matrix A is denoted by adjA.

a, 4, 4a; a, 4, dag;
1Le. A=|a, ay, ay|then |A|: ay Ay 4y
a3 Ay A Q3 4y Ay

Cofactors of elements of |A|

ko By By
[Fl/}— Fy Fy Fy
Fy K, F
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Elements of [A| = cofactor of a,, (

I
(V)
N—
I
n
I
[9)]

cofactor of a,,

5 4
Matrix of cofactors of determinant |A| is B= { 3 }
2x2

5 3
Adjoint matrix of matrix A is adjA=B" = { L }

Note: The adjoint can be found directly of a 2 x 2 matrix by interchanging the diagonal elements and changing
the sign of the off-digonal elements.

1 2 0 1 2 0
(i)  Matrix A=[3 -1 1|=|A]=3 -1 1
4 6 4 4 6 4
1
Cofactors of a,(=1) is :‘ ‘: -10
6 4
3 1 B
Cofactors of a,(=2) is =— 4 47 -8
) 3 -1
Cofactors of a,,(=0) is = =22
4 6
2o
Cofactors of a, (=3) is =6 4 -8
T
Cofactors of a,,(=-1) is = 4 47 4
2
Cofactors of ay,(=1) is =— 4 d°
2 0
Cofactors of ay, (=4) is :‘ : 1‘:2
. 1 0 B
Cofactors of ay,(=6) is =— 31 =-1



1 2
Cofactors of ay,(=4) is = ‘3 _1‘ ==

-10 -8 22

Matrix of cofactors B=| -8 4 2
> 1 7

-10 -8 2

Adjoint of a matrix adjiA=B" =| -8 4 -1
22 2 -7

5.04 Inverse of a matrix of invertible matrix
If A is a square matrix of order m, and if there exists another square matrix B of the same order m,

such that AB =1 = BA, then B is called the inverse matrix of A and it is denoted by A" . In that case A is
said to be invertible.

Thus, B=A"=AA" =1 =A"A, from the relation AB = BA it is clear that A is the inverse of B i.e.
if two matrices A and B are such that AB =1 = BA then matrix A and B are inverse matrices of each other.

5.05 Some Important Theorems
Thorem 1. A square matrix A is invertible if and only if A is non singular matrix i.e. |A| # 0
Proof : Let A be invertible matrix of order n and I be the identity matrix of order n. Then, there exists

a square matrix B of order n such that AB=BA=1

S Jasl=In
= |AB|=1 [lrl=1]
= |A|#0

let A be non singualr. Then |A| =0,
A-(adjA) =|A|I = (adjA).A
diving by |A|

adjA _ (adjA) )

A.
4] 4]

[ |A| = 0]

which is of the form A.B=1=B.A

_ djA
Hence A'=B= a|A]|
djA
Al = aaj
- Al

Thus A is an invertible matrix.
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Theorem 2. If A is a square matrix of order 3 then
A-(adjA) =|A|L, =(adjA)- A, where I, is an identity matrix of order 3
a, dp Gy

Proof : let A=|a, a, a, | isa third order matrix

Q3 Az dgy

F, F, F
adjA=\F, F, F,
F; Fy F33_
a, 4ap a13_ F, F, F, |A| 0 0
A.(ade)= a, @, ay||F, F, F,|=]0 |A| 0
a, ay, ayp || By Fy Fy 0 0 |A|
1 0 0
=|A|0 1 0]=|A]L )
0 0 1
similarly, we can prove that
(adjA)-A=|A|1, )

Hence from (1) and (2), we have
A-(adjA) =|A|L, =(adjA)- A

Note: If A and B are square matrices of order n then

O Af(adjA)=|A|1, =(adjA).A
() adi(adjA)=|A]"" A

i)  adjA” =(adjA)'

(v)  adj(AB)=adjB.adjA

Theorem 3. Inverse matrix of non-singular matrix is unique.

Proof : Let A =[aij] be a non-singular matrix of order m. If possible, let B and C be two inverse
matrices of A. We shall show that B = C. We know that Since B is the inverse of A.

and
then

=

=

AB=BA=1 )]
AC=CA=1 2)
AB=1 = C(AB)=Cl =(CA)B=CI

I B=CI [using (2)]
B=C

Thus Inverse of a non-singular matrix, is unique
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Theorem 4. If A and B are non-singular matrices of the same order, then (AB )7l =B'A".

Proof : -+ A are B are non-signualr matrices
multiplication AB is possible
A are B are non-singular matrices

|A|]#0 and |B|=0
~ JaBl=Ja]sl+0
= AB is non-singular square matrix.
let a matrix C be such that C = B'A™
(AB)C =(AB)(B™'A™)

=A(BB")A™

=AILA™
=AA" =1
similarly C(AB)=(B"A")(AB)

- B (A"A)B - B'IB

=B'B=1
(AB)C =C(AB)

(AB) ' =B"'A"

Generalisation :(ABC...XYZ) ' =Z'Y ' X "..B'A™!

[+ BB =1]

[- A"A=1]

Theorem 5. If A is a non-singualr matrix then matrix A” will also be non singualr matrix and

(AT)fl :(Afl)T
Proof : - |A| = ‘AT‘ |A| =0
‘AT‘ %0

Thus matrix A" is also non-singular
A is non-singular = A™' exists such that
AA' =1=A""A
(AAfl)T :IT — (AflA)T
(Afl)TAT :I :AT(Afl)T
The inverse of A7 is (A™)"

u 4

(AT)—I :(A—I)T

[103]
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Ilustrative Examples
1 3
Example 1. If matrix A = 5 4 then

()  Find the adjoint of A (adjA)
(i)  Prove that A.(adjA)=|A|l, =(adjA).A

(i) ~ Find A™
(iv)  Prove that (A" =(A")™

1 3
Solution : (i) - Given matrix A = {2 4}

Cofactor of g, (=1)is =4

Cofactor of a,,(=3) is

Cofactor of a,, (=2

1S =

T4 27 [4 -3
adjA = =

-3 1 -2 1
1 3
2 4

wgaan[L M4 e 2
Lo 52 e

4 =31 3 4-6 12-12
(adjA).A = -
-2 12 4] |2+2 -6+4

)
) is =-3
) 1

Cofactor of a,, (=4

(i) |A|:‘ ‘=4—6=—2.

from (2) and (3) A-(adjA) =|A|I, = (adjA)- A Hence Proved.

A*l—ade—_—l 4 3| |2 3/2
() Al 22 1] |1 -1/2

[104]
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| o[22
V) - 1 -1/2

A—I)T_ -2 1
( 13/2 -1/2

1 2 1 2
3 4 3 4
(A")™" Exists.

adj(A") = E ﬂT {_43 ﬂ

=2 1
1372 -1/2

from (5) and (6) (AH =A"H™. Hence Proved.
_ cosf sin6 5
Example 2. If matrix A=| | then find A~ .
—sinf cos@

. A cos@ sinf
Solution : - | —sin@ cos®
cosd sinf 2 L2
|A|= =cos" O@+sin" 0 =1

—sin@® cos@

- |Al#0 ie. A exists

i cos® sin@] [cos® —sin®
adjA = i =l .
—sin@ cosé@ sin@ cos@

cos@ —sinf
_adjA | sinf cos6

O cos@ —sin6
A = = = .
|A| 1 sinf@ cos@

[105]
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1 2 3
Example 3. If matrix A=|{2 3 1| thenfind A™ and prove that A" A=1,.
31 2
1 2 3
Solution : Given matrix A=2 3 1
31 2
1 2 3
|Al=]2 3 1|=1(6-1)-2(4-3)+3(2-9)=5-2-21=-18%0,
31 2
A7 exists

T

5 -1 -7 5 -1 -7

Now adjA=|-1 -7 5| =[-1 -7 5
-7 5 -1 -7 5 -1
. 5 -1 -7
L L B B
Al 18
7 5 -1
5 -1 =711 2 3
A‘A=—% -1 =7 512 3 1
-7 5 -1(|3 1 2
[ 5-2-21 10-3-7 15-1-14
=—$ —1-14+15 -2-21+5 -3-7+10
| —-7+10-3 -14+15-1 -21+5-2
1'—18 0 0 1 00
=3 0 -18 0 |=]0 1 0|=1,
|0 0 -18| [0 0 1

[106]



37

Example 4. If matrix A = { 5 s

3 7
Solution:  Here [A|= 5 s =10

A" exists
6 8
and |B| = =-2#0
7
B~ exists
AB_"3 7][6 8] [18+49 24+63
12 57 9] [12+435 16+45
67 87
147 6l
. 61 87
(AB)lz—l
2|47 67
o ifs
1|2 3
19 -8
B'=—
and ZLJ 6}

1 4-1 1 9 _8 5 _7
B'A' = ——

21-7 6 1||-2 3

1l 45+16 -63-24

2|-35-12 49+18

1/ 61 -87
2|47 67

from (4) and (7), (AB)'=B'A"". Hence Proved.
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: 23 2 0 0 10
Example 5. If matrix A = | 2 then prove that A" —4A+1 =0, where O= 0 0 and [ = 0 1

and find A"
Solution: -~ A=
Az_"z 3][2 3] [4+3 6+6] [7 12
L2t 2] |2+2 3+4] |4 7
) 7 12 2 3110
A" —4A+1 = -4 +
4 7 1 2] (0 1
(7 12] [-8 -12] [1 ©
= + +
4 7] |4 -8] |01

[7-8+1 12-12+0
|4-4+0 7-8+1

00
= }O.Here |A|=E z‘=4—3=1¢0.

0 0
A~ Exists
Now A’ 4A+1=0 — A’ —4A=—] = A(A-41)=-1
= ATA(A-41)=-A"T = (A"A)(A-4l)=-A"  =I(A-41)=-A"
= A-4]=-A" = A'=4]-A

e A R I N e A

Exercise 5.1

1 -2 3
1.  For what value of x isthe matrix | 1 2 1 | singular?
x 2 -3
I -1 2
2.  IfmatrixAis |3 0 -2/ thenfind adjA and prove that A-(adjA)=|A|L, =(adjA)-A.
1 0 3
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10. If matrix A= {

Find the non-singualr matrix of the following:

1 2 5 1 3 3 0 1 -1
@®|1 -1 -1 |l 4 3 @@)|4 -3 4
2 3 -1 1 3 4 3 -3 4

cosaa -—sina O

If matrix A= F(a)=|sina cosa 0| thenfind A”' and prove that

0 0 1
(i) A'A=1, (i) A" =F(-a) (i) A-(adjA) =|A|I = (adjA)- A
. -8 1 4]
If A= 5 4 4 7| thenprovethat A~ =A"
1 -8 4]
1 —1] L
If matrix A= 5 _q the prove that A~ = A

50 4 1 3 3
If A=|2 3 2| and B'=|1 4 3|thenfind (AB)" .
1 21 1 3 4

1 tan o

If A= then prove that A"A™ =
| —tana 1

cos2a —sin Za}

sin2a  cos2a

2 3

3 4 } satisfies the equation A> —6A+7 =0 and find A~ .

Prove that the matrix A = {

-8 5

) 4} then prove that A>+4A—421=0 thenfind A~ .

5.06 Applications of Determinants

1.

Area of a triangle

If the coordinates of vertices of a triangle are (xl, yl), (xz, yz) and (x3, y3) then we know that

1
area of triangle AZE[XI()’Q —»)+x (s _y1)+x3(y1_y2)] (1)
x oy 1
RS N O R O A
and |2 Y2 4=x I X3 y, 1 (Expanding, along first column)

X,y 1



:xl(yz_y3)+x2(y3_y1)+x3(y1_yz) 2

| x oy 1
from (1) and (2) A=§x2 » 1
X,y 1

x oy 1
Thus area of triangle is A = > x, ¥y, .
Xy 1

Note: Since area is always positive hence the value of the determinant is always taken positive.

For Example : Find the area of the triangle if the vertices are A(-3,3), B(2,3) and C(2,-2).

. -3 3 1
Solution : A =5 2 1
2 =21

1 P A
=—{-3 -3 +1

21 =2 1] T|2 1] |2 =2
:%{—3(3+2)—3(2—2)+1(—4—6)}

:%(—15+0—1o)

-25
= " —12.5 5q. Units

) Area is positive therefore A =12.5 sq. units
2. Condition of collinearity of three points

If the points A(xl, yl), B (xz, yz) and C (x3, y3) are collinear then the area of triangle ABC is zero
x oy 1

A=—lx, y, 1|=0
X,y 1
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For Example : Points A(3,-2), B(5,2) and C(8,8) are collinear hence

-2 1

A=15 2 1
2

8 1

:%{3(2—8)+2(5—8)+1(40—16)}

:%(—18—6+24):0

3. Equation of a line passing through two points
Let there be two points A(xl, yl) and B(xz, yz) and let P(x, y), AB lies on a line passing through

AB then P, A and B are collinear, if

x y 1
x y 1=0
X, y, 1

which is the required equation.

x y 1

For Example : Equation of line passing through A(3, 1) and B(9, 3) is|13 1 1j=0
9 31

=N x(1-3)-y(3-9)+1(9-9)=0

= —2x+6y=0

= x=3y=0

5.07 Solution of system of linear equations
If a given system of equations

a,x+a,y+a,z=>b,
Ay X+a,y+ayz=Db,

a5 X+ay,y+a,2=Db,
b, =b, =b, =0 then it is said to be homogeneous otherwise it is called non-homogeneous

Here we shall find the solution of non-homogenous system of linear equations.

[111]



1. Cramer's Rule:

@) Solution of system of linear equations of two variables
System of linear equation with two variables

ax+by=c, )]
a,x+b,y=c, 2)
solving through Cramer's rule
Al A2
x = — . = ——
A Y A
X y
—=——=—, A#0 .
or ’ S etric form
A, A (Symm )
b, c b
where A= oA =" ' and A, =| “
a, b, ¢, b a, ¢,
a, b
Proof : -: A= b
a b,
A a, b| |ax b
XA =Xx =
a, by la,x b,
A ax+by b
XA = = .
= ax+by b, 1 (operation C;, = C, + yC,)
Cl bl
= XA = bl A (using equation (1) and (2) )
G b
- |4 Gl
similarly YA = =A,
a, G
A and Yy A where A#0

Special case : This equation represents two equations of straight line

a

1 1 . . . . .
A If PR * b then solution of the equation is unique and the equation is consistent and independent
2 2

a _b ¢ . ) .. .
B) If o b * o then there is no solution and the equation is inconsistent.
2 2 2
a b ¢

_4 e . . . .
T then there are infinite solutions and the equation is consistent but not independent
2

©) If_zg

a,
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(ii) Solution of system of linear equation for three variables
System of equations with three variables

ax+by+cz=d,
a,x+b,y+c,z=d,

ax+by+cz=d,

olving by Cramer's rule A’y A A
1
o T =l
A A, A A
a b ¢ d b ¢ a d, ¢
where A=|a, b, o], A=\d, b, ¢, Ay=la, d, ¢
a, b, c, d, b «c a, d, c
al bl Cl
Proof : -- A=|a, b, ¢,
a, by ¢
al bl Cl
xA=x|a, b, ¢,
a; by ¢
ax+by+cz b ¢
or xA=|a,x+b,y+c,z b, «c,
ax+by+cz b, ¢
dl bl Cl
or xA=|d, b, c,|=A
dy by c
al dl Cl al bl dl
Similarly yA=|a, d, c¢|=A, and ZA=|a, b, d,|=A,
a3 d3 C3 a3 b?) d?)
4 2 and z=—2 if A=0

(D

2

©)

[symmetric form]

al bl dl

and A, =|a, b, d,
a, b, d,

(C, > C +yC,+2zCy)

[using equation (1), (2) and (3)]



Special case :

(@) If A#0 then equation is consistent and the solution is unique.

(i) If A=0 and A, =A, =A, =0 then system of equations can be consistent or inconsistent, if it is
consistent then the solution are infinite.

@)  If A=0 and amongst A ,A,, A, any one is non-zero then equations are inconsistent with no solution.

2. Solution of system of linear equations using matrix method:
Consider the system of equations

a,x+a,y+a,z=D>b,
Ay X+ay,y+ay,z2=>b, (1)

ay X +ay,y+a;,z =b,

The above equations can be written in a matrix form

4y G dp || X b,
Ay Gy Gy || Y|=|b, ?2)
y Gy dyp || < b,
or AX = B (3)
a, 4, 4 X b,
where A=|ay ay ay|,X=|y| and B=|b,
a; 4y Gy z b,

If |A|# 0 then from equation (3)

AX =B
= A(AX)=A"B
= (A'A)X =A"'B
= IX=A"B
= X=A"B

Note: (i) |A|#0, then A™ exists

(i) |A| =0, then A™" does not exist, that does not mean the equation cannot be solved.
Example : x+3y=5
2x+6y=10,

1 3
Here |A| = ‘2 6‘ =0 but it will have infinite solutions.
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Ilustrative Examples

Example 6. Find the area of the triangle whose vertices are A(2,3), B(-5,4) and C(4,3) .
Solution : Area of triangle ABC

12 31
A=—|-5 4
2
4 31

:%{2(4—3)+5(3—3)+4(3—4)}

:%(2+o—4)

=-1
= 1 (numerical value) square units

Example 7. If points (x, —2), (5, 2), (8,8) are collinear then find the value of x.
Solution : -- Given points (x,—2), (5,2) and (8,8) are collinear

x 2 1

5 2 1|=0

8§ 8 1
= x(2—8)+2(5—8)+1(40—16)=0
= —6x—6+24=0
= —-6x+18=0
= x=3.

Example 8. Prove that [bc, a(b+c¢)], [ca,b(c+a)] and [ab, c(a+b)] are collinear.

Solution : Three points are collinear

bc a(b+c) 1 bc+ab+ca a(b+c) 1
ca b(c+a) l|=|ca+bc+ab b(c+a) 1 (C >C +C,)
ab c(a+b) 1 ab+ca+bc c(a+b) 1 : 1 2

1 a(b+c) 1
z(ab+bc+ca)1 b(c+a) 1
1 c(a+b) 1

=(ab+bc+ca).0 (- two equal columns)

0

Thus given points are collinear
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Example 9. Find the equation of line joining the points A(4, 3) and B(-5, 2) also find the value of k if the area
fo the triangle ABC is 2 Sq. units where, C(k, 0).

Solution : Let P(x, y) be any point on AB then area of triangle ABC = 0

4 31
l—5 2 1I=0
= 2
x y 1

= %[4(2—y)—3(—5—x)+1(—5y—2x)] =0

= 8—4y+15+3x-5y-2x=0
= x—9y+23=0.
which is the required equation of AB

Now area of triangle ABC =2 Sq. units

4 31
l—5 2 1j=%2
= 2
kK 01
- %[4(2—0)—3(—5—k)+1(0—2k)]:J_r2
1
N 5[8+15+3k—2k]:i2
= 23+k==4
= k=44-23
= k=-19,-27
Example 10. If the solution of two below given equation is possible then solve using the Cramer's rule.
(i) 2x-3y=3 (i) X+2y =5
2x+3y=9 2x+4y=10
Solution : (i) 2x-3y=3
2x+3y=9
2 - 3 - 23
Here A = =6+6=1220, A, = =9+27=36%0 and A, = =18-6=12+#0
2 3 9 3 2 9

A#0, A, #0, A, #0

Equation is consistent and independent so its solution is finite.

[116]



Now using Cramer's rule

_A 36, _A 12,
A 12 7 A 120
= x=3, y=1.
) x+2y=35
(i) 2x+4y=10
A=t Hoacazo A=’ 222022020 and A, =" |=10-10=0
= T4 T T o 4 BRIV I )

- Equation is inconsistent so its solution is infinite.
Let y=k then x+2k =5= x=5-2k therefore x=5-2k, y=k are the solutions where k is a

real number
Example 11. Prove that the system of equations is inconsistent with no solution.

x+y+z=2
xX+2y+3z=5
2x+3y+4z=11.

111
Solution : Let A=|1 2 3|=1(8-9)-1(4-6)+1(3-4)=-1+2-1=0.
2 3 4
1
A=|5 2 3|=2(8-9)-1(20-33)+1(15-22)=-2+13-7=4=0.
11 3
1
A,=|1 5 3|=1(20-23)-2(4-6)+1(11-10)=-13+4-1=-8=0.
2 11 4
11 2
A=l 2 5[=1(22-15)-1(11-10)+2(3-4)=7-1-2=4=0.
2 3 11

A=0 and A, #0,A, #0,A, #0.

system of equations is inconsistent with no solution.
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Example 12. Solve the following system of equations using Cramer's rule
x+y+z=9
2x+5y+7z=52

2x+y—-2z=0
1 1 1
Solution : Here A=2 5 7 =1(—5—7)—1(—2—14)+1(2—10)=—12+16—8=—4¢0.
2 1 -1

A=152 5 7|=9(-5-7)-1(-52-0)+1(52-0)=—108+52+52=~4 0.

0 1 -1
I 9 1

A, =2 52 7|=1(-52-0)-9(-2-14)+(0-104)=-52+144-104 =12 #0.
2 0 -1
1 1 9

Ay=12 5 52/=1(0-52)-1(0-104)+9(2-10)=—52+104-72=-20=0.
21 0

sign Cramer Rule

A A A 20

A -4 7 A 4 ’ A 4

x=1,y=3,z=5.
Example 13. Solve the system of equation using matrix inverse method.
Sx-3y=2
x+2y=3.

Solution : Matrix form of the equation
5 Bllx| |2
I 21y |3
1e. AX =B
5 3 X 2
where A= , X = qAqT B =
1 2 y 3
5 3
A= =10+3=13=0
1 2

A" exists
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A,l_ade_i 2 3
A 13]-1 5

Lo 12 32
= X=AB=153 0 5|3
C1f4+9 ] 113
13| -2+15] 13[13] |1

- LA

= x=1y=1.

Example 14. Write the following system of equations in matrix form

2x—y+3z=9
X+y+z=06
x—y+z=2.
2 -1 3
If A=|1 1 1] thenfind A™ and solve the equations.
I -1 1
2 -1 3 X 9
Solution : - AX =B, where A=|{1 1 1,X=|y| and B=|6
I -1 1 z 2
Matrix form of the equation is
2 -1 3|lx 9
I 1 1)y|=|6
I -1 1|z 2
2 -1 3
here |Al=1 1 1|=2(1+1)+1(1-1)+3(-1-1)=4+0-6=-2%0
I -1 1
A" exists
-2 -4 -1 1 2
_adjA 1

A — 0 -1 1|=0 1/2 -1/2

-2 1 3 I 1/2 -3/2
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X (2 2 —4][9 | 18-12-8
— yl=—=| 0 -1 1|6 =3 0-6+2
2 1 3|2 ~18+6+6

X | -2 1
———|-4|=|2
= y >
| Z | | —6 3
= x=1,y=2,z=3.
1 -1 0 2 2 4
Example 15.If A=|2 3 4| and B=|-4 2 —4| thenfind AB and solve the following equations
0 1 2 2 -1 5

x—y=3; 2x+3y+4z=17, y+2z=7.

1 -1 0|2 2 -4 6 0 0
. AB=|2 3 4|4 2 —-4i=/0 6 0
Solution :
0O 1 22 -1 5 0 0 6
1 0 0]
=6|0 1 0|=6I,
00 1]
1
N A-gB=13
. 12 2 -4
A'=—B=—|-4 2 -4
= 6 6 9]
2 -1 5

Now matrix form of the given equation

1 -1 0|l x 3
2 3 4| y|=|17
0 1 2|z 7
= AX =C
= X=A"C
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2 2 413
X=l -4 2 4|17
= 6
2 -1 517
X 6+34-28 12 2
y =l —-12+34-28 =l -6 |=|-1
= 6
Z 6-17+35 24 4
= x:29 y:_l, Z:4-

Example 16. Solve the following system of equations

30 3|« 8 2y
2 1 Ofly|=|1]+|z
4 0 2|z 41 |3y

Solution : Given system of equation is

30 3|« 8 2y ]
2 1 Ofly|=|1]+|z
4 0 2|z 41 |3y
3x+3z 8+2y|
- 2x+y |=|1+z
4x+27 4+3y |

3x+3z=84+2y = 3x-2y+3z=8
2x+y=14+z = 2x+y-z=1

4x+2z=4+3y = 4x-3y+2z=4

Matrix form of the given equations is (1)

3 =2 3« 8
2 1 —1ly|=]|1
-3 2 4
1e AX =B
= X=A"B
| -1 -5 -1][8
=——| -8 -6 9|1

(D

- _ adjiA
4]

|



-8-5-4 -17 1

=—i —-64—-6+36 :—i 34 |=|2
17 17

—-80+1+28 =51 3

X 1
=2
N y
Z 3
= x=1,y=2,z=3.

Exercise 5.2
Find the area of triangle using the determinats whose vertices are:
@ (2,5),(-2,-3)and (6, 0)
@ (3,8),(2,7) and (5, -1)
@) (0, 0), (5,0)and (3, 4)
Usign determinants find the area of the triangle with vertices (1, 4), (2, 3) and (-5, —3), are the given
points collinear?
Find the value of k if the area of triangle is 35 Sq. units and the vertices are (k, 4) (2, —6) and (5, 4).
Usign determinants find the value of k& if the points (k, 2 -2 k), (—k + 1, 2k) and (-4 — k, 6 —2k) are
collinear.
If points (3, -2), (x, 2) and (8, 8) are collinear then find the vlaue of x using determinant.
Using determinants, find the equation of line passing through the points (3, 1) and (9, 3) and also find
the area of the triangle if the third point is (-2, —4).
Solve the following system of equations using Cramer's rule.

(1 2x+3y=9 (i) 2x—=7y-13=0
3x-2y=7 S5x+6y-9=0

Prove that the following system of equations are incosnstent:

() 3x+y+2z=3 (i) x+6y+11=0
2x+y+3z=5 3x+20y-6z+3=0
x=2y—-z=1 6y—18z+1=0

Solve the equations using Cramer's rule:

() x+2y+4z=16 (i) 2x+y—-2z=0
4x+3y—-2z=5 X—y+z=06
3x-5Sy+z=4 x+2y+z=3
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10.

11.

12.

13.

14.

15.

Solve the equations using determinants :

(i) 6x+y-3z=5 Gy 2,3, 10_,
x+3y-2z=5 ryoz
2x+y+4z=8 £_9+§:1

Xy z
X y z

Solve the equations using matrix method:

(i) 2x—y=-2 (i) 5x+7y+2=0 (i) X+y-—z=lI (iv) 6x—12y+25z=4
3x+4y=3 4x+6y+3=0 3x+y-2z=3 4x+15y—-20z=3
x—y-z=-1 2x+18y+15z=10
1 2 0
If A=|2 1 3| thenfind A" and solve the system of equations:
0 2 1

x—2y=10, 2x+y+3z=8, —-2y+z="7.

-4 4 4 I -1 1
Find the product of matrices | -7 1 3 | and |1 -2 -2 and solve the system of equations
5 3 -1 2 1 3
using the above product
x—y+z=4
x—2y—-2z=9
2x+y+3z=1-
I -1 1
Find the inverse of the matrix 2 1 3 and with the help of this solve the system of equations
I 1 1
I 0 1}/«x . 2y 2
2 1 0||lyl|= > 6z |+2|0
01 1}z —2x 1
If the side of an equilateral triangle is a and vertices are X oy 2 ’
4
(x, »)s (x,, ¥,) and (x;, y;) then prove that X, Y, 2 =3a
Xy 2
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Miscellaneous Exercise - 5

1
If A= } then find A™".

12 3
0 1 1
IfA=|1 0 1| thenfind A™.
11 10
1 2 3
If Matrix A=| 1 2 1 | is a singualr matrix then find the vlaue of x
x 2 3

Solve the equations using Cramer's rule

@) 2x-y=17 (i) 3x+ay=4 (i)
3x+5y=6. 2x+ay=2, a=#0

x+2y+3z=6
2x+4y+z="17
3x+2y+9z=14.

Solve the equations using Cramer's rule and show that the equation are inconsistent:

1 2x—y=5 (i1) x+y+z=1
4x-2y="T7 xX+2y+3z=2
3x+4y+5z=3

Find the matrix A of order 2 if

SIS

g s
If A= ) 4 then prove that that A” +4A—4271 =0 and using this find A~
fA= 2 3 hy hat A™ !
I —_5 =1 then prove that A —EA.
1 3 3
If A=|1 4 3| thenfind A" and show that A"'A=1I,.
1 3 4
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10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

If A= then prove that A —4A—5I =0 and using this find A"

NN =

2
1
2

—_— NN

Solve the following system of equations using the matrix method.

(1) Sx=Ty=2 () 3x+y+z=3 (i) x+2y—2z+5=0
Tx—-5y=3 2x—y—z=2 -x+3y+4=0

Find the area triangle ABC for the vertices given below:

(i) A(-3,5),B(3,-6),C(7.2) (i) A(2,7) B(2,2) C(10,8)

If the points (2, —3),(4, —2) and (0,5) are collinear then find the vlaue of A.

HEI AN

Find the matrix A where

1 1 1
If A=|1 2 -3/ thenfind A™ and using this solve the equations:
2 -1 3
x+y+2z=0, x+2y-z=9, x-3y+3z=-14
a b
If A= 1+bc | then find A™ and solve that aA™" = (a2 +bc+ 1) I—dA.
c
a

Solve the system of equations using determinants

x+y+z=1
ax+by+z=k

a2x+b2y+czz=k2.

1 2 3

If A=|2 3 2 | thenfind A™' then using this solve the following system of equations

3 -3 4

x+2y-3z=-4, 2x+3y+2z=2, 3x-3y-4z=11.

If1 x| Tl6 0 hen find the value of X
3_2 = 7 2 then find the value o .
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20.

If the system of equations have infinite solutions then find the vlaues of a and b
2x+y+az=4
bx—-2y+z=-2
Sx=S5y+z=-2.

( )

| Important Points )

Singular matrix: A Square matrix A, whose |[A |=0

Non-Singular matrix: A Square matrix A, whose |A| = 0

Adjoint of a matrix: Adjoint of a matrix is a transpose of a matrix, obtained by co-factors of elements
of |A| adjoint of the matrix A is written as adjA

. o ) ) ., adjA

Inverse of a matrix: If a square matrix is non-singualr i.e.|A|# 0 then A~ = m
Important theorems:
()  For a matrix A to be non-singualr |A|# 0
(i) IfAisamatrix of order n then A.(adjA)=|A|I, =(adjA).A
Gi) (AB)'=B"A"
(lV) (AT )71 — (Afl)T
For variables x, y, z the system of equations are

a,x+a,y+a,z=D>b,

ayX+ayy+dyz=>b, (1)

Ay X+0ay, Y + a3z =b,
the solutions can be found out using the determinants or matrix method
(i) Cramer's rule usign determinants

For the above equation (1)
b
Ay G, Gy (PR a, b a, a, a, b

A=|a,, a, ax|,A=b, a, a _
a T Tmp i T2 T Ay =ay by ay| and Ay=|a, a,, b,| then

a, a, a b, ay, a
T s R a, by a ay  ay, b

X Z
Case-I: when A =( then solution is unique A_ = Al =—-=
1

Case-1I: when A=(0 and A, #0 or A, #0 or A, #0 then there will be infinite solutions

Case-III: when A=(0 and A, =A, =A, =0 then there will be infinite solutions
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a, 4, a;|| X b,
(i) Matrix method: |a, a, axylly|=|b,
a4y Ay || 2 b,
1e. AX =B
= X =A"'B, where A’1=adJA
|A|
Answers
Exercise 5.1
0 3 2 4 17 3 (7 -3 -3 0 1 -1
-11 1 8 L1 .
1. x=-1 2 3.0 57| =1~ 6 |5 i) -1 1 0 |;ci) |4 -3 4
0 -1 3 5 1 -3 -1 0 1 3 -3 4
cosaa sina 0 -2 19 =27 1 =4 5
4. | —sina cosa O 7. |2 18 =25 10. ml 2 8}
0 0 1 -3 29 —42 )

Exercise 5.2
1. (1) 26 Sq. Units; (ii) 11 /2 Sq. Units; (iii) 10 Sq. Units 2. 13 /2 Sq. Units, No

3. x=-2,12 4. k=-1,1/2 5. x=5 6. x -3y =0,10 Sq. Units
7.() x=3,y=1(i) x=3,y=-1 9. () x=2,y=Lx=3;(i) x=2,y=-12=3
10. (i) x=1,y=2,z=1;(i) x=2,y=3,z=5
-5 12 9 =7 1 1 1
11' 1 :—, :—; 11 :—, :—; :2, :1, :2; 1 :—, :—, = —
(1 x TRAET (i) x Y= () x=2,y=1z (iv) x Y=
7 2 -6 8 0 0
12. Alzﬁ -2 1 -3|; x=4,y=-3,z=1 13. |0 8 O, x=3,y=-2,z=-1
-4 2 5 0 0 8
. 4 2 2
14. 1— -5 0 S5[x=2,y=-1,z=1
1 -2 3
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Miscellaneous Exercise - 5

4. ()x=7,y=-3; (i) x=2,y=7 ; (i) x=y=z=1

4 1 1[4 5 7o |72
—| - Al==2|2 =3
6. {_1 J 7. 42{2 8} 9. 1 1 O 10. 5
-1 0 1 2 2
11. (i) xzﬂ,yzi ;@) x=1L y=-1,z=1;(Gii) x=1, y=-1,z=2
24 24 ° ’ ’ ’
7 21 29
12. (i) 46 Sq. Units; (ii) 20 Sq. Unit 13. A1=— 14. A=
(1) g-. Units; (ii) q. Units 2 {_13 18}
3 4 5 1+bc
_ 1 L |— b
15. A'l=——|9 -1 -1|,x=1y=3,z==2 16. A" =| a
11 _
5 -3 -1 ¢ a
b o lemRkb)  (kme)(ak) | (b=k)(k=a)
(c—a)(a—b)’ (b—c)(a—b)’ (b—c)(c—a)
-6 17 13
o1 6 2 _ _
18. A'=—| 14 5 -8|,x=3,y=-2,z=1 19. X = 20. a=-2,b=1
671 1s o _i 11/2 2
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Continuity and Differentiability

6.01 Introduction

Graphically, a function is continuous in the given interval, if its graph can be drawn at this point without
raising the pencil (or pen), otherwise it is discontinuous in that interval. But, only graphical understanding of the
concept of continuity is not sufficient. So we must have an analytical approach to analyse the continuity of a
function. We shall understand this approach with the help of limits.

6.02 Cauchy's definition of continuity
Let f (x) be a function, then it is continuous at a point a in its domain, if for a small positive number €,
there exists a positive number O such that

‘f(x)—f(a)‘ <e when |x—a| <o
In other words, function f (x) is called a continuous function at a point a in its domain if for every €>0,
for every point in interval (a -0,a+ 5) the numerical difference of f (x) and f (a) may be lesser than €.

6.03 Alternate definition of continuity
Let f (x) is a real function on a subset of the real numbers and let a be a point in the domain of f , then

Jis continuous if and only if lim f (x) exists and is equal to f (a), i.e.

lim f(x) = f(a)
N lim f () = lim f(x) = f(a)

or  f(a+0)=f(a-0)=f(a)
iLe., Right hand limit of f (x) at a = Left hand limit of f (x) at a = Value of function at a
6.04 Continuity at a point from left and right
Any function f (x) at a point a of its domain.
(1)  is continuous from left, if

lim f(x)=f(a)

x—a

or f(a—O):f(a)

(i)  is continuous from right, if

lim f(x) = f(a)

x—a’

or f(a+0)=f(a)
6.05 Continuous function in an open interval
A function f (x) is called continuous in open interval (a, b) if it is continuous at every point in the interval.
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6.06 Continuous function in a closed interval
Function f (x) is called continuous in closed interval [a, b] if it is
(1)  Continuous from right at point a
@)  Continuous from left at point b
@) Continuous in open interval (a, b)
6.07 Continuous function
If a function is continuous at every point of its domain then it is called a continuous function. Some
examples of continuous function are

(1  Identity function f (x) =X,

(i)  Constant function f(x)=c, where cis a constant
(i)  Polynomial function f(x)=a,+ax+a,x*+..+ax",
(iv)  Trigonometric function f(x)=sinx,cosx

(v)  Exponential function f (x) =a*,a>0

(vi) Logarithmic function f(x)=1log, x

(vii) Absolute valued function f(x)=|x], x+]| x|, x| x|

6.08 Discontinuous function
A function is discontinuous in its domain D if it is not continuous at atleast one point in the domain. Some
examples of discontinuous function are

(@) f(x) =[x], greatest integer function
@@  f(x)=x-—[x], discontinuous at every integer.

3
2

geee

. . 7[
(i)  f(x)=tanx, secx, discontinuous at X = iE, *

(iv)  f(x)=cotx,cosecx, discontinuous at x =0, + 7, + 27, ...

11
v f(x)= sm;, COS; discontinuous at x = 0

(vi)  f(x)=e€"" discontinuous at x =0

1
oi)  f(x)= = discontinuous at y =()

6.09 Properties of continuous function
1 If f(x)and g (x) are two continuous functions in domain D then f(x)* g(x), f(x)-g(x), cf (x) will

f(x)
g(x)

@@ If f(x)and g (x) are two continuous functions in their respective domains then their composite function

be continuous in D However will be continuous for all points in D where g (x) #0, V xeD.

(g f)(x) will be continuous.
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Ilustrative Examples

x| x|
. ,x#0
Example 1. Examine the continuity of function f(x) = X * at x = 0.

1 ,x=0

x, if x<0
Solution : We know that | X |: .

then the given function may be defined as

continuity atx =0
From definition of function
fO)=1
fO=0)=lim f(0—-h)=2

F0+0)=1im £(0+h) =0

f)# f(0-0)= f(0+0)
hence f (x) is not continuous at x =0

Example 2. Examine the continuity of f(x)=|x|+|x-1| atx=0andx=1

1-2x, if x<0
Solution : f (x) may be written as f) =11 if 0<x<l
2x-1, if x2>1

Continuity at x =0
Here F(0)=1-2(0)=1

f(0=0)=lim f(x)= lim (1-2x)
=lim{1-2(0-h)} =1

f(O0+0)= lirgf(x):limlzl

x—0"

S0 f0-0)=f(0+0)= f(0)
hence function f(x) is continuous at x =0
Continuity at x = 1
From deinition of function

fy=2)-1=1
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f(1=0)=lim f(x) = lim1 =1
f+0)=lim f(x) = lim(2x~1)

= lim[2(1+h)—1] =1

x—1"

SO fA=-0)=f1+0)=f(1)
f (x) is continuous at x = 1.

Example 3. Show that the following function f (x) is not continuous at x = 0.

1/x

—; x#0
JO) =91+
0 ; x=0
Solution : From definition of function f(0)=0
Right hand limit at x =0 f0+0)=lim £(0+h)
‘ el/(0+h)
- %}E‘}H— o0+
. 1 1
=lim—p—— ==
0" +1 0+1
Left hand limit at x =0 f(0=0)=lim f(0-h)
‘ el/(O—h)
- %}E‘}H— RO
—1/h
= lim— 0 _o

SO f(O-0)= f(0+0)
hence f (x) is not continuous at x =0
Example 4. Examine the continuity of function f (x) at x = 2.

X x<l
f(x)=<x ; 1<5x<2
3
%; x=>2
23
Solution : From definition of function f(2) = Z =2
Right hand limit at x =2 fQ2+0)=lim f(2+h)
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3
—lim 2+h)

h—0 4

(240
==

Left hand limit at x =2 f(2—0)=}jg3f(2—h)

2

= lm(2—h)=2

h—0

0 f(2-0)=f(2+0)=f(2)=2

Hence f (x) is continuous at x = 2.

Example 5. If the following function is continuous at x = 0, find the vlaue of c.

l—c?s(cx) . x20
_} xsinx
f(x)= |
— ; x=0
2

. . 1
Solution : From definition of function f(0) = E

at x = 0 finding limit of f (x)
lim £ (x) = lim - —S23(¥)
x—0 x—0 xXSsin x
2sin’(cx/2
_lim sin (cx )

x>0 xsin x

(¢’ /2)(“(”6/2)}2

. cx/?2
=lim

x>0 (sin x/x)

f (x) is continuous at x = 0, so
lim £ (x) = £(0)
From (1) and (2)

c_1
= 2 2

[133]
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Example 6. Find the values of a and b if the given function is continuous in [4, 6]

3 ; x<4
f(x)=<ax+b ; 4<x<6
7 ; x>6

Solution : Given that function is continuous is [4, 6]

Right hand limit of ' (x) at x =4

and
Left hand limit of f (x) at x =6

and

f(4+0) :}in(l)f(4+h)
= %in(l){a(4+h)+b}

=4a+b
f4)=3

f(6-0)=lim f(6-h)
=lim{a(6— ) +b}

=6a+b
f©=1

-+ function f (x) is continuous at left extreme point at x =4 of [4, 6], so f(4+0)= f(4)

=

4da+b=3

Similarly f (x), is continuous at right extreme point at x = 6 of [4, 6], s0 f(6—0)= f(6)

=
solving equations (5) and (6)

6a+b="7

a=2, b=-5

which are required values of a and b.
Example 7. Find the condition for m, for which the funcion f (x) is continous at x = 0.

Solution : From definition of function

x"sin(l/x) ; x=#0

f<x>={ oo

f(0)=0
f(0=0)=lim f(0-h)
=£1£1%(0—h) sin (1/(0—h))
— (_ 1\t 13 m _:
=(-1 }11_1)1(}/1 sm(l/h)
=(=1)"" (0)" x (a finite number between —1 and 1)

=0, if m>0
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Similarly f(0+0)=0, if m>0

So fO-0)=f0+0)=f(0)=0, if m>0

have f (x) is continuous at x = 0, only when m > 0
Example 8. Examine the continuity of function f (x) at x = 0.

£00 (sinx)/x+cosx ; x=#0
X)=
2 ;o x=0
Solution : From definition of function
f(0)y=2

fO=0)=lim f(0-h)

= lim{ sin(=h) + cos(—h)}
>0 | (=h)

=1im{%+cosh}=l+1=2

h—0

and f(0+0) =lim £ (0+h)

zkii%{¥+cosh} = {1+1} =2
SO fO-0)=f(0+0)=f(0)=2
Hence f (x) is continous at x = 0.

Exercise 6.1

1.  Examine the continuity of following functions

@ o= x{1+(1/3)sin(log x*)} ; x#0
0 ;o x=0
at x = 0.
1/x
e
— 5 xz0
b (=9 x
0 ; x=0
atx=0
Fr)= 1+x ; x<3
© x-7_x ;o x>3
atx =3
sinx :z<x£0
@ f)= P
tanx O<x<5
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atx=0

cos(l/x) ; x#0
X) =
@ S { 0 ; x=0
atx=0
.cosec(x—a) ; x#a
®  f)=1(x-a)
0 ;o ox=a
atx =a
2
——a,x<a ; x<a
a
@ J[f= 0 ; X=a
a3
a—— o xX>a
X
atx =a

Examine the continuity of f(x)=x—-[x] atx=3.

Find the vlaue of k is the following function is continuous at x = 2

X+ xF=16x+20
f)= (x=2)°
k ;o ox=2

;o x#2

4. Examine the continuity of following function in [-1, 2]

—x° : —1<x<0
f(x)=4 4x-3 ; O0<x<l1
5x*—4x ; 1<x<2

6.10 Differentiability

In previous class we had defined the derivative of a real value function and first principle of derivatives.
Here we shall study a method of find derivative with special limit method. if equation of curved is y = f (x) then
this function is differentiable at x = a if a tangent to the curve can be drawn through this point. If curve has a
break or changes its direction then f (x) is not differentiable at x = a. Mathematically we will study differentiability
as follows:
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. x)— f(c
1.  Afunction f:(a,b)— R is differentiable at ¢ €(a, b) if 12}% exists. This limit of £ (x) at

point c is called derivative of f and is expressed as f ' (c).

2. Function fis differentiable at c is for every €>0, 3 5 >0 so that

M—f'(c) <€ where |x—c|<5
X—C
ie. = f'(c)-€ < S fl) < f'(c)+e
X—C

6.11 Left hand derivative of a function
A function f (x) is said to be differentiable from left hand side at a point c¢ in its domain if

iy L=/

h—0 —

,h >0 exists and is finite.

The value of this limit is represented by LDf (¢) or Lf'(c) or f'(c—0) and it is called the left hand
derivative of f at c.
6.12 Right hand derivative of a function

A function f (x) is said to be differentiable from right hand side at a point ¢ in its domain if

lim f(C+l’l)—f(C)

h—0 h

The value of this limit is represented by RDf (¢) or Rf ' (c) or f ' (¢ + 0) and it is called the right hand
derivative of f at c.
6.13 Differentiable function

A function f is differentiable at a point ¢ in its domain if both left hand derivative and right hand derivative

,h >0 exists and is finite.

are finite and equal.

ie. f'(c=0)= f'(c+0)
i LEN SOy Serh =/

Note: In the following cases f (x) is not differentiable at a point c if
®  fc=0)#f'(c+0)

@  f'(c—0) and f'(c+0) either or both infinite

@) f'(c—0) and f'(c+0) either or both do not exists.

6.14 Differentiability in an interval
1.  Function fis differentiable in open interval (a, b) if f (x) is differentiable at every point of interval.
2. Function f is differentiable is closed interval [a, b] if

(1) f'(c) exists when c €(a, b)

(i) Right hand derivative of f (x) exists at poitn a

(i) Left hand derivative of f (x) exists at point b
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6.15 Some important results

(1  If a function fis diferentiable at a point c, then it is also continuous at that point but the converse of
above statement needs not to be true. It is clear that if a function is not cotinuous then surely it will not
be differentiable.

Note:

(1  While examining differentiability of any function, Firstly its continuity should be examined.

@  Every polynomial, exponential and constant functions are alway differentiable in R

@) Logarithmic and trigonometric functions are differentiable in their domains.

(iv) Composite functions, sum, difference, product and quotient (when denominator is not zero) of two
differentiable functions are always differntiable.

Ilustrative Examples
Example 9. If the following function is continuous at x = O then examine its differentiablity at x = 0

Ux _ —-lx

e e

0 ;o x=0

Solution : Left hand derivative of f (x) at x =0

F0-0) = tim L O =L O
~1/h —(~1/h)
[ e —e
Ly (=h) (ellh_i_e(l/h)j_o
~ —h

—2/h
. e " -1

=OX(EJ=O
0+1

and Right hand derivative of f (x) at x =0
fO+h)-f(0)
h

1/h ~1/}

et —e

(h) Uh “un |
. e +e

=1lim

h—0 h

£'(0+0) =1lim

h—0




=Ox[ﬂj =0
1+0
so f'(0-0)= f'(0+0)

hence function f (x) is differentiable at x =0
Example 10. If the following function is continuous everywhere then examine its differentiability at x =0

£ = x[1+§sin(log xz)j ,x20

0 ,x=0
Solution : Right hand derivative of f (x) at x = 0.
: . fO+h)—f(0)
0+0)=1im
f'(0+0) P

h—0

__h(1+1/3.sin(log h*)) -0
=lim

h—0 h
= %in(}{l +1/3.sin(log h*)}

This limit does not exist because %}n{} sin(logh®),—1, is between —1 and 1 hence %irr(}{l +1/3.sin(logh’)}, 2/3

and 4 / 3. Hence f (x) is not differentiable at x = 0.
Example 11. For what values of m is the following function differentiable at x = 0 and f" (x) is continuous

m b 1
x" sin— ,x20
f(x)= x
0 ,x=0
Solution : differentiability at x = 0 Let hand derivative of f (x) at x =0

f(O-h)-f(0)
—h

£(0-0) =lim

h—0

(—h)m sin L -0

(-h)

=lim
h—0 _h
_ 1 (_ l)m hm—l : 1
DA i 0

right hand derivative of f (x) at x =0

, o S (O+h) = f(0)
f'(0+0)=Ilim P

h—0
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h" sin l -0
— lim h
h—0 h

1
=lim A" "' sin— 0
" )

h—0

If f (x) is differentiable at x =0 then f'(0—0)= f'(0+0), which is possible only when m—1>0 or

m>1 hence the given functionis differentiable at x =0 if m > 1.
Test of continuity at x =0

f'(x)=mx""sin(1/x)—x"" cos(1/x) =0
f(0)=0

f' (x) is continuous at x =0 if m > 2

Hence required condition is m > 2.
Example 12. If the function f(x)=|x—1|+2|x—2|+3|x—3|, V x e R iscontinuous at points x =1, 2, 3
then examine the differentiability of function at these points.
Solution : We can write the function as

14-6x, if x<l1

12-4x, if 1<x<2
4, if 2<x<3

6x—-14, if x>3

flx)=

differentiability at x = 1
Let hand derivative of f (x) at x =1

1o =i A=) = f (D)
f'1-0)=1lim h

h—0 —

{14—6(1—h)} - {14-6(1)}

=6 M

Right hand derivative of f (x) at x = 1

h—0 h

(12— 4(1+h)} —{14—6(1)}

h—0 h
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= limﬂ =4 2)

h—0
From (1) and (2)
['A=0)= f(1+0)

Hence function f (x) is not differentiable at x = 1, similarly we can prove that f (x) is not differentiable at x =
2 and x = 3 also.
Example 13. Test the differentiability of following function at x = 0.

_1/x* . .
Flx) = e sin(1/x), if x=#0
0, if x=0

Solution : Left hand derivative of f (x) at x =0
f(O0-h)—f(0)
—h

£(0-0) =lim

h—0

= lim ()

sin(1/ h)
1

1
ot
h2 Bh4 ]

Now, = %}j}(}
h| 1

I 11
= i — lim<h+—+—.—+..; =0
(a finite number between —1 and 1) / h_}(){ n 2 } 2)

Right hand limit of /' (x) at x =0

h—0 h

e .sin(1/h) -0

=lim

h—0

. sinl/h
=lim——-
h—0 hefllh

= 0 (as above)
SO f'0-0)=f'(0+0)=0
Hence f (x) is differentiable at x = 0.
Example 14. Is function f(x)=|x-2|, differentiable at x =2?
Solution : Left hand derivative of f (x) at x =2
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h—0 —-h

:hmw:hmﬂ

h—0 —h =0 —h
~lim- = (-h=-1
T _p o M

Right hand derivative of f (x) at x =2

f'(2+0) =lim

h—0

fQ+h)-f(Q2)
h

_fim 22220y 1]

h—0 h =0 h
=1i h—l' O =1
A= @

From (1) and (2)
Hence f (x) is not differentiable at x = 2.
Exercise 6.2
1. Prove that following functions are differentiable for every value of x.

(1  Identity function f(x)=x

@)  Constant function f(x)=c, where c is constant

@  f(x)=e"

(v)  f(x)=sinx.
2. Prove that function f(x)=|x| is not differentiable at x = 0.
3. Examine the differentiability of the function f(x)=|x—1|+|x|, atx=0and 1.
4. Examine the differentiability of the function f(x)=|x—1|+|x—2], in[0, 2].

xtan'x ; x#0
5. Examine the differentiability of f(x)= 0 120
1-cosx . x<0
6.  Examine the differentiability of f(x) = 2
x—2x°
;o x>0
2

7. Prove that the following function f (x).

x"cos(1/x) 5 x#0

f(X)={ 0 . 1=0
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10.

11.

(1 iscontinuousatx=0,ifm>0
(i) is differentiable at x =0 if m >1
Examine the differentiability of following function at x =0

! x#0
f)={1+""
0 ; x=0

Examine the differentiability of following function at x = 0.

=

;o xz0

fx)=

»—k|

; x=0

Examine the Differentiability of following function at x =7 /2

1+sinx 0 O<x<m/2
fx)=
24(x-m/2) 5 x2m/2

Find the values of m and n if

x*+3x+m, when x<I1
f(x)=
nx+2, when x>1
if differentiable at every point

Miscellaneous Exercise 6

2

If f(x)= x" -9 is continuous at x = 3 then the value of f (3) will be
x—3
(a) 6 (b) 3 (o1 (d) 0.
sin3x %0
If f(x)= x ’ , x =0 is continuous at x = 0 then the value of m
m ; x=0
(a) 3 (b)y 1/3 (© 1 (d) 0.
log (1+mx)—log (1-nx) 0
If f(x)= X » X , 1s continuous at x = 0, the value of k will be
k ;0 x=0
(@) o (by m+n (c) m—n (d) m-n.
x+A ; x<3
If f(x)=1 4 ;  x =3, is continuous at x = 3, then the vlaue of 4 is
3x=5 ; x>3
(a) 4 (b) 3 (c) 2 (d) 1.
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nmw
5. If f(x)=cotx, is not continuous at X =—— when

2
(@) nez (b) neN (c) nl2eZ (d) only n=0.
6.  The set of those points on f(x) = x| x|, where the function is differentiable
(@) (0, ) (b) (o0, ) (©) (-, 0) (d) (=o0,0)V (0, )

7. Which of the following function is not differentiable at x = 0
(@ x| x| (b) tan x (c) e* (d) x+| x|

1+x, when x<2

8. The value of left hand derivative of f (x) at x = 2 is; fx)= { 5—x. when x>2

(a) —1 (b) 1 (c) 2 (d) 2.
9.  Function f(x)=[x] is not differentiable at
(a) every integer (b) every rational number
(c) origin (d) everywhere
sin x”
, when x#0

10.  The vlaue of right hand derivative of f (x) at x =01is; f(x)=1 x ,
0, when x=0
(a) -1 b) 1 (© 0 (d) Infinite
11.  Examine the continuity of following function f(x)=|sinx|+ |cosx|+|x]|, V xeR

12.  Find the value of m, when the following function is continous at x = 0

. 1 .
sin(m+1)x+sin x . %<0
X
f(x)= 1/2 ; x=0
3/2
x'+1 x>0
2

13.  Find the values of m and n when the following function is continuous

X+mx+n ; 0<x<?2
f(x)= 4x-1 ; 2<x<4
mx*+17n ; 4<x<6
tanx 20
14.  Examine the continuity of the function f(x)=1sinx ,atx=0
1 ;o x=0
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| x—3| ;o ox>1
15. Examine the continuity of following functionat x=1and 3. f(x)=< x> 3x 13 ,

o242 k<l
4 2 4

16. Find the values of a, b and ¢ when the following is continuous at x =0

sm(a+1)x+smx, T
X
fx)= c, if x=0
2
—M if x>0
bx~/x

|3x—4]| _
— at X=—

17. Examine the continuity of f(x) =
3x—4 3

18.  Examine the continuity of f(x)=|x|+|x—1| in the interval [-1, 2]

19.  Find the value of f (0) if the following function is continuous at x = 0; f(x) =

Vi+x—/1+x
X

el/,\t _1

20. Examine the continuity of f (x) at x =0 when f(x)=1<¢"* 41’ when x#0

1 when x=0
21. For what vlaues of x, f(x)=sinx, x is not differentiable.
% si © x#0
22. Examine the differentiability of f(x) = {x s;n el o when X €R also find the value of f' (0).
, X=

23. Examine the differetiability of following function at x = a

1
;. X#a
x—a ‘

0 T X=a

F) = (x—a)* sin(

24. Prove that the following function uis not differentiable at x = 1

-1 x>1

1-x x<1’

f(X)={

25. Examine the diferentiablity of following function at x =0

-x ; x<0
f(X)={
X

x>0
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26.

27.

28.
29.

30.

Prove that the following function is differentiable at x = 0

xlog, cosx
f(x)=1log,(1+x%)
0 ;o x=0

x#0

Examine the differentiability of f(x)=|x—2|+2|x—3| in the interval [1, 3].
If the function f(x)=x", x =2 is differentiable at x = 2 then find the vlaue of £'(2)

Prove that the greatest integer function f(x)=[x] is not differentiable at x = 2

x—1 ; x<2
then find f'(2-0).
2x=-3 ; x=>2

( )

If f(X)={

| IMPORTANT POINTS |

Cauchy's definition of continuity

Let f (x) be a function, then it is continuous at a point a in its domain if for a small positive number €
there exists a positive § such that | f(x)— f(a)| <e when |x—a| <.
Alternate definition of continuity:

A function f (x) is continuous at a point a in its domain if lim f (x) = f(a)
ie. lim f(x)=lim f(x)= f(a)

or  f(a-0)=f(a+0)=f(a)

Continuous function in domain.

Any function f (x) is called continuous in its domain if f (x) is continuous at every point of domain D.
Now continuous function

(1 A function f (x) is called non continuous at a point a if f (x) is not continuous at this point.

(i)  Function f (x) is called non continuous in its domain D if it is not continuous at at least one point
of D.

Properties of continuity

(1 Iff(x) and g (x) are two continuous functions in domain D then f(x)+ g(x), c¢- f(x), willbe

X
E ; » D will be continuous for all points in D where g(x) #0.
g(x

@@ Iff(x) and g (x) are two continuous functions in their respective domains then their composit

continuous in D. How ever

function (f o g)(x) will be continuous.
Differentiability.
A function f (x) is derivable at x = a, if

o, f'(c=0)=f'(c+0)
IS CIICL T

h—0 —h h—0

or,
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7. Non-differentiablity at a point
f (x) is not differentiable at a point c if

®  f=0)=f"(c+0)
or

@@  f'(c—=0) and f'(c+0) either or both infinite
or

@@) f'(c—=0) or f'(c+0) either or both do not exist.

Answers
Exercise 6.1
1. (a) continuous ; (b) not continuous ; (c) continuous ; (d) not continuous ;
(e) not continuous ; (®) not continuous ; (g) continuous
2. Not continuous 3. k=7 4. Not continuous

Exercise 6.2

3. Not differentiable 4. Not differentiable 5. Not differentiable
6. Not differentiable 7. Not differentiable 8. Not differentiable
9. Not differentiable 10. Not differentiable 11. m=3,n=5
Miscellaneous Exercise - 6
1. (a) 2. (a) 3. (b) 4. (d) 5.(c) 6. (b) 7. (d)
8. (b) 9.(a) 10. (b)
11. Everywhere continuous in R 12. m= _73 13. m=2,n=-1  14. continuous
15. continuous 16. a=-3/2,c=1/2 and b €R 17. not continuous
18. continuous in [-1, 2] 19. 1/6 20. Not continuous 21. R
22. differentiable for every x €R and f'(0)=0 23. Not differentiable
25. Not differentiable 27. Not differentiable at x =2 28. 12 30. 1
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Differentiation

7.01 Introduction

In the previous class, we have learnt the differentiation by using first principle and derived some formulae

given below:-
Standard Results
(i) %(X”) =nx"" (i) %(ex) =e
1
(i) %(ax) =a'log,a (@iv) %(loge x) ==
i(sin X)=CoS X i i(cos X)=-sinx
™ 7 = (vi) =
i i(tan x)=sec’ x i(cot x) =—cosec’x
(vii) Ir (viii) Ir
i i (secx) =secxtan x i (cosecx) =—cosecxcot x
(ix) — x) 7

By using the above formulae the derivative of various other functions can be found.
7.02 Derivative of composite functions

Theorem : If the functions f and g are differentiable at any point c in the interval then f + g, fg and
f/ g are also differentiable at point ¢ and

@ D(f*g)c)=f'(c)£g'(c)
@ D(fg)c)=[f'(c)g(e)+ f(c)g'(c)

(i) D{f/g}(c) _ g f'(c)-g'(c)f(c) , when g(c)#0
[g(0))

Proof : Since functions f and g are differentiable at point ¢ €[a, b] and limM =
X—>C x — C

')

and hmw
X—C x J— C

=g'(c)

@ D(f + g)(c) = lim YOI =/ £ 8)(©)

- X—C

i SO f@ gD -g(0)
X—>C x—c X—>C x—c

=f(0)tg'c).
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(fg)(X) (fg)(c)

(i D(fg)(e) = —
i S @@= f(©)8(0)
X—>C x —_ C

lim f(gx) = fle)gx)+ fc)g(x)— f(c)g(c)

X—C

g(X){f(X) f}+ flo{gx)—glo)}

X—>C x C

f() f()

+ f(c)lim g(x)—g(c)

X—>C x—c

= hm g(x). hm

=g f' )+ flo)g'(o).
(f/8)x)—(f/g)c)

X—C

(i) D(f/g)=lim

1/ D/ g0~ f(e)/g(e)

X—>C x C

_qim L 8@~ 8(0) f(©)
e g(x)gle)x—c)

im f()gle)-flo)glo)+ f(c)glc)—g(x) f(c)
e g(x)glc)(x—c)

_1im OV @ = flo} = flOfg() —g(0)}
e g(x)g(c)(x—c)

[g(c) i @ =© (e )hmg(X) g(C)}

X—C X—C

=lim
e 2(x)g(c)

_8©f (C)—fZ(C)g(C), 2(c) £ 0.
[g(c)]
7.03 Derivative of a function of funcitons or chain rule of derivative

Let ¥y = f(u) ie.yis a function of u and u = ¢(x) i.e. u itself is a function of x. Let there be small
increment o x, dy,ou corresponding to x, y and u then

oy Oy ou

Sx Su Ox
Now if 6x —> 0 then du — 0 therefore

lim Q = lim —= oy Jlim — ou

5x>0 §x  Su—0 Sy x50 Hx

b _dy du

or dx  du dx [149]



Ilustrative Examples
Example 1. Differentiate the following functions with respect to x

() log,log, x° (i) ™ (1) tan (loge Vi+x° )
Solution : (i) Let y=log, log, x’

Let log, x> =u, x*=v

then y=log, u, u=log,v, v=x’
dy_1 1 odv_,
du u dv v dx
dy dy du dv 11 1 1 _ 2
—_— :—‘—‘Zx —_ .—.2X—
Now dx du dv dx u v log, x* x’ xlog, x*
Alternate Method: Let y = log, log, x”
dy d 2 1 d 2
-] 1 = -—1lo e X
dx dx 08 108 ¥ logx® dx &
1 1 d 2x 2
= 2 ._‘_(xz) 2 2’ 2
logx™ x° dx x"-logx~ xlogx

(ii) Let y=e"

d d sinx?
e

= e L (sin ) = (cos )L {+)

2 2
=" (cos x*)(2x) = 2xcos x*.e™""

(iii) Let y = tan (loge V1+ X )
a _ i{tan(loge I+ x? )}
dx dx

=sec’(log, V1+ x* )di(loge V1+x?)
x

=sec’(log, V1+x%) ! i(\/1+x2)
J1+x* dx

1 2 2 1 d 2
= .sec”(log, V1+x° ). ——.—(1+x")
1+ 2 21+ dx
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Solution : (i) Let

. sin(ax+Db)

1 5 > 1
= .sec”(log, V14 x7).——=—=(0+2x)
V1+x? 241+ x°

-_* 5 sec’(log, vV1+x7).
pt

cos(cx+d)

1+
Example 2. Differentiate the following functions with respect to x
(ii) cosx’.sin’(x’) (iii) sec(tan v/x)
_ sin(ax +b)
cos(cx+d)
d_y_ i sin(ax +b)
dx dx |cos(cx+d)

(1) Let

(11) Let

cos(cx+d) a4 sin(ax +b) —sin(ax +b) 4 cos(cx+d)
dx dx

cos’(cx+d)

cos(cx+d).cos(ax +b)5x(ax +b)—sin(ax+ b){—sin(cx + d)}j(cx +d)
X

cos’(cx+d)

_ cos(cx +d)cos(ax+b)(a)+sin(ax +b)sin(cx+d)(c)
cos’(cx+d) '

y =cosx’ -sin’(x’)

dy d 3 . 2,5
—=—1C0S X -SIn (X
I dr { (x)}

=Cos X° isinz(xs) + sinz(xs)icos X
dx dx
3 . 5 d . 5 2 5 . 3 d 3
=cos x.2sin(x’)—sin(x”) +sin” (x” )(—sin x” ) —(x’)
dx dx

=cos x°.2sin(x’) cos(x’ ).di (x*)—sin*(x”)sin x’ (3x7)
X

=cos x>.2sin(x’) cos(x’).5x* —sin*(x”)sin x> (3x%)
=10x"* cos x’.sin(x’) cos(x’) —3x” sin(x°)sin x°.
y =sec(tan \/; )
dy

— = i sec(tan \/;)
dx

dx
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=sec(tan \/;). tan(tan \/; ).di(tan \/;)
X
= sec(tan \/;). tan(tan \/;) sec’ \/;di (\/;)
X
= sec(tan v/x ) tan(tan +/x ) sec’ \/;% XM

= %sec(tan Jx) tan(tan v/x ) sec? \/;%

Example 3. Diferentiate the following functions with respect to x
@) 2, /cot(xz) (ii) COS(\/;)
Solution : (i) Let  y=2./cot(x’)
dy 2—(\/cot )

dx

— (cot x%)
2\/ cot x*

__ .{—cosecz(xz)}%(xz)

Jeot x*

cosec’(x%) (2x) —— 2xv/tan x*
v cot x? sin”(x?)

—2x+/sin x* —2x
sin”(x*)vcos x> sm(x )Wsin x° cos x°

—2\2x 2o

sin(x*)/2sin x* cos x sin(xz)\/sin(sz) .

(ii) Let y =cos(Vx)

dy_d — gin 5 () S
dx_dx(COS\/;)_ Sm\/;dx(\/;)_ Wx
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Exercise 7.1

Differentiate the following functions with respect to x

1. sinx’ 2. tan(2x+3) 3. Sin{cos(xz)} 4, secx—1
secx+1

5 VI+x—+1-x 6. sin x° 7 1o 1—cosx 3
S+ x+-x ' gty '

- I+ a? 4+ x+1
1+sin x 10. log, {u} 11. IOge{L}

9. lo
& 1—sinx a X —x+1
12. tan{loge \/1+x2} 13. ™ 14. log,(secx+tanx) 15. sin’ x.sin3x

7.04 Derivatives of inverse trigonometrical functions
We know that inverse trigonometric functions are continuous in their domains. To differentiate these

functions, we shall use the chain rule.
Illustrative Examples

Example 4. Differentiate the function sin ' x for all x €(-1,1)

Solution : Let y =sin" x

= x=siny
Differentiate both sides with respect to x
dy
I=cosy—
Y dx
dy 1
= dx cosy
dy 1
= dx  cos(sin” x) -

d
here d_z’ exists only when cos y # 0

= cos(sin”' x) 0

.o —7T T
— smlxiT or = x#-1,1 = xe(-11)

1 1

dy )
—= = wsiny=x
dx \/l—sinzy \/l—x2 Y

from (1)

[153]



Note : Derivatives of remaining inverse trigonometric functions can be derived in the similar manner.

d o 1 d
: —(cos™ x)=- g =
0 geleosx) = W
d o 1 d
2ot x) = — : d
(i) dx ( x) 1+ x? @) dx (
d -1
\2 —(cosec'x) = ———=
dx( ) |)c|\/)c2 -1
E le 5. Find ﬂ :
xample 5. Find - :
) . 2x . .
(i) y =sin . (i) y=sin"'y/cosx
+Xx

(iii) y =+/cos™ Vx

Solution : (i) Given

Here putting

Given

(ii)

Let

2x j
1+ x?

y= sin‘[

x=tan@

~in! 2tan @
Y 1+tan’ @

=sin"'(sin260) =20 = 2tan"' x

dy 2
dx  1+x°

y =sin"" (\/cosx)
VCOSX =u, then

y=sin"u
ﬂ_ 1
du 1-u’
u =+/cos x
u_ 1 i(cosx)
dx 2\cosx dx

dy _dy du _

3x
. =tan'
@iv) Y [ 1—

—sin

24/ cos x

—sin x

1
dx _EE - \/l—u2 {
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}

[~ x=tanO = 0 =tan"' x]

[using (1) and (2)]



putting the value of i,

d_y_ 1 { —sin x }_ —sin x
dx  J1-cosx | 2+/cos x 21— cos x+/cos x

Gy y=+cot ™ Vx
Let Jx=u and cot'x=cot"u=1¢, then

y=+t,t=cot"u and u=+/x

dy _ 1 dt -1 du_ 1
dt 2t du 1+u® dx 2Jx

dy _dydt du
= dx dt du’ dx
(o i o
e U+ u® )\ odx 4\/;\/;(1+u2)
B -1
4\/(cot*1u)(\/;)(1+u2)
ﬂ_ -1
dx 4\/;(1+x)\/cot*1\/;
: : =tan"' 3x=x°
(iv)  Given that y -3
Let x=tan@
[ 3tanf-tan’e)
y=tan 1 3enlo J:tan (tan30)
xe[_i Lj
3°3
—L<x<L —L<tan6’<L
= 3 3 = 3 3
/s /s 3 3
——<0<— —— <30 <—
= 6 6 = 6 6
ps T
= ——<39<5
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o T
= y = tan”'(tan 30) . _5<39 <E

= y=30 = y=3tan'x
dy__3
= dx 1+x°

Example 6. Differentiate the following with respect to x

() tan”(sine) Gy sin” (Vsin ' (i) sin”’ [MJ

b+acosx
Solution : (i) Let y =tan'(sin e*)

Here putting sine* =u, e’ =v

X

y=tan'(u), u=sinv, v=e

H__1 sy, P,
= du 1+u®’ dv T dx

X

dy _dy dudv_ 1
now dx du dvdx 1+u’

putting the values of u and v

.cosv.e’

d 1 e’ cose”’
—y =T.COS(€X).€X =T
dx 1l+sin“e 1+sin“ e

(1) Let y =sin"' (+/sin x*)
Here Vsinx? =u, sinx*=v, xX’=w
y=sin'u, u=+v, v=sinow, o=x

dy _ 1 du _ 1 dv
= du 12 dv 2y’ do dx

dy _dy du dv da) 1

—_——— .COS®.2x
now, dc du'dv do dv  Jl_i* 2[
Putting the values of u, v and @
2
dy 1 1 (cos x)(2x) = XCOS X

dx \/1 sin x* 2\/smx

\/(sin xz)(l—sin xz)

(i) Let J=sin” [a +bcos x]
b+acosx
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a+bcosx
here put = u
b+acosx

. u_a+bcosx
=sin" u =
Y ’ b+acosx

d d
dy 1 du (b+acosx)a(a+bcosx)—(a+bcosx)a(b+acosx)

du  \1—u® " dx (b+acosx)’
dy b+acosx
= P
du \/(b+acosx)2—(a+bcosx)2
du _ (b+acosx)(=bsinx)—(a+bcosx)(-asinx) (a’—b*)sinx
dx (b+acosx)’ B (b+acos x)’
du _ (a® =b*)sinx
= dx  (b+acosx)’
dy_ay
dx du dx

2 2 .
b+acosx (a -b )smx

\/(b+acos x)2 —(a +bcosx)2 ' (b+acos X)2

_ —(b* —a*)sin x _ —J(* —a®)
(b+acos x)J(b* —a*)sin®>x (b+acosx)

Example 7. Differentiate the following functions with respect to x

2 fa- (Viea-1)
(i) tan”'(sec x + tan x) (i) Sinlﬁ+i2] (1) tanl{ %J (iv) tanilk 1+;C 1J
a+x

Solution : (i) Let y = tan”' (sec x + tan x)

y=(m/4)+(x/2).
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Differentiating with respect to x

L (1=x%)
(i) Let y=sin”| a

here putting x=tan6

]
»
5
~
o
°
”
o
S
-
]
»
5
——
»
5
Vo
Ml 3
I+
o
S
~—
R

:%i 20 =Z+2tan" x

Differentiating with respect to x

B 2,2
dx 1+x 1+x
([a—x)
(iii) Let yztan’lL a XJ
a+x
here putting X =acos260
,1( a—acos20) ,1( 1-cos20 )
y = tan ,/— = tan ‘/—
L a+acos20 L 1+cos29J
( 2sin29\

=tan"' L e HJ =tan"'(tan 0) =0
cos

:%cosl(x/a) ['.'x:acos29:9:lcos*1(x/a)]

Differentiating with respect to x

oy_ 1 1 1 1
dx 2 l—xz/az'a 2\/a2—x2'
(1/1 2_1\
(iv) Let y=tan1L+—x J
X

here putting x=tan6

- (Vi+tan?6-1) - [sec@— lj
Y= L tan @ J tan @
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Differentiating with respect to x

Example 8. Differentiate the following functions with respect to x

o ( 3a’x—x° )

[afe-32))

(@) tan

(ii1) tan

S e 1m)

l(l—cosﬁj 4, 2sin*(0/2)
= tan - = tan -
sin@ 2sin(0/2)cos(0/2)
1 e 1.
= tan (tan(0/2)):E:§tan x [ x =tan 0]
1
dx 2(1+x2)'
. 1+x+\/1 x\
(i) tan” L J
Vi+x—+1-x
) » \/1+smx+\/1 smx\
(iv) tan

Solution : (i) Let

Here putting

(1) Let

Here put

L\/1+x2 —\/1—sz

L\/l+smx \/1 sin x

y—tanl( 3a°x—x )
La(a2—3x2)J
x=atan0
_ 3
y=tan"' M =tan” (tan30) =360 =3tan"' (fj
1-3tan~ 0 a
dy _ 1 (lj_ 3a
dx 1+x*/a*\a 2+ar
,1(\/1+x+\/1 x)
L\/1+x—\/1 xJ
x=cosf

\/1+0039 +\/1—c:039
\/1+0039 —x/l—cosﬁ

y:tan{ J

— tan”! \/5003(9/2)+x/§sin(9/2) _tanl(l+tan(9/2)J
J2 cos(0/2)—/2sin(0/2) 1-tan(6/2)
=tan"' tan(£+g) —£+Q—£+l~coslx
47 2)) a2 a2 [ cos® =x]
Differentiating with respect to x
dy_ 1 L )
dx 20 J1-x*) 241-%7
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- )
L\/1+x2 —\/1—sz

(iii) Let y =tan

Here put x* =cos 6

y _tan,lf\/1+c030+\/1—cos(9\
L\/1+COSQ—\/1—COSQ

ﬁCOS(Q/Z)—\/ESin(Q/Z)
1(1+tan6’/2) O [7[ 0) V4
=tan | ——  |=tan |tan| —+—||(=—+
I-tan6/2 4 2 4

Diferentiating with respect to x

1 _
Dol 2xf=—
dx 2 1-x* 1-x*

y= tan1{\/1+sinx+\/1—sinx}

x/1+sinx—x/1—sinx

— tan”! {\/5005(0 /12)+ ﬁsin(@ / Z)J

e »~ 1
—=—+—cos X
2 4 2

[ x* =cos 6]

(iv) Let

[160]



Exercise 7.2
Differentiate the following functions with respect to x

. (a) sin”'{2xvV1-x"}, (b) sin1(3x—4x3)xe(—%, %J

BV A

2. (a) cos’ [2—)62] ,xe(=L1) (b) cos” x e(0,1)
1-x L J
3 (a) cos™' (4x’ —3x), x€ (l lj (b) cosl(,/“_—x\ (Hint : x=cos0)
* ’ 2 B L 2 J .

2

4 1 _ 1 g 1T=x -
4. (a) sec (m),xe(o, Ej (b) COS [—1—{—)(2}, XG(O, )

5. } (b) cos™ (2x)+ 2003*1(\/1—4x2)

1-x?

(Hint : sin"'@+cos"' @=7/2) (Hint: 2x=cos )

x+1

j (Hint : x=tan@, a=tana) (b) tan*IL1 4)‘J (Hint : 2" =tan0)

6. (a) tan‘[l‘” al

—ax

=

() sin{Ztan‘{,/:—x}} (Hint : x=cos0) (b) cot™ (\/1+x2 +x) (Hint : x =tan @)
X

7.05 Derivative of implicit functions
When a relationship between x and y is expressed in such a way that it is easy to solve for y and write
y =f(x), we say that y is given as an explicit function of x. Whereas if x cannot be expressed in terms of y (or

y in terms of x) then it is called as Implicit function.
For example :

1
)] Equation x—2y—4 =0 can be expressed as (y = 5 (x— 4)} . Thus this function is Explicit function.

(i) Equation x’ + y° +3axy = ¢ cannot be expressed independently as x in terms of y or y in terms of x,

so this function is Implicit function.

Illustrative Examples

E le 9. Evaluat &
xample 9. Evaluate —

() X +x°y+xy>+y =81 (ii) sin® y+cosxy =7

(iii) sin® x+cos’ x =1 (iv) 2x+3y =sinx

[161]



Solution : (i) Given X 4+xy+xy’ +y =81

Differentiating with respect to x

3x° +x2ﬂ+ y(2x)+x[2yﬂj +y° +3yzﬂ=0
dx dx dx

dy

X2+ 2xy+3y° )= =—(3x> +2xy + y’
= ( y+3y7) = y+?)
ﬂ__(3x2+2xy+y2)
= dx x*+2xy+3y°
(i) sin® y+cos xy =7

Differentiating with respect to x

2sin yi(sin y)+ (—sin xy)i(xy) =0
dx dx

) dy . dy }
2sin ycos y——sin(xy)sx—+y =0
= yEoRy dx Y { dx Y
) ) dy )
— (251nycosy—xsmxy)azysmxy
=
dy _ ysin xy _ ysin xy

dx 2sin YCOS y— xsin xy - sin2y—xsinxy
@ - sin® x+cos” y =1

Differentiating with respect to x

2sin xdi(sin Xx)+2cos ydi(cos y)=0

X X
. . dy
— 2sin xcos x+ 2 cos y(—sin y)d—:0
X
— sin2x—sin2yd—y=0
dx
d_y_ sin 2x
= dx sin2y
(iv) 2x+3y=sinx

Differentiating with respect to x

2+3d—y:cosx
dx
d_y_ cosx—2
= dx 3
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E llOF'dﬂ'
xample 10. Find — - :

() Xxy+y’ =tanx+y (ii) ax+by* =cosy
Solution : (i) - xy+y’ =tanx+y

Differentiating with respect to x

xﬂ+y+2yd—y:seczx+d—y
dx dx dx
— (x+2y—l)ﬂ:sec:2x—y
dx
dy sec’x—y
= dx x+2y-1

7.06 Logarithimic Differentiation

When the function is of the form [f(x)]*"”, where f(x), g(x) > 0, then to find its derivative we take
logarithm both the sides and get the results. This method is called as logarithmic differentiation. This method is

applicable even if the function is algebraic.

Working method : Let y =", where u and v, are the function of x

taking log both the sides log, y=log, u’

= log, y=vlog, u

Differentiating with respect to x

1 dy 1 du dv
——=v.——+log, u.—
y dx u dx
dy v du d
—=y{——+log,u—
= dx {u dx = }
dy v du d
—=u'{——+log, u—
= dx {u dx ‘ }

Illustrative Examples

Example 11. Differentiate the following functions with respect to x

(l) x" (11) (Sin X)X (lll) xlogex
Solution : (i) Let y=x*
taking log both the sides

log, y=1log,(x")

= log, y =xlog, x
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Differentiating with respect to x

Ldy _ xl +log, x
y dx X
dy x x
— E:y{lﬂogex}:x {1+log, x} = x"log, ex
(i) Let y =(sin x)*
taking log both the sides log, y = xlog, sin x
Differentiating with respect to x
1ldy =x.——.cosx+1.log, sinx
y dx sin x
dy )
—=y{xcotx+log, sinx
= Ix )’{ g. }
— 2 (sin x)* {xcotx+loge sin x}
dx
(111) Let y= xlogex
taking log both the sides

log, y =log, x.log, x
Differentiating with respect to x

1 1 1
_d_y =—.log, x+—.log, x
ydx x X
2 log, x -~
N d—y=ﬁlogEX= al .logex=2x(1 g U.logex
dx x
(iv) Let y=x"
taking log both the sides
log, y =sinxlog, x
Differentiating with respect to x
lﬂ =sin x.l+ (cos x)log, x
y dx X
v y{sinx +cos x.log x}
= dx X o
snx | SINX
=X’ {— +cosx.log, x}
X
= x""sin x+ x""*.cos x.log, x.
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Example 12. Differentiate the following functions with respect to x

: ) 3 . ‘ (x—D(x-2)
(i) cos x.cos2x.cos3x (i) (log x) (1) (x—3)(x—4)(x-5)
Solution : (i) Let Y = COS X.COS 2x.C0s 3x
taking log both sides

log y =log(cos x) + log(cos 2x) + log(cos 3x)

Differentiating with respect to x

Ldy = ! (—sinx)+ ! (=2sin2x) + !
ydx cosx cos2x cos

—3sin3x
. ( )

Z_y:—y{tanx+2tan2x+3tan3x}
X

=—cos x.cos 2x.cos 3x{tan x + 2 tan 2x + 3tan 3x}
(11) L,et y — (log x)cosx
taking log both sides
log y = cos xlog(log x)

Differentiating with respect to x

1 dy d d
——=cosx— log(log x){ + log(log x) — (cos x
S dx{g(g)} gllogx)—(cos x)
|
= COS X. .——sin x.log(log x)
logx x
@ =y CO3Y _sin x.log(log x)
dx xlog x

= (log x)“** {ﬂ —sin xlog(log x)}
xlog x

- (x=D(x-2)
(iiil) Let (x—3)(x—4)(x-5)

taking log both the sides
log y = %{log(x —1) +log(x —2) —log(x—3) - log(x—4) —log(x - 5)}

Differentiating with respect to x

lay_1f 1 1 1 1 1
yde 2| (x=1) (x=2) (x=3) (x-4) (x-5)
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dy_y[ 1 1 1 11
dx 2| (x=1) (x=2) (x=3) (x—4) (x-5)

1 (x-Dx-2) [ R R B }
2 x=3)(x-DHx-5|(x-D) x-2) x=-3) (x-4) (-5

. dy
Example 13. Determine ——

dx
@ * =y (i y=\/X+ Vx+x+....0 (i) (cos x)” = (sin y)* (iv) X*.y" =K
Solution : (i) Here x'=y*
taking log both the sides

ylogx=xlogy

Differentiating with respect to x

1
y.l+ log x.ﬂ = x.—ﬂ+ log y.1
X y dx

dx

dy X y
—qlogx——¢=logy—=
= dx{ & y} &y X

dy _ y(xlogy—y)
= dx x(ylogx—x)

(i) Here y:\/x+ X+Nx+....0

y=q/xtYy

= yi=x+y

Differentiating with respect to x

2yﬂzl+ﬂ
dx dx

dy
2v—-D)—=<=1
2y )dx

dy__1
= de  2y-1
(iii) Here (cos x)” =(sin y)*

taking log both the sides
ylog(cos x) = xlog(sin y)

Differentiating with respect to x
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y. ! (—sin x) +log(cos )c)ﬂ = x.C?ﬂd—y +log(sin y).1
COS X dx siny dx

dy _log(sin y)+ ytanx
dx log(cosx)—xcoty

(iv) Here Xy =k
taking log both the sides
log x” +log y* =logk
= ylogx+xlogy=1logk
Differentiating with respect to x

y.l+10gxﬂ+x.lﬂ+log y.1=0
X

dx y dx
( x) dy [ y]
logx+—|—=~—|logy+=—
= L 8 yJ dx &7 X
dy _—y(xlogy+y)
= dx  x(ylogx+x)
E le 14. Find d
xample 14. Find — - :
@) x“.y" = (x+ )" (i) x*+y* =log(x* - y*)
(i) x4/1+y +yv1+x=0 (iv) \/1—x2+\/1—y2:a(x—y)
Solution : (i) Here x4y = (x4 y)?
taking log both the sides
log x* +log y* = (a+b)log(x+ y)
= alogx+blogy=(a+b)log(x+y)
Differentiating with respect to x
1
a.l+b.ld—y= (a+Db). [1+d—yj
X y dx (x+y) dx
b a+bldy a+b a
= y x+y)dx x+y x
b(x+y)—yla+b)|dy _x(a+b)—a(x+y)
= y(x+y) dx x(x+y)
dy_y
= dx x
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(ii) Here VX +y? =log(x® —y?)

Differentiating with respect to x

el G B G
LS ) PP, IV P S T
2 x2+y2 ydx (XZ_yZ) ydx

y . 2y |dy__2x  x
dy 2x\ X"+ y° —x(x2 —yz)
dx—y(xz—y2)+2y«/x2+y2'
(i) Here xyl+y+yJl+x =0
= X1+ y =—yJl+x

squaring both the sides

x2(1+ y) = y2(1+ X)

= X =y +x’y—xy> =0
= (x=y(x+y)+xy(x—-y)=0
= (x=y)(x+y+xy)=0

If x—y=0 or x =y, which does not satisfy the given equation, x—y # 0
T x+y+xy=0

Differentiating with respect to x

1+ﬂ+1.y+xd—y:0
dx dx
d
= 1+ =—(1+y)
dx
R
= dx I+x
(v)  Here VI-x* +4J1-y* =a(x—-y)
Here putting x=sinf, y=sing

J1-sin’6 +\/1—sin2 ¢ = a(sin @ —sin ¢)

= cos 0+ cos ¢ = a(sin O —sin @)
. 20059+¢.0059_¢:2acos?sin9_¢
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0-¢

= cot > =a
— % =cot'(a)
= 0—¢=2cot” (a)
= sin”' x—sin”' y=2cot ' a
Differentiating with respect to x
1 1 dy
Ji- iy dx
dy 1=y’
= dx V1=

E llSF'dﬂ‘
xample 15. Find — - -

X+...00
A

@) y= \/log X+ \/log x +flog x+...00 (i) y=(sinx)*""" (iii) y ="'

Solution : (1) Here y= \/log X+ \/log x+4/log x+...0
or y=+/logx+y

Squaring both the sides y>=logx+y
Differentiating both the sides with respect to x
yy 1 dy
dx x dx
dy 1
- Qy-N=2=—
dx x
y__ 1
= dx  x(2y-1)
(i) Here y = (sin x)“""

= (sin x)”
taking log both the sides
log y = ylog(sin x)
Differentiating with respect to x
1 dy
}E - sin x

.cos x +log(sin x).ﬂ
dx
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{l —log(sin )c)}ﬂ
Yy dx

dy _
dx

(iii)) Here
taking log both the sides
log y
= log y
Differentiating with respect to x
Ldy
y dx
1.,1%
y dx
a4
= dx
. dy
Find I
I. (a) 2x+3y=siny
2. @ Vx+y=va
3. (a) sinx+2cos’ y+xy=0
4. @ (P +y) =ay
5. (@) ¥’ +y’ =3axy
6. (a) y=x’
7. (a) y=e' +e° +..4¢"
08 X
=/ x>0
8. (@) Y log x
9. (a) yvl-x* =sin'x
10. (a) y= \/sinx+\/sinx+\/sinx+...oo

= ycotx

__yeotx
1- ylog(sinx)

y:ex+ez+ex+..'w:ex+y

=(x+y)loge

=x+y

Exercise 7.3

() x* + xy + y* =200
(b) tan(x+ y)+tan(x—y) =4

(b) X\/;+y\/;:1
(b) sin(xy)+~=x*—y
y

(b) x’+ yx = ab
(b) xa'yb — (x_y)aer

(0) y=\e®, x>0
-
b yVi+x=+1-x
®) y'+x' +x" =d"
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7.07 Derivative of parametric functions

When x and y are represented in terms of other variable like x = f(¢), y = ¢(¢) then variable ¢ is said
to be parameter and equations of such type are known as parametric equations. The below given formula is

dy
also used to find ——,
dx

dy dyldt dx
—= , —#0.
dx desar Ve g

Ilustrative Examples

. dy
Example 16. Find —— , when

dx
(i) x=2at’, y = at* (i) x =sint, y =cos2t (ii) x=4t,y:%
Solution : (i) Here x=2at> = % = 4at
and y=at' = @ _ 4at’
dt

d_y_dy/dt_4at3_t2
dx dx/dr Adat '

. . dx
(i1) Here Xx=sint = — =cCost
dt
and y =cos 2t = ﬂ =-2sin 2t
dt
d_y: dy/dt :_231n2t _ —2.2sintcost _ dsins
dx dx/dt cost cost
dx
iii) H x=4t=>—=4
(i) Here o
; 4 dy_ 4
an Y T t

dy _dyldi -4/ 1

dx dxldt 4 £
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d
Example 17. Find o , when
dx
. 2t 1-¢ . 3at 3at?
= in’! = -1 nm) x= s =
@ x=sin (1+t2j’ Y= eos [1+t2j ®) 1+ 2T 14r
1 1
x:eS 0+_J, — 9(9__}
(iit) 0 y 0
Solution: (i) x=sin"' 2t =cos™' 1-r
olution: (i) 52 ) y v
Here putting ¢ = tan 0
x=sin™ (ﬂ} = Sjnfl(sjn 20) =20 = ﬂ =2
1+tan” @ do
(1—tan’0) d
=cos”' | ———| =cos ' (cos26) =26 =Y s
and ¥ L1+tan29J ( ) do

d_y_dy/d@_g_l
dx dx/do 2

_ 3at _3at2
1+ 0 T 1er

(i1) Here X

differentiating with respect to ¢

de (147°)(3a)=3at(0+3*) 34— 6ar’

dt (1+t3)2 (1+t3)2

dy (1+7)(6ar) =3a* (0+3¢°)  6at —3ar’
and dr (1+0°) (140

dy dyldt 6at-3ar* t(2-1)

dx dx/dt 3a—6at’ 1-2¢

1 _ 1
(i)  Here X=€9(9+5j, )’269(9——}

differentiating with respect to 6

2 3
ﬂ:eg.(6’+lj+e67 (1—%j=ea w
do 0 0 0




2 N3
do 0 0 0

dy dyldo e’ (6’2+1—6?3 +0)
dx dx/do &° (62 -1+0"+0)

1 1 d
Example 18. If x* + y* :t—; and x* +y* :t2+t_2’ then prove that Xd—z‘i‘yzo

. . 1 2 2 2 1 4 4
Solution : Given ;_;:x +Yy and ? +t_2:x +y
2
1 1
(r——} =1’ +—-2
t t
= Py =xt+y' -2
= oyt 2yt =xtyt -2
x2y2:_1

differentiating with respect to x

x2.2yﬂ+ 2x.y> =0
dx

= 2xy[xﬂ+ y]zO
dx
dy
x—+y=0.
= dx Y

Exercise 7.4

o dy
Find ——, when
dx
1. (a) x=asect, y=htant (b) x=1logt+sint, y=e' +cost
2. (a) x=logt, y=¢'+cost (b) x=acos@, y=>bsin6
3. (a) x=cosf~—cos20, y=sinf—sin20 (b) x=0-sinb, y=a(l+cosh)
sin’ ¢ cos’ t t .
4. (a) x= (b) x:a[cost+logtan—],y:asmt
Jeos2t” \/cos2 2
5. (a) x=+/sin20, y =+/cos26 (b) x=acos’t, y=asin’t

42dy

1 1
6. If x3+y3:t—; and x6+y6:t2+t , then prove that x*y y =1
x
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7.08 Second Order Derivative
Let y=f(x)

then LA (1)
dx

Now if f'(x) is derivable then we can differentiate equation (1) with respect to x. Then left hand side

2

becomes di[?j which is known as second order derivative of f (x) and is written as KZ’ or f"(x).
x\ dx
Derivatives of higher orders can also be found like this
Illustrative Examples

Example 19. Find the second order derivative of the following functions

(i x* (i) x’ log x (iii) €®*.cos3x
(iv) log(log x) (v) sin(log x) (vi) tan”' x.
Solution : (i) Let y=x"
dy 19
— =20x
= dx
dzy 18 18
= ~=20.19x" =380x".
dx
(i) Let y=x"logx
— d—y:x3.l+logx.3x2 =x" +3x’log x
dx X
2 1
d 2) = 2x+3{x2.—+10g x.2x}
dx X
=2x+3(x+2xlogx) =5x+6xlog x = x(5+6log x).
(iii) Let y =e% cos3x
dy _ 6bx : 6x
- — =e¢""(—sin3x).3+cos3x.e”".6
dx
= 6e"*.cos3x —3e*".sin 3x
dzy 6x . 6x 6x : 6x
e =6{e’" (—sin3x).3+cos3x.e”".6}-3{e’".cos3x.3+sin3x.e" .6}
X
=—18¢"" sin 3x +36e"* cos 3x —9¢** cos 3x —18¢** sin3x
=9¢° (3cos 3x —4sin 3x).
(iv) Let y =log(log x)
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dy 11

= dx logx;
£y (1)1
dx*> logx\ x*) xdx\logx
1 0)-1 !
o 1 og x.(0) - . o +l_ 1
x’logx x (log x)* x*logx x| x(logx)’
1 1 1 1
= — 2 et > ) = — ) 1+ .
x“logx x"(logx) x"log x log x
(v) Let y =sin(log x)
— d _ cos(log x).l

dx X

d’y 1y 1, . 1
—-=cos(logx)| —— [+—{-—sin(logx)}.—

dx X X X

cos(logx) sin(log x) 1 .
=— > — > = ——{cos(log x) +sin(log x) }.
X X X
(vi) Let y=tan"' x
@ __1
= dx 1+x°

d’y _ (1+ x*)(0)—1.(0+2x) _ 2
dx’ (1+x*)? (1+x*)?

Example 20. If y = (x++/x* —1)", then prove that

2
(xz—l)fl Z+x%—m2y=0.
X X

Solution : Given y=(x+ [ — 1y"
Differentiating with respect to x

dy ( \/2—)1{ 2x
—=m(x+vx" -1 I+ —/—
dx pNES|

= m(x+x* ~ 1" W =1+ _max+a?=1)" _ my
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squaring both the sides

2]

X

again differentiating with respect to x

2 2
(x2 —1)-2(ﬂj.d—z+ Zx(d—yj = mzZyﬂ
dx ) dx dx dx

dy
. . . 2 -
dividing by I

(xz—l)d—zy+xﬂ—m2y =0.

dx* dx
Example 21. If x* + y’ +3ax> =0
2 2.2
d—f+ 2 Sx =0.
dx y
Solution : Here X+ 3y +3ax* =0 )]

Differentiating with respect to x

3x’ +3y2ﬂ+3a.2x =0
dx

dy X%+ 2ax
= e )2 )

Again differentiating with respect to x

dzy o y2(2x+2a) —()c2 +2ax)2yi2;

dx2 (y2)2

d
Substituting the value of d_z from (2)

de y3 2

Iy L%Y(ZH 2a) +(x2 + ZaX)Z.—(xz J;zax)}

2
= ——5{y3(x+ a)+x* +4a’x’ +4ax3}
y
from equation (1) putting y =- (3ax2 + x3)
2
2
d Z = ——5{—(3ax2 + x3)(x+ a)+x*+4a’x’ + 4ax3}
dx y

= ——5{—3a)c3 —x*=3a’x" —ax® + x* + 4a*x? +4ax3}
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d’y N 2a°x* B
= dx’ y’

0

Example 22. If y =sin ( asin™' x) , then prove that
(1—)c2)y2 —xy,+a’y=0
Solution : Here y =sin(asin™ x)
Differentiating with respect to x
a

NI

x)=a*{l1-sin’*(asin™" x)}

y, = Cos (a sin”' x).

Squaring both the sides (1-x*)y;} = a” cos’(asin™
= (I=x")y/ =a’(1-y?)
Again differentiating with respect to x
(1=x")2y,y, = 2xy; =a*(0-2yy,)
Dividing by 2y,,
(1-x)y,—xy, +a’y=0.
Exercise 7.5

L Find 22 wn
) in , when
dx*
(a) y=x"+tanx (b) y=x"+3x+2 (c) y=xcosx
(d) y=2sinx+3cosx (e) y=e "cosx (f) y=asinx—bcosx

2. If y=asinx+bcosx, then prove that

2

3. If y=secx+tanx, then prove that

d’y  cosx
dx*  (1-sinx)®

4. If y=acosnx+bsinnx, then prove that

2
C:;Z+n2y20.
X
d? /s
5. If x=acos’, y=asin’@, then find de at 9:2

6. If x’+y’—3axy =0, then prove that

d’y B 2a’xy
dx*  (ax—y*)?
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7. If y=sin"'x, th that : (1—x —x—=
y en prove tha ( ) o
. d’y _ dy
8. If y=(sin"' x)* ,then prove that : (l—xz) e —xa—2=0.

7.09 Rolle's theorem

If a real valued function f'is defined in the interval [a, b], such that

(1) f is continuous in the closed interval in [a, b]

(i1) f is derivable in the open interval in (a, b)

@)  f(a)=f(b)

then in the open interval (a, b) there exists a point ¢ such that f'(c)=0
7.10 Geometrical meaning of Rolle's Theorem

‘We can define Rolle's Theorem under two conditions:
Case I: when the function f is constant then

f(x)=c, Vxela,b]
The graph of the function will be paralel to x-axis. Thus for every point in the open interval (a, b)
f'(x)=0 (see fig : 7.01)

Case II: When function fis not constant then

Y
as per Rolle's theorem let f be continuous in a A
closed interval [a, b] and derivable in the open interval f)=c
(a, D), then f is derivable.That means tangents can be :
drawn at x € (a,b) to the curve y=f(x) .Also f (a) = f(b), f@ 10

it is clear from this that the value of the function f (x) will
either increase or decrease (see fig 7.02), under both the X’ 0 > X
conditions there exists a point which will always be parallel

A

&
<

to x-axis i.e. at that point f'(x) =0, i.e. at these points

the slope of the line will be zero Fig.7.01

(a) (b)
Fig 7.02
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7.11 Lagrange's mean value theorem

If a real valued function f'is defined in the closed interval [a, b] such that
() fis continuous in [a, b]
(i) fis differentiable in (a, b)

then there exists a point ¢ in (a, b) such that f'(c) = w
—a
Note : Mean value yheorem is the extension of Rolle's theorem.

7.12 Geometrical meaning of Lagrange's mean value theorem (LMVT)

Y
A

Also f'(c) istheslope of y= f(x) atpoint (c, f(c)). Itis (b, f (b))

fb)—f(a)
b—a

line drawn from the points (a, f(a)) and (b, f(b)). According

to the LMVT there exists a point ¢ in (a,b) such that the

The graph of function y = f(x) is shown in fig. 7.03.

clear from the fig 7.03 that is the slope of the

S
N (e.f @)
o

a c b
v Fig. 7.03
from the points (a, f(a)) and (b, f(b)). Y

7.13 Other form of Lagrange's mean value theorem
If we take b=a+h, h>0,c=a+0h, 0<0<1 and ¢ e(a,b)= a+6h e(a,a+h), in Lagrange's

tangent drawn at point (¢, f(c)) is parallel to the line drawn

mean value theorem then it takes the form as shown below-
If the real valued function f is defined in the interval [a, a + h]
(1  fis continuous in the closed interval [a, a + h]
(i)  fis differentiable in the open interval (a, a + h) then there exists a real number @ in the interval (0,
1) such that f(a+h)= f(a)+hf'(a+06h)
Note: For this theorem f'(a) = f(b) isnot necessary. If f(a) = f(b) then this theorem changes into Rolle’s theorem.
Illustrative Examples

Example 23. Verify the Rolle's theorem for the following functions

) fx)=va-x*; xel-2,2] (i) f(x)=e"sinx; xel0, 7]
Solution : (i) Clearly the function f(x)=+/4—x” is continuous in the interval [-2, 2] and f' (x) = 4—x =,
—-X
which is defined at every point of the interval (-2, 2) i.e. f (x), is derivable in the interval (-2, 2)
f(=2)=0=f(2)
= f(=2)=71(2)
function f (x), satisfies all the three conditions
—c
fle)=0= =0
Hence m
= c=0 ce(-2,2)
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Thus Rolle's theorem is verified

(ii) f(x)=e"sinx, x €0, x]

Clearly the function f (x), is continuous in the interval [0, 7] and f'(x)=e" cos x+e"sin x, which is
defined at every point of the interval (0, 7) i.e. f(x), is derivable in the interval (0, )

: f0)=0=f(n)
function f (x), satisfies all the three conditions

Hence f'(c)=0=e“cosc+e‘sinc=0
= e“(cosc+sinc)=0
= cosc+sinc=0
3
= c=— o ce(0,m)
4
Thus Rolle's theorem is verified
Example 24. Verify Rolle's theorem for the following functions
) .. !
() f(x)=3+(x-2)""; xe[l,3] (i) f(x)=sin—; xe[-1,1]
X
Solution : (i) f(x)=3+(x-2)""; xe[l,3]
Clearly f (x), is continuous in the interval at [1, 3]
. 2
fi= Wa is infinite in the interval at x=2¢€(1,3), f(x)is not derivable.

Thus Rolle's theorem is not verified for f (x) in the interval [1, 3]

.1
(ii) f(x)=sin—; xe[-11]
X
Function f (x) = sin 1— is not continuous at x =0 0 e[-1,1] thus f(x),[-1,1] is not
X

continuous, Rolle's theorem is not verified for f(x) = sin l in the interval [—1,1].
X
Example 25. Examine the applicability of Lagrange's mean value theorem for following functions:

1
O f=[x]; xe[-11] (i) f(X)Z? xe[-L1]

1
(i) f(x)=x——; xe€[l,3] (v) f(x)=x-2sinx; xe[-x, 7]
X
Solution : (i) .- f(x) =| x| is continuous everywhere hence it is continuous in the interval [-1, 1] also f(x) =| x|

is not derivable at x = 0 therefore function f (x), is not derivable in the interval (-1, 1). Thus LMVT is not
verified for f (x) in the interval [-1, 1]
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@@ - f(x)= l; x=0¢€[-1,1] is not continuous so f (x) is also not continuous in the interval [-1, 1], thus
x
LMVT is not verified.
1
(i1) Here f(x)=x —l; x €[1, 3], which is continuous at [1, 3] and f'(x) =1+—, which exists and finite
x x

in the interval (1, 3) thus f (x) is derivable in the interval (1, 3). Hence function f (x), satisfies the conditions of
Lagrange's MVT

, -7
Now f(C)Z—f() 4G,
3-1
1 3_1_(1_3
= 1+_2:3—
c 2
1 4
= T
1
= 773
= czi\/§
= x=+3¢€(,3)
Thus LMVT is verified.

(iv) Here f(x)=x-2sinx; xe[-nx, ] clearly f (x), is continuous and derivable in the interval [—7, 7] thus
f (x) satisifes both the conditions of MVT in the interval [, 7] , hence their exists a point ¢ in the interval

(-, ) such that

e L@ =L
T—(-m)
T—(-n) 2=x
= o8¢ 27 27
= cosc=0
= c:i%,i% '.'c:i%e(—ﬂ,ﬂ)

Thus LMVT is satisfied.
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Exercise 7.6
1. Verify Rolle's theorem for the functions given below:

(@) f(x)=¢"(sinx—cosx); xe[n/4, 5x/4] () f(x)=(x—a)"(x—b)"; xela,bl,mneN
© fx)=|x}; xel-11] d f(x)=x*+2x-8 xe[-4,2]

241 ; 0<x<1
© f(X)={);+ sxe  f)=[x]; xe[-2,2]

—-x ; I<x<Z£2

2. Verify Rolle's theorem for the functions given below :

(@ f(x)=x"+5x+6; xe[-3,-2] (b) f(x)=e*sinx; x€l0, ]
© f(x)=+x0-x); xe[0,1] (d f(x)=cos2x; xel0,r]
3. Verify Lagrange's mean value theorem for the functions given below:
2 p—

(a) f(x):x+l; x e[l 3] (b) f(x)=x 4; x €[0, 2]

X x—1

1

© f(x)=x*-3x+2; xe[-23] (d) f(X)=m; xel[l, 4]

Miscellaneous Examples
Example 26. Find the differential coefficient of the function with respect to x

(a) cosx’ (b) sinlog(l+ x°) (c) logtan [% + %j
(d log(x++x*+a’) (e) log,(log x)
Solution : (a) Let y=cos x’

180° = 7 radian

xO—Lx d
180 radian

Y 130

dy . (nx\d ([ nx - . [ 7wx - .,
— =—sin — = sin = sin x°.
dx 180 )dx\180) 180 180 ) 180

differentiating with respect ot x

(b) Let y =sinlog(1+ x)
— z—y:coslog(1+x2)di{log(l+x2)}
x x
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= cos(log(1+ xz)).(

T _coslog(l+x?)

cos(log(1+ xz))(0+2x) =T

1
(1+x2)
(c) Let y=logtan(z/4+x/2)

dy__ v d
= dx tan(m/4+x/2) dx

{tan(w /4 +x/2)}

1
_tan(ﬂ/4+x/2)

secz(ﬂ/4+x/2)di(7z/4+x/2)
x

1
 2sin(z/4+x/2)cos(/4+x/2)

1 1
sin2(z/4+x/2) sin(z/2+x) cosx

(d) Let y=log(x+x*+a®)

dy 1 d 2
—=—————(x+Vx +a’)
= dx  (x++x*+a*)dx

=SeC X.

~ 1 (1+ 2x j
(x+x*+a*) VX +ad?
1 Nxi+a® +x 1

(x+\/x2+a2) (x2+a2) X +a*

1
log, 7

e

(e) Let y=log,(logx)= {log,(log x)}, (Base change formula)
defined for x > 1,

d 1 d
2 = {log(log x)}
dx (log7) dx

1 1
. —(logx) =————.
log, logx dx xlog7.log x
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Example 27. Differentiate the following functions with respect to x

x+1 1/3 1/3
(a) sin” [12 4xj (b) tan™! [%} (©) sin” (xv1—x —x N1-x2).
+ —(ax
x+1
P =sin""'
Solution : (a) y (1 N 4xJ
P | 2X '2 .1 2tan0
=sin 1+(2°) =sin 1+ an’o [let 2° =tan @ ]

=sin ' (sin 20) =20 =2tan "' (2%)

d_p 1 dpg 2 ,_2"'log2

= dx  1+(2%) dx 149~ % 1+4
_tan,l xl/3 +al/3
(b) Let y 1—(ax)”

A+B
(Using formula, tan™' [;j =tan' A+tan"' B)
1- AB

1/3 1/3
)

y=tan"'(x"’)+tan"'(a

&y 1 d

- X2/3 +O
= dx 1+(x”3)dx( )

/3 1
1+x2/3 3x2/3(1+x2/3)'

(c) Let y=sin" (xv1-x —Jx -1-x7)

(Using sin™ A—sin™' B =sin™'(A1-B* - BJ1-A?))

y= sin”'(x) — sin’l(\/;)

dy 1 1 d
== - (%)
= dx \/1_xz \/1_(\/;)2 dx X

1 11 1

~ 1
RV Jiex 2Vx NN
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. dy a t+1/t .
Example 28. Find I when X = (l +1/¢ ) and y=a ", where a is a constant

Solution : It is clear that both x and y are functions of f and ¢ = 0 defined for all real numbers
N @—a[Hljali(Hlj —a[t+1jal[l—ij
ow dt t) dt\ ot t t*)
Hereﬁ;tOIfl—lziO = t#*l
dt t

and d_y_i(atﬂ/t) :ClHl/t.lOgai(t-i-l/t):ClHl/t loga(l_lzJ

dt  dt dt t

now for, t #+1

(t+1/1) 1_7 1
dy dyldi ( 2 )08 gt j0gg
dc dr/di a(+1/0"(1-1/7)  a(t+1/0""

2 2 2 2 2.2 dzp a2b2
Example 29. If p° =a”cos” @+b"sin” 6 then prove that p+d02 =—.
p
Solution : Given p>=a’cos’@+b*sin’ O

differentiating with respect to 6

ZP% =—2a* cosBsin 8+ 2b* sin Ocos O

= (b2 —az)sin 20

again differentiating with respect to 6

dzp dp ’ 2 2
2p 10 +2(%J :Z(b —a )00529

multiplying both sides with p*
d’p dp
— L4 pP| = | =p*(b®—a’)cos20
P! (d@} al )
adding p* both the sides
Ip ( dpY
4, 3 _ o4, 22 2
p tp 10’ +[Pﬁj =p +p (b a )00329
putting the value from (2)

2 b*—a’ ’
p4+p3 Z;le)-i_( y ) -Sin229=p4+p2(b2—a2)cos29
[185]
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2

d’p

—~ p'+p’ e +(b* —a*)sin’ Ocos” @ = p*{p* +(b> —a”)(cos” @ —sin” 0)}
= p*{(a® cos® O +b*sin” 0) + (b> —a*)(cos’  —sin” 0) } [from equation (1)]
= p*(b*cos’ O +a’sin* 0)
= (a*cos’ 6 +b*sin’ O)(b* cos’ 0 + a’ sin” 0) [from (1)]
2
—~p'+p’ % =a’b*(sin* @ +cos* ) +a* sin® O cos” @+ b*sin* Ocos’ O — (b* —a”)* sin” O cos” O
=a’b’ (sin* @ + cos* @ +2sin* O cos® 0) = a’b*(sin* O + cos* 0) = a’b’
d’p a’b?

+
= p d02 p3
Example 30. If x=acosf+bsin€, y=gsin@—bcosd then prove that y’y, —xy,+y=0
Solution : From given equation, x=acos@+bsinb, y=asinf—-bcos6
x+y? =(acos@+bsinb)’ +(asin@—bcosh)’ =4 + b’
differentiating with respect to x
= 2x+2yy, =0
n= - 1
— 1=y )

again differentiating with respect to x

y.1l—xy y+x-x/y
R = R
2 2
yo+x
=" ¥ 2
Y2y, —xy +y=y2(—y2+x2\—x(_—ﬂ+y
= 2T SR B O

=l{—y2—x2+x2+y2}=0.
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Example 31. Verify Rolle's theorem for the functions given below:

@ f(x)=10g{x +ab}; xela,b],x#0 () f(x)=tanx; xel0,r]
x(a+b)
. _ x* +ab )
Solution : (i) f(x)=log @i xela,bl,x#0

=log(x” + ab) —log x —log(a +b)

clearly, f(x) is continuous in [a, b] and logarithmic functions are derivable thus f (x) is derivable in the

2x 1 x> —ab

: (x) = G
interval (a, b) as J (%) Crab x x(Ciab)

a’>+ab
a)=1lo =logl=0
now f(a) g{a(a+b)} g
Py =log 1 1oa1-0
= o@rn| 8
= fla)=f)
f (x), satisfies all the three conditions of Rolle's theorem
f'e)=0
c*—ab B
= c(c® +ab)
= c=+ab e(a,b)
Thus Rolle's theorem is verified.
(i) -+ f(x)=tanx, x =7/2 is not continuous as 7 /2 €[0, 7] i.ef(x), is not continuous in the interval

[0, 7], thus for f(x)=tanx; xe=[0, ] Rolle's theorem is not verified.
Miscellaneous Exercise-7
Differentiate the following functions with respect to x (Q 1-8)

cos” x/2
1. sin'(xx); 0<x<1 5 S8 M2 oo x<n
Y J2x+7
cot™! J1+sin x +~/1—sin x _ 0<x<1 3 '
3 \/l+sinx—\/1—sinx ’ 4. x’.e .sinx
5. 10g [%j 6. (xlog x)logx
7. xx2,3+(x—3)x2; x>3 8. Sin—lx_i_sin,l 1—)62
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9 If 1 =tan”' (y_—xz\ then find d 10. If y=12(1—cost) =10(¢ —sint), then find d
. 0g x = tan L = J Ir It y= cost), x= , e
(x*—y) dy vy
-1 — tan~" @ _
11. If cos sz n y2J an ' a, then prove that I x
dy sin’(a+
12.  If sin y = xsin(a + y) , then prove that d—z = %
. dy
13. If y = (sin x—cos x)(s‘”*m”) , then find E
14. If y =sin(sin x), then show that
2
d—Z+tanx.ﬂ+ ycos’ x =0.
dx dx
15. (a) If y=e"sinbx, then show that
dzy dy 2, g2
—2a—+(a"+b =0.
dx’ dx ( )y
. -1
(b Ify= S X , then prove that
V1-x?
(1-x*)y, =3ay,—y=0.
16.  Verify Rolle's theorem for the functions
@ f(r)=(x-2x; xel0,2] (0) f()=(x-Dx=3); xell3]
17. Examine the applicability of Lagrange's mean value theorem for the functions given below.
I+x ; x<2
(@ f(x)=(x-Dx-2)(x-3); x€[0,4] (b) f(x)= ; xell, 3]
5-x ; x2>22
( R
r | Important Points |
1. If the functions f and g are differentiable at any point c in the interval [a, b] then f + g, fg andf/ g
are also differentiable at point ¢ and
() D(fxg)c)=f'(c)£g'(c) (i) D(fg)(c) = f'(c)g(c)+ f(c)g'(c)
o)f'(c)-g'(e)f(c
(i) D(f 1 g)(e) =8O8 e o0y 20
[g(c)]
2. Ify= du= th dy _dy du
. y=f(u) and u =¢(x) then I du dr
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10.

(i) i(sin’l = ; (i) 2 cos™ x)=—L‘(iﬁ) < tan 3= —
dx _e 0 dx Ji=x2 77 dx 1+x°

1 d 14 _
) G 0 ) g

A real valued functions is continuous at a point in its domain if the limit of the function at that point
equals the value of the function at that point. A function is continuous if its continuous on the whole of

cos ecilx) =

(iv) %(cot1 X)=-

its domain. Every differentiable function is continuous, but the converse is not true.
For the function of the type y =u" solve it by taking log on both the sides.

in this 7 is th t (LT e ddr#0
x= f(t), y=g(t) inthis ¢ is the parameter, we ge I deld where dx

If f'(x) is also a continuous function of x then it can be again differentiated.
Rolle's Theroem:

If Real valued function f is defiend in the interval [a, b], such that,

(1  f is continuous in the closed interval [a, b]

@)  fis differentiable in the open interval (a, b)

@ f(a)=f(b)

then in the open interval (a, b) there exists a point ¢ such that f'(c)=0
Lagrange's mean value theorem:

If a real valued function f'is defiend in the closed interval [a, b] such that
(1  fiscontinuous in [a, b]

(i) fis differentiable in (a, b)

f®)-f(a)

then there exists a point c in (a, b) such that f'(c) = p
—a
Lagrange's Mean Value Theorem:

If we take b=a+h, h>0,c=a+6h,0<0<1 and ce(a, b)=a+6he(a, a+h), in lagrange
mean value theorem then it takes the form as shown below.
If the real valued function f'is defiend in the interval [a, a + h] such that

(1  fis continuous in the closed interval [a, a + 7]
@)  fis differentiable in the open interval (a, a + %) then there exists a real number @ in the interval

(0, 1) such that f(a+h) = f(a)+hf'(a+6h)
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ANSWERS
Exericse 7.1

s e (2xsd 3 drsina? ( 2) 2sin x 5 1-V1-x7
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T 0 8. ——secx’tanx’ 9 10 11 24-5)
6. ——cosx® 7. cosecx © 180 - secx SN Clx 4+
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12. [1+x2j sec’ (log\/1+x2) 13. 3.4""" sec’ 3x.loga 14. secx 15. 3sin® x.sindx

Exercise 7.2
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2 3 2 -3
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Exercise 7.3

2 —(2x+y) y sec’(x+ y)+sec’(x—y)
cosy—3 (b) X+2y 2. @) \/; (b) sec’(x—y)—sec’(x+ )

1. (a)

cosx+y —_y(\/;+2\/;\ 4x° +4xy* -y y{2xy—1—y2cos(xy)}
3. @) 2sin2y—x (b) X L\/;+2\/;J 4 @ x—4x"y—4y’ (b) {yzxcos(xy)—x+ yz}

2 y-1 X 2
ay—x x4+ y'logy y y
> (@) y’ (b) { xy* + x" log x} b)

—ax 6. (@) x(1-ylogx) ( X

o

7. (a) e + 2xe +3x%e" +4x’e” +5xte” (b) . T
x.e

. 2
xsin xlog x + cos x Yy

- y
(b) x(2-ylogx)
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1+ xy
8. (a) 9. (a) 1+ 2 (b) e

x(log x)2

COS X b _{yx.log y+y.x" + x (1+log x)}
y

10. (@) 2y—1 x.y " +x” log x
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Exercise 7.4

b t i —b
1. (a) —.cosect (b) He zsine) 2. (a) t(e’—sinz) (b) —cotd

a 1+tcost a
3 cos@—2cos26 b —cotg 4 cost(l1—2cos?2t) b
@ Sin20-sin0 (b) meety @) TS s (b) tant

5. (a) —(tan26)**  (b) —tant
Exericse 7.5

1. (a) 6x+2sec’ xtanx ;(b) 2 ;(c) —(xcosx+2sinx) ;(d) —2sinx—3cosx ; (€) 2¢ “sinx ;

(f) —asinx+bcos x 5. H2
3a
Exericse 7.6
1. (a) valid  (b) valid (¢) invalid (d) valid (e) invalid ' (f) invalid
3. (a)valid (b) invalid (c) invalid (d) valid (e) valid (f) invalid

Miscellaneous Exercise — 7

{ 3 Jx - 2x+7+4—x"cos ' x/2
2V1-x° Ja— 2 Qx+7)?

3 L

T2

3 3 . 2 .
4., x'e*cosx+x’e"sinx+3x e’ sinx

)

1
) ;_1Oga 6. (xlogx)l"gx.{Ing(HIng)+10g(x'10gx)}

xlog x X

2

=~

3 +2xlog(x— 3)}

X X—

2 2
X {x—_3+2xlog x}+(x—3)x { al

8. 0
9. 2x{1+tan(log x)} + xsec’(log x)

0 Seal?)
"5 2

13. (sin x—cos x)

sin x—cos x

.(cos x +sin x) {1 +log(sin x —cos x) };sin x > cos x
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Application of Derivatives

8.01 Introduction

In previous chapter we have studied derivative of composite functions, inverse trigonometric functions,
implicit functions, exponential functions and logarithemic functions. In this chapter we will study applications of
the derivative in various disciplines, e.g. in engineering, science, social science and many other fields. For instance
we will learn how the derivative can be used to determine rate of change of quantities or to find the equations
of tangent and normal to a curve at a point.
8.02 Rate of change of quantities

Let P be a variable quantity, that changes with respect to time. Let small change in time 7 is &¢, then

oP
corresponding change in Pis §P . Then S is average rate of change in P, and the instantaneous rate of

P . OP
change in P is —- where ar =lim 5—
dt dt o0 §t

dP
Where, E, rate of change in P with respect to time ¢. Further, if two variable v and r are functions

of another variable ¢, then

dv _dv dr
dr dr'di
Thus, the rate of change of any one of v and r can be calculate using the rate of change in other qantity
with respect to time 7.

Illustrative Examples
Example 1: Find the rate of change of volume of a sphere with respect to its surface area when radius of
sphere is 2 cm.

Solution : -- Volume of sphere = V = §7U'3 = cfZ_V =471’
r
2 dS

Surface area of sphere s=4nr’ = o 8rr

d_V_dV/dr_47rr2_£
ds ds/dr rr 2

av)y _2_,
i )2 cm.
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Example 2. A ladder 10 m, long is leaning against a wall. The bottom of the ladder is pulled along the ground,
away from the wall, at the rate of 1.2 m/ s. How fast is its height on the wall decreasing when the foot of the

ladder is 6 m. away from the wall.
Solution : Let AB be position of ladder at time ¢

Let OA = x, OB =y then X+ y*= 10> (1)
dx
is oi —=1.2
It is given 0 m/s

Diferentiating (1) with respect to ¢

dx dy
2x—+2y—=—=0 2
a " dr @

For x = 6, from (1) 6°+y*=10"= y=8 m.

From (2) 2><6><1.2+2><8%:()

= ﬂ = —E =—0.9 m/s. (towards ground)
dt 16

B

Example 3. The volume of a cube is increasing at a rate of 9 cubic centimetres per second. How fast is the

surface area increasing when the length of an edge is 10 centimetres?

Solution : Let x be the length of a side, V be the volume and s be the surface area of the cube. Then,

V =x', §=6x* where x is a function of time t.

dv
Now, —=9 cm’/s.
d d dx dx
9=—(x)=—(x)—=3x"—
= AR SR dt
)
= d  x*
das d d dx 3
— =—(6x)=—(6x")—=12x| =
and g T w "y (ﬁ}
x=10 cm.
ds 36
—=—=36 2/ s.
= ar 10 s

€]

[From (1) 9]

Example 4. The surface area of a bubble is increasing at the rate of 2 cm? / s. At what rate is the volume of

the bubble increasing when the radius is 6 cm.

Solution : Let surface area and volume of a bubble of radius r be S and V respectively.

Then S=d4rr’ = d—S =8xr
dr
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and

das
E=2cm2/s

Given that

Hence

1% ziﬂr3 :d—vz47rr2

3 dr

ds dS dr dr dr 1
— = —=22=8ar—=—=——
dt dr dt dt dt  4drnr
av._dv.dr_, . 1 _

= ) Tre. =
dt dr dt Ay

j =6 cm’/s
r=6

Example 5. The length x of a rectangle is decreasing at the rate of 3 cm / minute and the width y is increasing
at the rate of 2 cm / minute. When x = 12 and y = 6. Find the rate of change of the perimeter and the area of

the rectange.

Solution : Since the length x is decreasing and the width y is increasing with respect to time, we have

- Perimeter of rectnage

=

and area of rectange

dx d
—=-3cm / minute, 222 ¢m/ minute
dt dt
p:2(x+y)
d_pzz(ﬂ+ﬂJ:2(—3+2):—2 cm / minute
dt dr dt
A=x.y
dA dy dx
— =Xty
dt dr dt
= (12)(2) + (=3).6
=24-18

=6 cm?/ minute

Example 6. Water is dripping out from a conical funnel at uniform rate 4 cm? / s through a tiny hole at the
vertex in the bottom. When the slant height of the water is 4 cm. Find the rate of the decrease of the slant

height of the water, given that the semi vertical angle of the funnel is 60°.

Solution : Let volume of water at time #is V.
. The volume of cone of water PEF is V and slant height PE =/

and

B3

O'E = /sin 60 =€.T

O'P=/cos60° zﬁ.%
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A4
V="
= 8
av _3nl’ do
= di 8 di
It is given that d—V——4
is given tha I
3nl? diY
S 4=
© 8 dr
dr 32
= it 3n/
di =32 2
So,at /=4 cm / s.

dt 37’ 31

Exercise 8.1
Find the rate of change of the area of a circle with respect to radius  when r =3 cm and r = 4 cm.

A particle is moving along the curve y = 3 x’ +1 . Find the points on the curve at which the y-coordinate

is changing twice as fast as the x coordinate.
A ladder 13 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, from
the wall, at the rate of 1.5 m/s. How fast is its height on the wall decreasing when the foot of the ladder

is 12 m away from the wall?

An edge of a variable cube is increasing at the rate of 3 cm / s. Fnd the rate at which the volume
of the cube increasing when the edge is 10 cm long?

A ballon which always remains spherical on inflation, is being inflated by pumping at the rate of
900 cm?® /s. of gas. Find the rate at whcih the radius of ballon increases when the radius is 15 cm.

3
A ballon, which always remains spherical has a variable diameter 5(2)6 + 1) . Find the rate at which its

volume is increasing with respect to x.
The total cost C(x) rupees, associated with the production of x units of an item is given by
C(x) = 0.005 x*- 0.02 x*+ 30 x + 5000
Find the marginal cost when 3 units are produced, here by marginal cost we mean the instantaneous rate

of change of total cost at any level of output.
The radius of a soap bubble is increasing at the rate of 0.2 cm / s. Find the rate of increase in surface
area when the radius is 7 cm. Also find the rate of change in volume when the radius is 5 cm.
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9.  Sand is pouring from a pipe at the rate of 12 cm® / s. The falling sand forms a cone on the ground in such
a way that the height of the cone is always one-sixth of the radius of base. How fast is the height of the
sand cone increasing when the height is 4 cm?

10. The total revenue in rupees received from the sale of x units of a product is given by

R(x) = 1322+ 26 x + 15
Find the marginal revenue when x = 15.
8.03 Increasing and Decreasing Functions
In this section, we will use differentiation to find out wheather a function is increasing or decreasing.
Increasing Function : A function f (x) is called an increasing function in open interval (a, b) if
X <x,= f(x)<f(x,), V x,x,€(a,b)
Strictly Increasing Function : A function f (x) is called a strictly increasing function is open
mterval (a, b) if
X, <x,= f(x)<f(x,), V x,,x, €(a,b)
i.e. if x increases in open interval (a, b) then f (x) will also increase.
Decreasing Function : A function f (x) is called a decreasing function in open interval (a, b) if
X, <x,= f(x)2f(x,), V x,x, €(a,b)
Strictly Decreasing Function : A function f (x) is called a strictly decreasing function in open
interval (a, b) if
X <x, = f(x)> f(x), YV x,x, €(a,b)

i.e. in open interval (a, b) when x increases f (x) decreases.

Y Y
A A
v v
Y’ Y’
Increasing function Strictly increasing function
® (ii)
Y Y Y

A

[
>
[

X< 0 > X X'« 0 l > X X'¢ 0 \/ » X
\4 \4
Y’ Y’ Y’
Decreasing function Strictly decreasing function  Neither increasing nor decreasing function

(iii) @iv) v)

Fig. 8.03
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8.04 Theorem
Let f be continuous on [a, b] and differentiable in the open interval (a, b). Then
(@) f is increasing in [a, b] if f'(x) >0 for each x €[a,b]
(i) fis decreasing in [a, b] if f'(x) <0 for each x €[a,b]
(iii)  fis constant function in [a, b] if f'(x)=0 for each x €[a,b]
Proof : (1) Let x,,x, €[a,b] be such that x, < x,

Then by Lagrange’s mean value theorem there exist a point ¢ between x, and x, such that

fx)=f(x) = f'le)x, —x))

= fx)=f(x)>0 ¢ f(0)>0)
= f(x)> f(x)
So, VvV x,x, €la,b]

x <x, = f(x) < f(x,)
So, f(x) is increasing function in [a, b]
Similary parts (ii) and (iii) can be proved.
Illustrative Examples

Example 7. Find the intervals in whcih the function f(x)=2x’ —9x* +12x+3,

(a) increasing (b) Decreasing
Solution : f(x)=2x"-9x" +12x+3 L tve . —ve . tve
= f'(x)=6x"—18x+12 1 2
Fig. 8.04
=6(x* —3x+2)
Now fl(x)=0=6(x*-3x+2)=0
= (x=2)(x-1)=0
= x=1, 2 are critical points.

(a) f(x) is increasing and f'(x)>0

= 6(x* —3x+2)>0
= (x-D(x-2)>0
= x<l or x>2

= x € (-, 1)U (2, ©0)

Hence, f (x) is increasing in (—o0, 1)U (2, ©)
(b) f(x) is decreasing then f'(x)<0

= 6(x* —3x+2)<0

= (x-D(x-2)<0
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= x>lor x<2

= xe(, ?2)
Hence, f (x) is decreasing in interval (1, 2)

Example 8. Show that the function f given by f(x) = x’ —3x* +4.x, is strictly increasing on R.

Solution : -: f(x)=3x-3x" +4x
= f'(x)=3x>-6x-4
=3(x" —2x+1)+1
=3(x-1)>+1>0, V xeR

Therefore, the function fis strictly increasing on R
Example 9. Find the intervals is which the function f(x)=—-2x> +3x? +12x+25

(a) Increasing (b) decreasing
Solution : -: f(x)==2x"+3x> +12x+25
= fl(x) = —6X2 + 6x+ 12 < —ve ° +ve ° —-ve >
=—6(x" —x—2) -l 2
Fig. 8.05
So, f'(x)=0=-6(x*-x-2)=0
= ¥ —x-2=0
= (x+D(x-2)=0
= x=-1, 2 are critical points.
(a) If f(x) isincreasingthen  f'(x)>0
= —6(x*—x-2)>0
= X —x-2<0
= (x+D)(x-2)<0
= x>-lor x<2
= xe(-1,2)

Hence f(x), is increasing in (-1, 2)

(b) If f (x) is decreasing f'(x)<0

= —6(x* —x—-2)<0

= X’ =x-2>0
— (x+1)(x=2)>0

= x<-1 or x>2
- x € (-0, —1) U (2, ©)

Hence, f (x) is decreasing in (—o0, —1) U (2, )
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Example 10. Find the interval in which function f(x) = sin x —cos x is increasing or decreasing.
Solution : - f(x)=sinx—cosx
f'(x)=cosx+sin x
f'0=0
cosx+sinx=0
sin(7/2+x)+sinx=0
2sin(7/4+x)-cosm/4=0
sin(7/4+x)=0=sinx

nld+x=nx

L O N

x=3r/4, which is a critical point.
when f (x) is increasing then f'(x)>0
cosx+sinx >0

2sin(7/4+x)cosm/4>0
sin(7/4+x)>0

sin{w —(7/4+x)}>0
sin(37/4-x)>0

37/4—x>0
x<3m/4

xe(0, 37/4)

Y R R

Hence f (x) is increasing if x (0, 37/4)
If f(x) is decreasing then f'(x)<0
= cosx+sinx<0
sin(7z/2+x)+sinx<0
2sin(7/4+x)cosm/4<0
sin(7z/4+x)<0
sin{n—(7r/4+x)}<0
sin (37 /4—x)<0
3r/4-x<0

x>3n/4=xe(3n/4,x)

L

Hence f(x) is decreasing if x€(37/4, 7)
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Example 11. Find the values of x for which f(x) =

is increasing or decreasing?

1+ x7
X , 1-x°
Solution : Given fo)= i f'(x) :m
, 1—x2 Ve | +ve -ve
ffx)=0= m =0 < _'1 >
. 210 Fig. 8.06
= (x=D(x+1)=0
— x=-1,1 are critical points.
If f(x) is increasing then f'(x)>0
2
= 1-x*>0
= —(x*-D)>0
= x*—1<0
= (x-D(x+1)<0
— xe(-11)

Hence f (x) is increasign for x e(—1,1)

If f(x) is decreasign then f'(x)<0

1-x
- o
= 1-x*<0
= x*=1>0
= (x-D(x+1)>0
= xe (-, —1)u(, o)

Hence f (x) is decreasing for x € (—o0, —1) U (1, 00)
Example 12. Find the intervals in whcih the following functions are increasing or decreasing

(a) x* +2x+5 (b) 10— 6x—2x" © (x+1)"(x-3)’
Solution : (a) Let f(x)=x>+2x+5
= f'(x)=2x+2=2(x+1)
f(x)=0=2(x+1)=0
= x=-1
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Case-I: When x< -1

= x+1<0
f'(x) = 2(-ve) = Negative <0

Hence f (x) is decreasing in (—oo, —1)

Case-II: When x> -1

(b)

= x+1>0
f'(x) =Positive >0

Hence f (x) is increasing in (—1, o)

Let f(x)=10-6x—2x7
= f'(x)=—6—-4x=-2(3+2x)
f'(x)=0=-23+2x)=0
= x=-3/2
Case-I: When x<-3/2
= 3+2x<0
= f'(x) =—-2(—ve) =Positive >0

Hence f(x) is increasing in (—o0,—3/2)

Case-II: When x>-3/2

(©)

= 3+2x>0
— f'(x) =-2(+ve) =Negative< 0

=  Hence f(x) isdecreasing in (-3/2, )

Let f)=(x+1) (x-3)’

= Fl(x)=3(x+1D)*(x=3)* +3(x+1)*(x-3)°

=3(x+1)’(x=3)"{x-3+x+1}

=6(x+1)*(x=3)*(x—1)
If f(x) isincreasing then f'(x)>0

= 6(x+1)*(x=3)*(x-1)>0
= x—1>0
= x>1

Hence f(x) isincreasing in (1, )

f(x) is decreasing function then f'(x)<0

= 6(x+1)*(x=3)*(x-1)<0
= x—1<0
= x<l1

Hence f (x), is decreasing in (—o, 1)
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4s8in 0

Example 13. Show that y = — 0 is an increasing function of @in [0, 7 /2]

2+cos b
4sin @
Solution : Let f@)=y= 27
2+cosf
, (2+cosB).4cosB —4sinO(—sin 9)
0)= -1
= 7@ (2+cos0)’
_4cosf—cos’ O cosO(4—cos0)
(2+cos0)’ (2+cos )’
4—
£(0)=0= cos 6 ( coszé’) 0
(2+cos6)
= cosf =0
= O=r/2

When 0<6<x/2 then f'(0)>0

Hence y= f(0) is increasing in (0, 7/2)
Example 14: Prove that the function f given by f(x)=x>—x+1 is neither increasing nor decreasing in
1D
Solution : Here fx)=x"—x+1

= f'(x)=2x-1

flx)=0=2x-1=0=>x=1/2

Case-I: When —1<x<1/2 then f'(x)<0

Hence f(x) is decreasing in (-1, 1/2)
Case-II: When 1/2<x<1 then f'(x)>0

Hence f(x) isincreasing in (1/2, 1)

Hence f (x) is neither increasing nor decreasing in (-1, 1)

Example 15: Find the value of a for which the function f(x) = X +ax+1is increasing on [1, 2].

Solution : Given fx)=x"+ax+1
= f'(x)=2x+a
If f(x) isincreasing in[1, 2] then f'(x)>0 V xeR
Now f'(x)=2x+a
= f"(x)=2>0, VxeR
= f(x) is increasing at x € R
= f'(x) isincreasing at [1, 2]
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= The least value of f’(x)is f' (1) at [1, 2]
f'(x)>0 V xe[l,2]
ffMH)>0=2+a>0

U

a>-2
j— ac (_2, OO)
Exercise 8.2
1.  Show that f(x)=x" isincreasing in (0, o) and decreasing in (—o0, 0)

2. Show that f(x)=a",0<a<]1, R is decreasing in R

Prove that the following functions are increasing in given intervals.

3. f(x)=logsinx, xe(0, 7/2) 4. F(xX)=x"C+sinx+1, xe(0,7/2)
5. f=(x-1e'+1l, x>0 6. f(x)=x—6x"+12x-1, xeR
Prove that the following functions are decreasing in given intervals

7. f(x)=tan'x—x, xeR 8. f(x)=sin*x+cos*x, xe(0, n/4)
9. f(x)=3/x+5 xeR,x#0 10. fx)=x*-2x+3, x<I

Find the intervals in which the following functions are increasing or decreasing

1. f(x)=2x"-3x"-36x+7 12. f(x)=x"-2x7

13, f(x)=9x —9x* +12x+5 14. f(x)=—=2x"+3x>+12x+5

15. Find the least value of a function f(x)=x’+9x+5, when f (x) is increasing in the interval [1, 2]

16. Prove that the function f(x)=tan™' (sinx +cos x), is increasing function in the interval (0, 7/4)

8.05 Tangents and normals

In this section, we shall use differentiation to find the equation of the tangent line and the normal line to
a curve at a given point.

The slope of the tangent to the curve y = f(x) at the point (x,, ¥,) Y Y=/

d . RN
is given by (d_yJ . So the equation of the tangent at (x,, y,) to the curve P (x, )
X X . N
(x5 »y) X': O ‘:. X
y = f(x) is given by l
Yl
d Fig. 8.04
y—yl{—yJ (x—x)

dx (x5 )

Also, since the normal is perpendicular to the tangent, the slope of the normal to the curve y = f(x)

1

at (x, y) 18 —————,1f f'(x)#0
(dyj

dx )i, )
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Therefore, the equation of the normal to the curve y = f(x) at (x;, y,) is given by

dy
- — +(x—x,)=0
(y yl)(dxlxl,yl) ( 1)

Note: If a tangent line to the curve y = f(x) makes an angle w with x-axis in the positive direction, then

dx

= slope of the tangent = tany

8.06 Particular cases

@

(ii)

d
If v =0 means the tangent line is parallel to x-axis then a’_ﬁ =tan0 =0, In this case, the equation

of the tangent at the point (x,, y,) is given by y =y,

If y =90", means the tangent line is perpendicular to the x-axis, i.e. parallel to the y-axis. In this case,

the equation of the tangent at (xl, yl) is given by x = x,

Ilustrative Examples

Example 16. Find the equations of the tangent and normal to the curve Py =2 g (1, 1).

Solution : - Py =2

Differentiating with respect to x

zx—l/S +%y—1/3 ﬂ — O

3 3 dx

Slope of the tangent at (1, 1) is [ﬂj =-1

So, the equation of the tangent at (1, 1) is

= x+y-2=0 (1)
So, the equation of the tangent at (1, 1) is
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Z—E(x—l)zx—l )

y—x=0
= (1) and (2) are required equations of tangent and normal.

Example 17. Find points on the curve x> +y° —2x-3=0 at whcih the tangents are
(1) Parallel to x-axis
(i)  Perpendicular to x-axis
(ii1) Making equal angle with axes.
Solution : Equation of curve ¥ +y*=2x-3=0 1)

Differentiating with respect to x

2x+2y%z—2=0

X
dy 1-x
= Xy
(1) When tangent is parallel to x-axis, then
y/:O:d—y:tanOzo
dx
I-x
—=0=>1-x=0
- y
= x=1
put x=1 in (1)

y:-4=0=y=%2
Hence required points are (1, 2) and (1, -2)
(i1) When tangent is perpendicualr to x-axis then

l//=90°:ﬂ=tan90:oo
dx
= o
y
= y=0
Put y=0 in (1)
x*=2x-3=0
(x=3)(x+1)=0
= x=3,-1

Hence required points are (3, 0) and (-1, 0) .
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T
(ii1) When tangents make equal angle with axes, then v = 7
H lope of t t D=y
ence slope of tangen I 1
1-x
— T =l=>y=1-x 2)

Put y=1-x in(1)
+(1-x)7-2x-3=0
= x’=2x-1=0

= x=1£2
Put this value of x in (2)

y=%2
Hence required points are (1++/2, —~/2) and (1-+/2,+/2).

Example 18. Find the point on the curve y = x’ —11x+5 at which the tangent is y =x—11.

Solution : Here y=x —11x+5 ey
— % =3x"-11 )
Slope of tangent y=x—11 is 1
From (2)
1=3x"-11
= 3 =12=>x=42

Put x=2 in equation (1)
y=2"-11(2)+5=-9
Put x =-2 in equation (1)
y=(-2) -11(-2)+5=19

But point (-2, 19) does not lie on curve (1) hence the point at which the tangent is y =x—11 is
(-2,9).

1

Example 19. Find the equation of all lines having slope zero that are tangents to the curve y = 7 —2x13
X —2x

1
lution : H ="
Solution : Here y 22113

(D

Differentiating with respect to x
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dy (2x— 2)
dx (x2 —2x+3)2

Here slope =0

dy
2 -0
= dx
—(2x-2)
= (x> =2x+3)’
= 2x—-2=0
= x=1
Put x=1 in (1)
_ 1 _1
y_12—2(1)+3_2

Hence at point (1, 1/2) the slope of tangent =0 and the equation of tangent is

1
y 57 O(X - 1) = Yy= 5 which is required equation of tangent.

Example 20. Find the equation of normal for the curve 2x* — y* =14, which is parallel to the straight line
x+3y=6.

Solution : Let a point P(x,, y,) on 2x* — y* =14, where normal is parallel to x+3y =6
1> N y

2x -y’ =14 (M
2x* —y* =14
= 4x—2yﬂ=0
dx
dy_dx 2
= dx 2y 'y
(ﬂ} _2%
= dx (xl,yl) yl

Normal at (x,, y,) is parallel to x+3y =6 hence slope of normal at (x,, y,) = slope of line
x+3y=6
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2 .
Put ¥, = =%, in (1)

3
2
2x12—(2x1J =14
3

— %x12=14:xl=i3

2

at X1:3, yl:—x3:2

3

2
and at x, =-3, y1=§(—3)=—2

Hence at (3, 2) and (-3, —2) normal is parallel to x+3y = 6. Hence the equation of normal at (3, 2)

y—2=—-1/3(x-3)= x+3y=9
Equation of normal at (-3, -2) is

y+2=-1/3(x+3)=x+3y+9=0.

Example 21. Find the equation of the tangent to curve y = x* —2x+7 whichis
(1) parallel to the line 2x— y+9=0
(i1) perpendicular to the line 5y —15x =13

Solution : Equation of curve is y=x>=2x+7 )]
dy
—=2x-2=2(x-1 2
= I (x-1) @)

) Slope of the straight line 2x— y+9=0 or y=2x+9 is2
tangent is parallel to this line, hence
2(x—-1)=2
= x=1
When x =1, then from (1)
y=1-2(1)+7=6
Hence the equation of tangent at (1, 6) which is parallel to 2x— y+9 =0 will be
y—6:2(x—1)
= 2x—y+4=0
(i) Straightline 5y —15x =13 or 5y =15x+13
— y=3x+13/5 Slope ofline = 3
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Slope of a line whcih is perpendicualrto Sy —15x =13 is—1/3

dy 1
= &3
= 2x—1)=-1/3
= 6x—6=-1
= x=5/6
When x=5/6 then from (1)
NERCRE
6 6 36

Hence the equation of tangent at [%, %j will be

36y-217 _ 1(6x=5
= 36 30 6

= 12x+36y—-227=0
Which is the required equation of tangent.
X n n
Example 22. Prove that for every value of x, the straight line - + % =2, touchesthecurve (x/a)" +(y/b) =1
at point (a, b).

Solution : Equationofcurve (x/a)" +(y/b)" =1

Differentiating with respect to x

Lnx"’l + Lny’H & =0
a" b" dx
dy_ _b'x"
= dx anyn—l
(ﬂ} __bn.anfl__é
dx ), a'b"”! a
Hence the equation of tangent at (a, b) is
y—b= —g(x —a)
= ay —ab =—bx+ ab
= bx+ay =2ab
XY
—t==2
= a b
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Exericse 8.3

Find the slope of the tangent to the curve y = x> —x .

Find the slope of the tangent to the curve y = ,x#2at x=10.

x —_—
Find the point at which the tangent to the curve ¥ = +/(4x—3) —1 hasits slope 2/3.

Find the equation of all lines having slope 2 and being tangent to the curve y + =0.

x=3
2 2
Find points onthe curve T + 25 =1 at which the tangent are

(1) parallel to x-axis (i1) parallel to y-axis

Find the equation of tangent to the curve givenby x = a sin’t, y=bcos’t ata point where t=7/2,

. . . . 3
Find the equation of normal to the curve Yy = sin’x ata point [%, Zj .

Find the equations of the tangent and normal to the given curves at the indicated points:

(a) y=x"+4x+1at x=3 (b) vy =4ax atx=a
2a
X :az,at at,g 2:4a.x, at i’_
(c) Xy ( ; d ¥y pcE
xZ y2
(e) ;—?=1, at (asecO, btan0) (f) y=2x*-3x-1, at (1, -2)
(g) x=at’, y=2at, att=1 (h) x=60+sinf, y=1-cosh, at 6 =7/2

8.07 Approximation

In this section, we will use differential to approximate values of certain quantities.

Let y= f(x) be the equation of given curve. Let Ax denote a small increment is x, whereas the

increment in y corresponding to the increment in x, denoted by Ay, is given by Ay = f(x+ Ax)— f(x).

We define the followign (i) The differential of x, denoted by x is defined by dx = Ax. (ii) The differential

by dy, is defined by dy = f'(x)dx or dy :E'Ax

In case dx=Ax is relatively small when compared with x, dy is a good approximation of Ay

and we denote it by dy = Ay .

Ilustrative Examples

Example 23. Use differential to approximate V26 .
Solution : Let y=+/x

Where x=25,Ax=1 and x+Ax=26
yzx/;zxm (1)
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dy 1

= dx 2\/;
Ay:d—y.sz ! Ax = ! ><1=i=0.1
dx 2Wx o 2x5 10
From (1) y+Ay = (x+Ax)'"?
= X"+ Ay = (x+Ax)"?
Putting the value (25)"% +0.1=(26)""?
= V26 =5+0.1=5.1.
Example 24. Use diferential to approximate (66)"°
Solution : Let y=x"’ )]
Where x=64, Ax=2 and x+Ax =66
y=x"
dy 1
= dx 32"
Ay = %Ax = 3x12/3 Ax = i (614)2/3 x2
1 1
O

Now From (1)

y+Ayz(x+Ax)”3

1/3 1 1/3
+—=(66
= SRR
— (64)1/3 +L — (66)1/3
24
(43)1/3 +L — (66)1/3
= 24
= 4+0.041=(66)"*
= (66)"° =4.041.

Example 25. Use differential to approximate the following
(1) log,,(10.2) when log,,e=0.4343

(i) log,(4.04) when log, 4 =1.3863

(i) cos61° when 1° =0.01745 Radian
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Solution : (i) Let y=1log,, x (D)

Where x=10,Ax=0.2
= x+Ax=10.2
y=log,,x=log,elog, x

dy 1 04343

— =(log ¢)— =——————
= e 00e) ="

Ay = d—yAx = 0.4343 x(0.2) =0.008686

dx

From (1)

y+Ay =log,,(x+ Ax)

= log,, x+ Ay =log,,(x + Ax)
= log,,10+0.008686 =1log,,(10.2)
= 14+0.008686 =log,,(10.2)
= log,,(10.2) =1.008686
(i1) Let y=log, x 2)
Where x=4,Ax=0.04 and x+Ax=4.04
y=log, x

dy 1
= & x

Ay:d—y.AxZEZ%:O.OI

dx X 4
From (2)
y+Ay =log,(x+ Ax)

= log, x+ Ay =log, (x + Ax)

Putting values
log, 4+0.01=1og,(4.04)

= log,(4.04) =1.3863+0.01
=1.3963
(i)  Let Yy =COSX 3)
When x=60°, Ax=1° =0.01745 radian and x+ Ax=61°
y=cosx
d .
- d_z =—sinx
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Ay:ﬂAx:—sinx.Ax

dx
=—sin 60°(0.01745)
=-0.1745 xg =-0.01511 (/3 =1.73205)
From (3)
v+ Ay =cos(x + Ax)
= cosx +Ay =cos(x+ Ax)
c0s60° +(—0.01511) =cos(61°)
|
- cos 61 :5—0.01511

=0.48489.
Example 26. Prove that the approximation percentage error in calculating the volume of a sphere is almost
three times the approximation percentage error in calculating the radius of sphere.
Solution : Let radius of sphere = r and volume = V
4

V=—nr :d—vz drr’
3 dr

AV = d—V.Ar
dr

= AV =4xr’Ar

= v vV 4/37°  r

ﬂx100=3(ﬂx1ooj
\% r

AV Arr’ Ar B ArriAr L Ar

=

= Percentage error in volume = 3 (percentage error in radius).

Example 27. Find the approximate vlaue of f(5.001), where f(x)=x’—7x*+15

Solution : Let y=f(x) 9]
Where x =5, Ax=0.001 and x+ Ax=5.001
From (1)

y+Ay = f(x+Ax)
f(x)+%.Ax= f(x+Ax) 2)

y=f(x)=x=7x*+15
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ﬂ =3x*—14x
dx

=
Using in equation (2)

(x> =7x% +15)+ (3x* —14x).Ax = f(x+Ax)
Putting the value of x

(5)’ =7(5)> +15+{3(5)* —14(5)} x (0.001) = £(5.001)

= £(5.001) =125-175+15+(75-"70)(0.001)
=—-34.995
Example 28. Find the approximate change in the volume of a cube of side x metres caused by increasing the
side by 1%.

Solution : Let volume of cube is V

Av=x of 1% = ——

100
V=x = a =3x’
dx
Hence change in volume of cube
av =V ax
dx
Y I S R
100 100
=0.03x" m3

Example 29. If the radius of a sphere is measured as 7 cm with an error of 0.02 c¢m, then find the approximate
error in calculating its volume.
Solution : Radius of sphere =7 cm

Error in measuring radius Ar=0.02 cm

Let the volume of sphere be V

V=(4/3)zr?
dv
—=4nr’
= dr
dv = d—VAr =4xr* Ar
dr

=47(7)* x.002 =3.927

Exercise 8.4
Using differentials, find the approximate value of each of the following.

1

1. 13 2. 1o 3. +0.0037 -
(0.009) (0.999) (2.002)°
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5. 15" 6. 401 7. (3.968)"° 8. (32.15)"

9. v0.6 10. log,,(10.1), when log,, e =0.4343
11. log,(10.02) , when log, 10 =2.3026

12.  Find the approximate change iny when y = x> +4 asx increases from3 to 3.1.

13.  Prove that the approximation percentage error in calculating the volume of a cubical box is almost three
times the approximation percentage error in claculating the edge of cube.
14. Iftheradius of a sphere decreases from 10 cm to 9.8 cm, find the approximate error in calculating its
volume.
8.08 Maxima and Minima
In this section, we will use the concept of derivatives to calcualte the maximum or minimum values of
various functions.
Let us examine the graph of a function y = f(x) inthe interval [a, b] . Observe the ordiantes of points

A,P,Q,R, S and B.

The function has Ya R B
maximum value in some
neighbourhood of points P and
R which are at the top of their
respective hills (ordinates)
where as the function has
minimum value is some
neighbourhood (interval) of
each of the points Q and S.
Point A has least ordinate and

point B has maximum 0
ordinate. Tangents drawn to v Fig. 8.05
the cuve at point P, Q, R and
- : dy : : :
S are parallel to x-axis, i.e., their slope i | arezero. The P and R are called maximum points and points Q

and S are called minimum points for the function. Maximum and minimum points of a function are also regarded
as extreme points.
8.09 Some Difinitions
(i) Relative maximum and minimum value

Let f (x) be areal valued function and let ¢ be an interior point he domain of f, then c is called a point
in the domain of f, then c is called a point of relative maxima if there is 2~ > 0 such that

f(x)L f(c), V xe(c—h,c+h),wherehis very small. The value f (c) is called the relative maximum vlaue
of f.
Similarly c¢ is called a point of relative minimum if there is 2~ > 0 such that

f(x)= f(c), V xe(c—h,c+h) the value f(c) is called the relative minimum value of f.
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(ii) Absolute maximun and minimum value
Absolute maximum value: Any function f (x) has its absolute maximum value at any point x =a in its
domain when.

f(x)< f(c), VY xeD
Absolute minimum value : Any function f (x) has its absolute minimum value at any point x =a in its
domain when
f(x)=f(), V xeD
Note: For a real valued function f(x) in a domain the maximum and minimum value of function may be more than
one but absolute maximum and absolute minimum is only one.

8.10 Necessary condition for the extreme value of a function
Theorem : If f (x) is a differentiable function then at x = ¢, necessary condition for the extreme value

is f'(¢)=0
Note: For a function f(x) at any point x=c¢, f'(c)=0 is only necessary condition for maximum and
minimum value of function, it is not sufficient conditiion.

For example if f(x)=x’ thenatx=0, f'(0)=0 butf(0) is not extreme valeu of function

because when x> 0= f(x)> f(0) and when x<0= f(x)< f(0) and when f(0) is neither minimum
nor maximum.
Sufficient condition for the extreme value of a funciton

Theorem : (i) f(x) will have its maximum value at x=cif f'(¢)=0 and f"(c)<0
(i) f (x) will have its minimum value at x =cif f'(¢)=0 and f"(c) >0
Note: For a function f (x) at any pointx=c, f'(c)=0, f"(c)=0 but f"(c)# 0 then this point is known
as inflection point.
8.11 Properties of maxima and minima of a function

If f (x) is continuous function and if its graph could be drawn then we may consider the following
properties.

(1)  Thereis at least one maxima or minima between two equal values of f(x).
(i) The maxima and minima of a function always occur alternatively.

(i) If f'(x) changes sign from positive to negative as x increases then f (x) passes through maxima
and when f'(x) changes sign from negative to psotive then f (x)passes through minima.

(iv) If f'(x) doesnot change its sign then this point is called point of inflexion.

(v) At maxima and minima f'(x)=0 then the line point is parallel to x — axis.

8.12 Working method to find maxima and minima

d
1. Firstof all write the given function in the formof y = f(x) and find d_z

d
2. Solve d_y =0, let the solutions are x =a,, a,,...
X
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2
3. Find 1 Z and find its value at x=a,, a,,...
X

2
4. If 1 Z <0at x=a, (r=1,2,...)then x=a, functionf(x) will have maximum value.
X

2 2

d d
5. If I >0at x=a, (r=1,2,...)thenat x=q, functionf{x) will have minimum value. If 1 Z =0
x x
then we continue the process of differentiation.
d’y d’y d'y .
6. If =0 x=a (r=1,2,...) then find the values of —5,—....... until x =a, becomes zero.
dx? 4 dx®’ dx* "
. . . . . d’y d’y .
(1  Ifnon zero differential coefficient is of odd degree like _d DR then at x = a,. Function has
x x
neither maxima nor minima.
d* y d 6 y
(i1) If non zero differential coefficient is of even degree like = ..., then repeat the same

dx* ’g

2
y
rocess as =0,
p dx2

8.13 Stationary point
All points on which the rate of change of f (x) with respect to x is zero i.e. f'(x) =0, are called stationary
points.
Note: Every extreme point is a stationary point but vice versa is not always true.
Ilustrative Examples
Example 30. Find maximum and minimum value of following function (if exist)

(@ y=QRx-1)>+3 (b) y=9x+12x+2
(©) y=—(x-1)*>+10 d) y=x"+1

Solution : (a) Minimum value of (2x—1) is zero hence minimum value of (2x—1)2+3 is 3. It is clear that

there is not maximum value of function.
b - y=9x>+12x+2
=(Bx+2)*-2

Minimum value of (3x+2)? is zero. Hence minimum value of (3x+2)> —2 is -2 which is at

2
3x+2=0=>x= 3 It is clear that no maximum value of ¥y =9x> +12x+2 is there.

(c) Tt is clear that the minimum value of —(x—1)* is zero. Hence the maximum value of function
y =—(x—1)* +10 is 10. There is no minimum value of function.
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d ..at x—>o0, y—>oo

and x > -0, y—> -

Hence given function has neither maximum nor minimum value.
Example 31. Find the minimum and maximum value of following functions:

(@) x° —5x* +5x° -2 (b) (x—2)°(x—3)’ (© (x=D?%"
Solution : (a) Let y=x =5x"+5x -2
— Z—y=5x4—20x3 +15x°
X
dZ
and d—f = 20x" —60x” +30x
RS
: : dy
For extreme point of function I =0
= 5x"=20x* +15x* =0
= 5x*(x*—4x+3)=0
= 5x*(x—=1)(x=3)=0
= x=0,1,3
d2
Now at x=0, dxf=0
3
So, % = 60x> —120x+30
RS

d’ y
at x=0, —=30=%0
dx’
So, at x =0, there is no extreme value of function.

dzy

2:
X

at x=1 20(1)° —60(1)* +30(1) =—10< 0

So at x =1 function has maximum value and maximum value of function is

= (1) =5()* +5(1)° =2 =—1

dzy

Similarity at x=3, = =20(3)* -60(3)* +30(3)
X

=540-540+90=90>0

So, at x=3 function has minimum value and minimum value of fucntion is
=3’ -53)"+53)* -2
=-29
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(b) Let y=(x-2)°(x-3)
- :;—y:6()c—2)5(x—3)5+(x—2)65(x—3)4
X

=(x-2)’(x—3)*{6x—18+5x—-10}
=(x-2)’(x-3)*(11x-28)

: - dy
For maxima and minima —=0
dx
= (x=2)(x=3)"11x-28)=0
= x=2,3,28/11

d o . : d
at x=12, d_y changes its sign from positive to negative (- when x<2 then a’_z >0 and x> 2then
X

Ll <0)
dx
So at x =2 functions has maximum value and maximum value = 0
dy . dy dy
at "> x =3, —— does not change its sign (- when x <3 then — >0 and x>3 then —>0)
dx dx dx
at x=3 function has neither maxima nor minima
d 2 d
again at x = % , a’_z changes its sign from negative to positive (.- when x < 1—? then a’_z <0 and
dy
> —>0
X then I )
28 o) ) 5 5 55
Hence at X =—— function has minimum value = [—8 - 2] (—8 - 3] = —%
11 11 11 11
(c) Let y=(x-1)%e"
— ﬂ:{(x—l)2+2(x—l)}ex
dx
dZ
and Y = {(x=1) +4(x—1)+2}e"
dx
d
For extreme value D-o
dx
= {((x=1)*+2(x-D}e =0
= (x=1)>+2(x-1)=0 {roe" 0}
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= x*=1=0

= x==1
dzy 1
Now at x=1, x2={0+4(0)+2}€ =2e>0

So at x =1 function has minimum value and minimum value = (1-1)*¢' =0

2

d’y
dx?

again at x=—1

_(4-842)e =2 <0
e

So, at x=—1 function has maximum value and maximum value is = (—1—1)’¢”™" = "

Exercise 32. Find the maximum value of function (1/ x)*
Solution : Let y=1/x)"
1
— logy= xlog;

=—xlogx=1z Let

Function y has maximum or minimum value if z has maximum or minimum value.

1
Now, dz _ —x.——1l.logx=-(1+logx)
dx X
d’ 1
ad f:__
dx X
So, for maximum or minimum value
d
& _0=1+logx=0
dx
= logx=—-1
4 1
= x=e =-—
e
d’z 1
at x=1/e —=———=—¢<0
dx* 1/e

1 1/e .
So at x=1/e, y has maximum value and maximum value = [m} =e"

{(-1-1*+4(-1-1)+2}e"

Example 33. Find the shortest distance of the point (0, a) from the parabola x> =y where a €[0, 5].

Solution : Let a point (A4, k) is on the parabola, let the distance between (0, a) and (A, k) is D, then
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D =J(h-0)* +(k—c)* =/h* +(k—c)’ M

.+ point (h, k) is on parabola x* =y hence A’ =k use this in (1)
D =\k+(k—-c)
= D(k) =k + (k- ¢)?

D'(k) = {1+ 2(k—c)}
- 2kt (k—c)? 2
Now D) =0= k=21
2c—1
when k < then 2(k—c)+1<0
= D'(k)<0 [ from equation (2)]

2c—1

and when k > then 2(k—c)+1<0

= D'(k)>0 [ from equation (4)]

Soat k= % , D 1s minimum and the minimum distance

_\/2c—1+(2c—1_cj2 a1

2 2 2

Example 34. Find the absolute maximum value and the absolute minimum value of the following functions in

the given intervals:
1,
@ fx)=x', xe[-2,2] (b) f(x) =4x—5x . xe[-2,9/2]
©) f(x)=x-1)*+3, xe[-3,1] (d) f(x)=sinx+cosx, x¢€[0,r]
Solution : (a) Given f(x)=x", x e[-2,2]
= f'(x)=3x"

fl(x)=0=3x=0=>x=0= f(0)=0
NOW f(_z):(_2)3:_8’ f(0)2(0)3:0 and f(2):(2)3:8

The absolute maximum value of f (x) is 8 which is obtained at x = 2 and absolute minimum value
is —8 which is obtained at x = -2.

2

(b) Given f(x)=4x— %
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- £(x) = 4—2—2X=4—x

for extreme value of f(x) f'(x)=0

= 4-x=0

= x=4

Now, we find the value of function at points —2, 4 and 9/ 2.

2 _9\2 4)?
- Given function is f(x)=4x_x? So, f(—2)=4(—2)—( i) =-10; = (2) =8

2

and f(9/2)=4(9/2)—(9/22) =-9/4

Hence in the given interval [-2, 9/2] absolute maximum value = 8 and minimum value =-10

(¢) Given function f(x)=(x-D*+3,xe[-3,1]

= f'(x)=2(x-1)

for extreme value of f(x), f'(x)=0

= 2(x-1)=0

= x=1

The values of f (x) at x=1,—-3,0, and O are
fO=1-D*+3=0+3=3;f(-3)=(-3-1)>+3=16+3=19 and f(0)=(0-1)>*+3=1+3=4

Hence in the given interval [-3, 1] absolute maximum value is 19 which is obtained at x=-3

and absolute minimum value is 3 which is at x=1.

(d) Given function is f(x)=sinx+cosx, xe[0, 7]
= f'(x)=cosx—sinx
For maxima and minima of f(x) f'(x)=0
= cosx—sinx=0
= sin x = cos x
= tanx =1
= x=rl4
Now f(0)=sin0+cosO0=0+1=1

T
f[Zj sin— +cos4 \/» \/, -2
and f(r)y=sinz+cost=0+(-1)=—

Hence maximum and minimum values of f (x) are V2 and -1 respectively, for given interval [0, 7]
Example 35. Find two positive numbers x and y such that
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(@) x+y=060and xy’ is maximum

Solution : (a) Let

(b)

Given

and

For extreme value of p,

Now

So at,
When

p=xy
x+y=60=>x=60-y
p=(60-y)y =60y’ —y*

dap =180y* -4y’
dt

2
TP _360y—12y

=
fl_f;=o

180y° -4y’ =0
4y*(45-y)=0
y=45

dy’

y =45, P has maximum value.

Hence numbers are y =15 and y=45.

Let
Given

=
Fromequation (1)

Now

p=x+y’

x+y=16

y=16—x

p=x+(16-x)’
4 _ 3x7 +3(16—x)*(-1)
dx
=3x" —3(256-32x+ x7)
=3(32x—-256)
d—p=O: 3(32x—-256)=0
dx
X= @ =8
32
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(b) x+y=16 and x’ + y* is minimum

{*.- y=01is not possible y >0}

2
(d P} =360(45)~ 12(45)> =-8100 <0
y=45



6.
7.

2
9P _g65
dx
Hence at x =28 p is minimum.
Hence required positive numbers and 8 and 8.
Exercise 8.5
Find maximum and minimum value of following functions:

Fromequation (3)

(a) 2x° —15x% +36x+10 (b) (x—l)(x—2)(x—3)
(¢) sin x+cos2x (d) x* =5x" +5x° -1
Find the maximum and minimum value, ifany:
(@) —|x+1]+3 (b) | x+2]-1 (c) |sin4x+3| (d) sin2x+5
Find the maximum and minimum value of following function if any, in the given intervals.
(a) 2x° —24x+107, x €1, 3] (b) 3x* —2x° —6x% +6x+1, x €[0, 2]
(c) x+sin2x, x €[0, 27] (d) x* —18x* +96x, xe€[0,9]
Find extreme value of following functions
(a) sin xcos 2x (b) asecx+bcosecx,0<a<b
1
() x"*, x>0 (d) ;-logx,xe(O, )
X
Prove that function f(x)= ——————— has maximumvalue at X = COS x .
I+ xtan x

Prove that sin” x(1 + cos x) has maximumvalue at cos x =1/3

Prove that function y =sin” 6 cos? 6 has maximum value at tan@ =/ p/ g

8.14 Applications of maxima and minima

With the help of following examples we shall use the application of derivatives in other branches as
(1) Plane Geometry; (ii) Solid geometry; (iii) Mechanics; (iv) Commerce and Economics.
Ilustrative Examples

Example 36. Show that of all the rectangles inscribed in a given fixed circle, the square has maximum area.
Solution : PORS is arectangle, centre of circle is O and itsradius is a

Let PO =2x,0R=2y
Inright APOR S R
PQ*+QR? = PR? 5

2a e Y

= (2x)* +(2y)* = (2a)’ A 0
2x

= Xty =d’ \\/
= y=va'—x M Fig. 8.06

Let area of rectangle PORS 1s A

A=(2x)(2 a’ —xz) =4x\a® - x*
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d_A:4{Jf X }_4@1 —2x°) o

2
x —
\/az_xz

= dx N \/a2 )
For maximum or minimum value of A E =0
4(a* —2x%) _0
- Va*=x*
= a’-2x*=0
_a
= X _ﬁ
From (2)
d*A 4 —4x B x(a* —2x%)
o> - PR (az 2 )3/2
d*A
at x=a/\/§, —=-16<0
dx

So, at x=a/\/§,Aismaximum.
Put  x=al/y2,in(l) y=a/\2
So x=y=al V2 hence area is maximum when x = y

= 2x =2y hence rectangle is a square.
Example 37. Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is

tan”' V2.

Solution : Let slant height of cone= ¢ and the semi vertical angle of cone= @
Inright AOO'B
00’ = (cos@ =h (height of cone)

0
O'B = /sin @ = r (radius of cone)
Volume of cone
)
|
V==nrh
3 !
h
= %ﬂﬁz sin® 6.0 cos @

1
= §ﬂ£3 sin’ @ cos O

Z—g :%nﬁ{sinz9(—sin0)+25in9c059c059}
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= lﬂﬁ (2 sin @ cos” O —sin’ 9)
3

2
and Z@Z = %ﬂ€3(2cos 0.cos® @ —4sin O cosOsin O —3sin” O cosH)

= §n£3(2 cos’ @ —7sin” O cos 0)

For maximum volume v _y
do
= sin@(2cos* @ —sin* 0) =0
= sin @{2(1—sin* @) —sin* B} =0
= sin§{2—3sin’ 6} =0
= sinf = 0,\/7, —«/ﬁ

Now sin@=~/2/3 or cos®=1/3 then

-l 1) %)

1 2 14 1 .12
SR S ) Gy AP
3 {3J§ 3J§} 37 33

So, for maximum value sin@ =+/2/3
Then tanﬁzsme =ﬂ:\/§
cosf /1/3

Semi vertical angle 0= tanfl(\/i ).

Example 38. An open tank of fixed volume has square base. If inner surface is minimum then find the ratio of
depth to length of the tank.

Solution : Let the depth and height of the tank are # and 7, then

Volume of tank V =0k ey
Area of Inner surface of tank S =0*+40h

Vv
— S=0+4/ (Fj [From (1)]
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4 : ,
s _,,_ 4V dS ) 24V

- dl 0 dr A
. . ds
For minimum surface area 77 =0
4V
= 2£ —£—2 - O
= 0 =2v
= 0=V)"
d’s 8V

when ¢ =(2V)"? then =2+ >0

V) ar Qv)
Hence inner surface is minimum.
From (1)

h_1

= /2

. Depth of tank : Length of tank =1:2

X
Example 39. Manufacturer can sell x items at a price if rupees [5 - mj each. The cost price of x items is

rupees [g + 500] . Find the number of items he should sell to earn maximum profit.

Solution : Let S be the selling price of x items and let ¢ be the cost price of x items. Then, we have

2
S=(5—ijx=5x—x—

100 100
and C= §+ 500
Let profit function be p then
p=§S-C
2
— — X_ — f —500
100 5
2
_2 500
5 100



x5 50 M T 50
dp o _ 24 x _
dx 5 50
N x =240
(dzp\ 1
ary  __ 9
and ey 50

x=240

Hence the manufacture can earn maximum profit if he sells 240 items.
Exercise 8.6

Prove that the maximum area of isosceles triangle, that can be inscribed in a circle, is an equilaterla triangle.
The sum of perimeter of a square and circumference of a circle is given. Prove that the sum of their areas will
be minimum if the side of square is equal to the diameter of cirlce.
A cone ismade from a sphere. Prove that the volumeof cone is maximum when height of cone is two third of
diameter of sphere.
The expense for a steamer per hour is proportional tot he cube of its velocity. If velocity of streamis xkm/h
then prove that the maximum velocity of steamer per hour will be (2/3) x when the steamer runs against the
direction of stream.
The sum of the length of the hypotenuse and any side of a right angled triangle is given. Prove that the
area of the triangle is maximum when the angle betweenisthen 7/ 3.

A circle ofradius ais inscribed in an equilateral triangle. Prove that the minimum perimeter of triangle is 6\/3a.
2 2
Anormalisdrawn to apoint P onan ellipse Pl + s =1, Prove that the maximum distance from centre of

ellipse tonormalis a —b .

Miscellaneous Exercise — 8
The radius of acyclinder is rand height is 2 then find the rate of change in surface area of cylinder with respect
to radius.

Find the values of x and y for function y = x* + 21, where the rate of change in y is thrice the rate of
change inx.

Prove that exponential function e” is an increasing function.

Prove that the function f(x)=log(sinx), isincreasingin (0, 7 /2) anddecreasingin (7 /2, 7)

If tangents OX and OY at a point on the curve Jx - \/; =+a cut the axes at P and Q, then prove that
OP + OQ = a, where O is the origin.

Find the equations of tangents to the curve y =cos(x+ y), x €[-2x, 2x] , which is parallel to line
x+2y=0.

Ifthe edge of a cube is measured with an error of 5%, then find the approximate error to calculate its volume.
A circle disc of radius 10 cmis being heated. Due to expansion, its radius increases 2%. Find the rate at which

its areais increasing.
Prove that the volume of the largest cone inscribed in a sphere is 8 / 27 of the volume of sphere.
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10.  Show that the semi-vertical angle of right circular cone of given surface area and maximum volume is
sin”'(1/3).
, [Important Points } \

1. Ifafunction f (x) is differentiable then at any point x = ¢ for extreme point / value it is necessary that
f'()=0

Function f (x) will have maximum value at a pointcif f'(c)=0 and f"(c) <0

Function f(x) will have minimum value at a pointcif f'(c)=0 and f"(c)>0

ANSWERS
Exercise 8.1
1.6z cm?/s, 8w cm?/s 2.(1,5/3),(-1,1/3) 3.-3/10radian/s
4.900 cm’/s 5.1/ wem/s 6. %ﬂ&xﬂ)z
7.30.02 (approx) 8.35.2cm?/sec.,20 rem?/ s 0. 4LS7[ 10. 126

Exercise 8.2
11. increasing in (—oo, —2) U (3, o) and decreasing in (-2, 3)

12. increasingin (-1, 0) U (1, o) and decreasingin (—o0, —1) U (0, 1)

13. increasing in (—oo, —1) U (0,1) anddecreasignin (1, 2)
14. increasing in (-1, 2) and decreasing in (—o0, —1) U (2, ©)
15. 2
Exercise 8.3
1.11 2.—-1/64 3.(3,2) 4, y=2x+2=0,y-2x+10=0
5.(i) (0,5) and (0, —5) ; (ii) (2, 0)and (-2, 0) 6.y=0 7. 24x+123y =87+ 93
8. tangent Normal
(a) 10x—y-8=0 x+10y—-223=0
(b) y—-x—a=0 y+x—-3a=0
(©) x+ yt* =2at xt’ —yt=at*—a
a a
(d) y—mx=— my+x=2a+—
m m
X y _ 2, 12
(e) —secO—=tanf=1 axcos@+bycot@=a +b
a
) x—y-3=0 x+y+1=0
€9 x—y+a=0 x+y-3a=0
(h) 2x-2y—-m=0 2x+2y—n—-4=0
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Exercise 8.4

1.0.2083 2.0.9999 3.0.0608 4.0.2495 5.1.968 6.20.025 7.7.904
8.2.00187 9.0.8 10.1.004343 11.2.3046 12.0-6 14.807 cm®
Exercise 8.5
1. (a) maximumat x = 2 and minimumat x =3
(b) maximumat x = % and minimumat x = 2 +3ﬁ
mT 37
(c)maximumat x =sin"' 1/4, 7 —sin"' 1/4 and minimumat X = >
(d) maximum at x =1 and minimum at x =3
2. (a) maximum value =3, minimum value =does not exist
(b) maximum value = does nto exist, minimum value = -1
(© maximum value =4, minimum value =2
(d) maximum value = 6, minimum vlaue =4
3. (a) maximum value = 160, atx=4
minimum value =75, at x =2
(b) maximum value=21,at x=0
minimum value=1, atx=0
(©) maximum value =2p, at x =27
minimum value =0, atx=0
(d) maximum value = 160, at x =4
minimum=0, atx=0
4, Maximum value Minimum value
2 -2
@ =35 b 3J6
(b) — (a2/3 +b2/3)3/2 — _(a2/3 +b2/3 )3/2
(C) — el/e
(d) =1/e
Miscellaneous Exercise — 8
1. 4wr+2mh 2. x=41, y=22,2 6. 2x+4y+37=0 and 2x+4y—-7=0

7.15% 8. 4r cm?
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Integration

9.01 Introduction

We have already studied how to find the derivative of a given function. As a consequence, a natural
question arises : given a function say f (x), can we find a function g (x) such that g’ (x) = f (x). If such a
functions g (x) exist, we shall call it anti-derivative of f (x) or indefinite integral of f (x). Therefore, integration
is an inverse process of differentiation. It is also called antiderivative or primitive.

9.02 Integration of a function

If the given functionis f(x) and its integralis F'(x), then

d
—[F(0)]=f(x) ))

dx
Here, F(x) is called integration of function f(x) with respect to x. In symbols, it is expressed as
[ fodx=F(x) )

where symbol I is used for integration and dx means to integrate with respect to variable x. Also, the

function f(x), whose integration is to be done, is called Integrand and F'(x) is called integral.
Since integration and differentiation are inverse process of each other. Therefore, then differentiating
eq. (2) with respect to x, we get

d d
[ x| = F o)
d
or E[If(x)dx} =f(x) [From (1)]
For example: i(sin X)=COS X SO Icos xdx =sin x
dx
%(Xz) =2x ) I2xdx =x

Remark : If I f(x)dx=F(x), then f(x) is called integrand, F(x) is called integral and the process of find-

ing the integral is known as integration.
9.03 Indefinite integral and constant of integration
We know that differential coefficient of any constant is zero.

That means, di(c) =0, where c is any constant
X
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Let 4 IF)1= £ ()
dx

d d d
then, E[F(XHC] _E[F(X)HE(C)
=f(x)+0
d
SO —I[F(x)+c]l=f(x)
dx

On integrating both sides with respect to x,
d
J‘[—{F(x) + c}} dx = If(x)dx
dx

or [ fode=Fx)+c, (by definition)

where c is an arbitrary constant, which is called coefficient of integration. This is independent of x.
Antiderivative of any continuous function is not unique. Actually, there exist infinitely many anti-derivatives of
each of these functions which can be obtained by choosing c arbitrarily from the set of real numbers. In fact, ¢
is the parameter by varying which one gets different antiderivatives (or integrals) of the given function.

For example, di(x2 +)=2x=> IZxdx =x"+1
x

i(xz+4)=2x:j2xdx=x2+4
dx

but (x*+1) and (x> +4) are not same, they are differ by a constant.

Remark : In indefinite integration, the constant of integration should be added at the end of the pro-
cess of integration.

9.04 Theorems on Integration

Theorem 1: For any constant k, IK’ f(x)dx = KI £ (x)dx

The integration of product of a constant function and variable function is equal to the product of con-
stant function and integral of variable function.
Proof : We know by theorem of differentiation

a4 k| f(x)dx |= ki f)dx |=k f(x) [by definition]
a’x[ I } dx

Integrating both sides,
| %[k | f(x)dx} dx = [ k f (x)dx

k j f(x)dx = j k f(x)dx
or jkf(x)dxzkjf(x)dx

[232]



Theorem 2 : (At f,(0)]dx=[ f,(x)dxt [ £,(x)dx

The integral of sum or difference of any two variable functions is equal to the sum or difference of their

integrals.
Proof : Let Iﬁ(x)dx =F(x) and Ifz(x)dx =F,(x)
d d
—[F()]=fi(x) and —[F,(X)]=f(x)
dx dx
d d d
Also, E[Fl(x)in(x)] ZE[FI(X)]iE[Fz(X)]

= i) £ £, (x)
Integrating both the sides,

[ 1RG0 £ G0l = [ 1,0 £, (0] dx
dx

or, F(0)*F,(x0) = [[£,(0)* f,(x0)]dx
or [[AG0 £,(0)ldx = F,(x) + F, (x)
= [ £y dx [ £, (x)dx

This rule can be applied for two or more terms but not necessarily applicable on sum of infinite terms.
Generalization

[l fi0) £k, £, (0 1dx = [k, f(0dx £ [ &, f, (x)dx
=k [ fi()dx £k, [ £, (x)dx

9.05 Standard formulae of Integration

We already know the formulae for the derivatives of many important functions. From these formulae,
we can write down the corresponding formulae for the integrals of these functiosn, as listed below which will
be used to find integrals of other functions.

n—-1

F ! — (X" =nx""(n#o0
or example I ( ( )
= J.nx”’ldx =x"+c
Putting n as (n +1)
n+l
n X
jx dx="—+c(n#-1)
n+l1
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10.

11.

12.

13.

14.

15.

16.

Similarly following formulae can be proved

Derivatives
d
—()=0
a’x( )

d
—(x nx"", nz0
a’x( ") =

i(10g|)c|):l, x#0
dx X

d X X
—(e') =e
a’x( )

d
—(a@")=a"log a
dx( ) g,

d .
—(sin x) =cos x
a’x( )

d .
—(—cos x) =sin x
a’x( )

4 (tan x) =sec” x
dx

d
—(—cotx) =cosec’x
dx

d
—(secx)=secxtan x
dx

d
—(—cosecx) =cosecxcot x
dx

i(sm x)= | x|<1)
i(cos x)= | x|<1)
d O 1

—(tan =

dx ( *) 1+ x7

d

—(—cot” x)=——

dx (-cot™ )= 1+x7

d 1

—(sec ' x) = ——=

dx xvx =1
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Integrals

IO -dx=c
xn+1

jx"dx= +c¢, nz-1
n+l

Ildx:10g|x|+c, x#0
x

Iexdxzex+c

X

a

jaxdxz +c

log, a
cosxdx=sinx+c

sin xdx = —cosx+c¢
sec’ xdx =tanx+c
cosec’xdx=—cotx+c
sec xtan xdx =sec x+c¢

J
J
J
J
J
J

cosecxcot xdx =—cosecx+c¢

I dx=sin"x+c

1 X

-1 = cos
J‘m x=cos x+c

dx=tan' x+c

I1+X2

1
I —dx=—cot” x+c
1+x

1
—  dx=sec'x+c
Ixsz -1



1

d 1

17. E(—cosee 1x)zT\/z__1 N J‘T\/z__lz—cosec 'x+c

18. %UF%’()”&O) — I%dx=|x|+c, x#0

Particularly i(X) =1 - I ldx=x+c

dx
d d
Note (@) ——[ f(0dv=f(x) ®) [ fdx= e
X RS
hence there is a difference of integral constant between differentiation of integral and integral of deriva-
tive.

Remarks :

(1) We should not conclude for formula 12 and 13 that sin™' x = —cos ™' x because they are differ by con-
stant term only, because we know that sin™' x+cos ' x=7/2.

(2) Inpractice, we normally do not mention the interval over whcih the various functions are defined. How
ever, in any specific problem one has to keep it in mind.

9.06 About Differentiation and Integration

(1)  Both are operations on functions, the result of each is also a function.

(2) Both satisfy the property of linearity.

(3) All functions are not differentiable and integralble.

(4) The derivative fo a function, when it exist, is a unique function. The integral of a function is not so due to
integral constant.

(5) We can speak of the derivastive at a point. We never speak of the integral at a point, We speak of the
integral of a function over an interval on whcih the integral is defined.

(6) The derivative of a function has a geometrical meaning, namely, the slope of the tangent to the corre-
sponding curve at a point similarly, the indefinite integral of a function represents geometrically, are of
some region, or area under curve.

(7)  The derivative is used for finding some physical quantities like the velocity of a moving particle, accelera-
tion whereas integration is used for finding, centre of mass, momentum etc.

(8) The process of differentiation and integration are inverse operation of each other.

9.07 Methods of Integration

@
(D)
(II)
V)
I

Some prominent methods to find out the integration are :

Usign standard formulae

Integration by substitution

Integration using Partial fractions

Integration by parts

Integration by the use of standard formulae

Here by using the standard formulae or other trigonometric formulae, We can find integral of given func-

tion. We can illustrate with the following examples.
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Ilustrative Examples
Example 1. Integrate the following functions with respect to x

. . L X+
i x° (ii) Vx (i) —
. " x"+1
Solution : We know that jx dx = +c,n#-1
n+l
x6+1 X7
i Let I =|x%x= +c=—+c
® j 6+1 7
1/2+1 3/2
i I= \/;dx: x"2dx = a + X c=
@ Lt J J a/2+1 372
I_x2+1d_ led_ld 1d
(111) Let —j _x4 X—j ?4‘? X—I? X+I? X
= j x2dx+ j xtdx = 2 + 2 +c
-2+1 —4+1
xt X7 1 1
= t+—+c=————+cC
-1 -3 x 3x
1 x—1/2+1
: [=|—=dx=|x"dx= +c
() Let Nkl {—1/2+1}
1/2
=2 +e=2Mx+c
1/2)
ax* +bx+c
Example 2. Evaluate j—dx
X
ax’ +bx+c ax* bx ¢
Solution : I—dx = I {— +—+ _}JX
X X X X
=J‘(ax+b+£jdx
X
zjaxdx+jbdx+jgdx
X
1
=alxdx+bldx+c|—dx
Jxdcebfdee]-

2
=%+bx+clog|x|+k
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sin” x

Example 3.  Evaluate j T+ cos x dx
sin® x 1—cos®x
.o _ d
Solution : '[ 1+ cosx '[ 1+cosx *
_.[ 1 CoS X 1+cosx)dx
1 +cos x)
= I(l—cosx)dx = Il.dx—fcosx dx
=x—sinx+c
2
Example 4. Evaluate j 1 dx
X
2 2 1) +1
Solution : J. xx+ 1 dx = I%dx

I_xz—l 1
= +——dx
| x+1  x+1

_(x_l) (xi1)}dx I[X 1+1ix]dx

2
:%—x+log|x+1|+c,(x¢—1)

Example 5. Evaluate I A1+sin2x dx

Solution : .[\/l +sin2x dx = j \/[(sin2 x+cos” x)+ 2sin xcos x] dx

= sin x+cos x)° dx
J )

=j(sinx+cosx) dx

=—cosx+sinx+c

1—cos2x I

Example 6. Evaluate I [+ cos 2x

jl—c052x .[2s1n X

Solution : ['vcos2x=1-2sin’* x =2cos” x —1]

1+cos2x 2cos’ x

:jtaln2 x dx :j(se,c2 x—1dx
=tanx—x+c¢
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Example 7. Evaluate I —dx
1+sinx
1 1 1-sinx
Solution : I —dx = I —— X ———dx
1+sinx l+sinx 1-sinx

_J~1 smxd J~1 smxdx

1—sin® x

1 sin x
= I 2 2 X
COS X COS Xx

= I (sec” x —sec x tan x)dx

COS X

=tanx—secx+c¢

d 3
Example 8. The slope of a curve is given by d_z =2x = It passes through (1, 1). Find the equation of

curve.

Ldy 2_1

2
" dx X

Integrating both the sides with respect tot x

I%dx=j(2x—3x2)dx

Solution :

— Idy = ZI xdx—3j xdx
= y > 1
, 3
= y=Xx +—+4+cC
X

It passes through (1, 1)
, 3
I=1)"+—4+c=>c=-3
@)
-, required equation of curve

y=x2+§—3
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Exercise 9.1

1.  Integrate the following functions with respect to x
() 3x® (ii) & (iii) (1/2)" (iv) @
Evaluate the following :
2. J‘(Scosx—3sinx+ 22 jdx 3. j dx 4. Iseczxcoseczx dx
cos” x
x2
5. [a+x)xdx 6. [a'da 7. j1+x2dx
2
8. j COS- T 9. Isec x(sec x+ tan x) dx
1+sinx
10. J.(sin*l x+cos”' x) dx 11. dx
dx
2 2 - @ @ @
12. Itan x dx 13. ICOt x dx 14. jm_\/;
i 1
15. J.(tanzx—cot2 x) dx 16. sm‘x dx 17. I dx
1+sinx 1—cosx
18 '[_1+ ! + 3 +2% |dx 19 Icot x(tan x —cosecx)dx
B B B | '
1 2
20. I \/;+—j dx 21. Ilogxxdx 22. IVI+C0$2x dx
Jx
2. I ‘ 3082)62 i o4, 3C?S§+4dx
sin” xcos” x sin” x
II Integration by substitution
(a) Substitution of Variables : The given variable cna be transformed into antoher form or in-
dependent variable, then doing integrationis called integration by substitutiion.
Theorem : If x is substituted by new variable in I f(x)dx then x=¢(t)
’ ! d
[ £y de=] foi}g'()dt, where ¢'(1) = =
d d . .
Proof : Let I f(x)dx=F(x) then d—j f(x)dx = d_F (x) (From differentiation) (1)
X X

Now if

x=¢(t) then o P'(t)
dt
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again %F(x) =%F(x> % (Chain rule)
~ £ (0. 40
= f{p}¢'(1)

Now by definition of integration

J<LF(x)di=[ £ ()} (1)

Or F(x)=[f{p(t)}¢'(r)dt
Or If(x)dx = If{(b(t)}.qb’(t)dt
Some integrands for substitution
(a) I j;((;c)) dx =log| f(x)|+c
g _ Lo
(b) [T s dv =222 ke
(c) For linear function f (ax+b)
If(ax+b)dx=M+c
a
whereas If (x) dx = F(x) +c
Formulae for linear functions

If a#o then

) n _(ax+b)"+1 B
() I(ax+b) dx _—a(n+1) +c, n#
.. 1
(i1) Iax+bdX—alog|ax+b|+c, a>0
(i) [ e = e

a
‘ , cos(ax+b)
(iv) js1n(ax+b)dx=——+c
a
sin(ax+b)
V) jcos(ax+b)dx=—+c
a

[From (1) and (2)]

(Let f(x)=t etc.)

(Let f(x)=r etc.)

(where a, b are constants)

Remark : There is no general ruel for substitution, it depends on the nature of integral. The success of
substitution method depends that we make a substitution such that a function whose derivative also occurs in

the integrand in product form.
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Ilustrative Examples

Example 9. Integrate the following functions with respect to x

_ cos[log(x)] Lo L. sinx ) 1
® x @ NIEES (@) Jx v cos’(5x+2)

. . 1
Solution : (i) Let logx=¢ then —dx=dt
x

I :.[de:.[costdtzsinﬁc :sin(logx)+c
X

esilf1 X
i I = dx
e =

1

dx =dt

Let sin” x=t=
1-x*

ol
I:Ie’dt:e’+c:eSI“ “+e

sin\/;
.o I — dx
(i) | N
&:t:Ldpdr:idx:zdr
Let 2Jx Jx

Izjsintxzdzzzjsinzdz

=2x(—cost)+c=-2cos \/;+c

1

) ot

®) Icos2 (5x+2) dx
=jsec2(5x+2) dx

Let 5x+2=t:5dx=dt:dx=édt

I :jse:c2 txldt
5

:ljsec2 tdt:ltant+c:ltan(5x+2)+c
5 5 5

Example 10. Integrate the following functions with respect to x

) oglr Vi) (i) secx log(sec x+ tan x) (i)
1 1) SeC X Og sec x+ tan x m
\/1+x2

1+tan x
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dx

i Ilog[x+\/1+x ]
Vi+x?

Solution : (i)

Let log[x++v1+x*]=t

1 2x

x| 1+
x+V14+x’ { 21+ 7
1 [V1+x? +x]dx

}dx=dt

X =dt
= crv1+2°] 144
———dx=dt
= 1+ x°
I:Itdt
2
=—+c
2
1
zz[log{x+m}]2+c
(i) 1 :Isecx.log(secx+tan x)dx
Let log(sec x+tanx) =t
1
-, ———————x(sec x tan x + sec” x)dx = dt
(sec x+ tan x)
sec x dx =dt
I—jt dt—ﬁ+c—l[log(secx+tanx)]2+c
2 2
1 1 Ccos x
(iii) Izj dx=j - dx=j —dx
1+ tan x 1+ sin x COS X+ sin x
COS X
B j 2cos x B j cosx+s1nx (cosx—sinx)
cosx+s1nx Ccos X +sin x
__Icosx+smx _J«cosx smx
COS X+ sin x cosx+smx

3 Id J«cosx smx
cosx+smx

[242]



In second integral, Let cosx+sinx =t

(—sin x +cos x)dx = dt

Izlj.dx+l ﬂzlx+llog|t|+c
2 29t 2 2

x 1 .
——+—log|cosx+smx|+c
2 2

(b) Integration of trigonometric functions tan x, cotx, seCx and cosecx

sin x
i I=|tanxdx = dx
@  Let | | o~
Let

COSX =t = —sin x dx = dt = sin xdx = —dt

I:I_—dl:—log|t|+c:—log|cosx|+c
t

= 10g|sec x| +c

Itanxdx:10g|secx|+c:—10g|cosx|+c

(i) Let I =[cotxdv=[=>dx
sin x
Let sinx=t=>cosx dx=dt
I:.[ﬂ:log|t|:log|sinx|+c
t
Icottdx:10g|sinx|+c
/ jsec J jsecx(sechrtanx)
e = xdax = X
(i) Let (secx+tanx)
Let

secx+tanx =t

(sec xtan x +sec’ x) dx = dt = sec x(sec x + tan x)dx =dt

dt
I:I—:log|t|+c:10g|secx+tanx|+c
t

1 sin x
=log +

COSXx COSX

1+sinx

=log

COS X

.2 X ) X .oX X
sin 5+cos —+2sin—cos—

=log

X . .X
cos’ = —sin® =
2 2
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2
X .X
COS —+sin —
( 2 2)
X .X X . X
COS —+8in — || COS ——sin —
[ e o3 -3

1+tanx/2‘
— — "l+c

=log +c

=lo
g 1-tanx/2

=log tan +c

T X
_+_
4 2

Isecxdx=10g|secx+tanx|+c=10gtan +c

T X
_+_
4 2

(iv) Let I Icos ocx di = .[ cos ecx(cos ecx —cot x) 0
(cos ecx —cot x)

Let cosecx—cotx=t = (—cos ecx cot x + cos eczx) dx=dt
cosecx (cosecx—cot x) dx = dt
dt
I= I—:log |t |+c :10g|cosecx—c0tx|+c
t

1 CcOoS X 1-cosx

=log c=log

sinx sinx sin x

1-1+42sin*(x/2) |
2sin (x/2)cos (x/2)|

=log +c =log +c

X
tan —
2

Icos ecx dx :10g|cosecx—c0t x|+c = log|tan x/2| +c

(- cosecx —cotx = tan x/2)

1
Example 11. Integrate m W.I.t. x

1 1
. . I = dx = dx
Solution : Let I J1+cos 2x '[ \/2 cos® x

dx secx dx

1 1 1
~Float=75]

1
=—1log|secx+tanx|+c

V2
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Example 12. Integrate v/secx+1 with respect to x

Solution : Let I=I\/SCCX+1dx=j [ ! +1jdx

COS X
2 2 2
:.[ /1+cosxdx:j / 2co§ 5/2 dxzj V2 cosx/ d
COS X 1-2sin" x/2 \/1—{\/§sin(x/2)}2
Let J2sin (x/2) =t = V2 cos (x/2)x 1/ 2dx = dt

= V2 cos (x/2)dx = 2dt
I=J‘ 2di =251n’1t+=2sin’1(\/§sinx/2)+c

NI

(¢) Using substitution method by trigonometric identities.

Many times when the integrand involves some trigonometric functiosn, we use some known identities to
make it integrable and then find integral by suitable substitution.

Ilustrative Examples
Example 13. Evaluate the following:

(i) [cos3xcosdx dx (i) [ sin® x dx (iii) [ cos’ x dx (iv) [sin* x dx
Solution :(1) Let I= Icos 3xcosdx dx = %IZCOS 4xcos3x dx

1

in7
:lj(cos7x+cosx)dx:— st 7y
2 2

+sinx}+c

I—cos2x 1
i I =|sin®xdx=|——""dx=—|(1-cos2x)dx
(ii) Let jl xxj : xzf( )
1 sin2x
=—|x— +c
2 2
3 1
(ii1) Let Izjcos deZZI(cos3x+3cosx)dx

( cos3x =4cos’ x—3cos x = cos’ x =1/4(cos3x +3cos x))

l[sin3x . }
=— +3sinx |+c¢

1-cos2x Y
cos xJ i

@iv) Let I = Isin“ xdx= I(sinz x)*dx = I( 2

:ij(1+c0522x—20052x)dx
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:lj pplroosdx 5 o ox dx:lj(3+cos4x—4cos2x)dx
4 2 8

8

Exercise 9.2
Integrate the following functions with respect to x

= l[3x + sm44x —2sin Zx} +c

1. () xsinx® (i) xvx*+1
5 _ e"—sinx ) e*
. _ i) 77—
e’ +cosx Vi+e*
Jx Jx
e cose
3.0 () Ve +1 (i) T
1 1+1og x)?
4 () ——— (i) L1080
x(1+logx) x
) mtan”" x Sinp X
5. () o (i1) o x
6 ‘ 1 _ 1+cosx
) @ V1+cos2x (it sin xcos x
7. (1) sin3xsin2x (i) /1—sin x
8. (1) cos* x (i) sin® x
9 ‘ 1 _ (I+x)e’
- O sin xcos’x t cos’(xe")
0. 1 . 1
- @ 1—tan x (it 1+cotx
~sectx . 1-tanx
- Jtan x W ftanx
_ sin(x+a) _ sinx
2.0 Gnx—a) ) Gn(x—a)
‘ sin2x sin2x
3. @ sin Sx sin3x

[Hint =sin 2x = sin(5x —3x)]

(i1) - -
sin(x—j sin(x+ J
6 6
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1 1

4 () g [Hint: 3=rcos6,4=rsinf] (i) Sin(x—a) sin(x—b)
i sin x cos x . secx
15. () 3 — (i) —= .
acos” x+bsin” x \/sm(2x+a)+sma
6 G 1 . Ccos2x—cos2a
- O \/cos3xsin(x+a) W osx—cosa

(d) Integration by substitution of variables by trigonometric functions.

1 1 1
Wle—w  O7ns Wiee

~dx

0

. I:
0 Let J=

If, x=atan® then dx = asec’ 0d0O

Now I_j asec’0d0 j _sec’f 20
a’+a*tan’ 6 1+ tan? 9

=_jsec i e_ljd9=l(9)+c=ltan*‘f+c
Sec a a a a

1 1 X
I ——dx=—tan" —+c¢
a’+x a a

1
ii [ =|—=dx
) Let J
If x=asin@ then dx=acosOd6

Ij\/

acosBdo :J-acosede :J‘d0:0+c:sin*1£+c
acos® a

—a’sin’ 6

1 X
I—dx=sm1—+c
2 2 a

a —x

1
) Let [=|——=dx
i J =

Let x=atan@ = dx=asec’ 0d6

:,[ asec’ 0d6 jasec 9

Ja*tan? @ +a’

:Isecede =log|secO+tan 0|+,

asecO
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+¢

2
=log 1/ler—2+i
a’ a

/ 2 2
:logm+clzlog x+x*+a’|-loga+c,
a
=log|x++x*+a’|+c, where c=c, —loga
1
I—dx=10g|x+\/x2+a2 | +c
VX' +a®
. 1
(iv) Let Iz.[—dx
VX' —a’
Let x=asecl = dx=asecOtan 0 dO
1
I:I ><asec6’tant9dt9=J‘M
NS atan6
:Isece d6 =log |secO +tan 0 | +c,
2 [.2 2
=log R x_2_1 +clzlogx+#+c1
a \a a

=log|x++x’—a’|-loga+c, =log|x+x*—a’ | +c (where ¢ = ¢, —loga)

J‘ﬁdleoghwxlxz—az | +c

Some Suitable trigonometric substitutions

Integrands Substitution
1
@) 2+adt orm x=atan6
1
(1) a’—x> Or o x=asinf@  or x=acosf
a’—x
1
2 2 _ —
(i) \/x*—q* Or Ry x=asect
. a—x a+x
(iv) or x=acos20 or x=acosf
a+x a—Xx
W) x+a x=acos20 or x=acosf
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M) 2ax— 2 x=2asin’0 or x=a(l-cos20)

i} a-x .,
(vii) o x> =a’cos26
x+a x .
(vii) . "\ira x=atan’ 6

Ilustrative Examples

Example 14. Integrate the following with respect to x

1
X .. _
1+ " Jo 252

@

Solution : (i) Let I=[—dx
I+x
d
Let X =t= xdx = 5

I =— =—tan (f)+c=—tan (x")+c
2~|‘1+t2 2 ® 2 )

1 1 1
, = e— g
(11) Let I I [9_25x2 * SI ’(3/5)2 _x2 X

1. x 1. ,5x
=—sin | — |+c=—sin —+c¢
5 3/5 5 3

with respect to x

Example 15. Integrate 1
Vx?—4x+5

1 1
L [=|———dx=|—dx
—log |(x=2)+J(x=2)> +1 | +¢
=log|(x—2)++x* —4x+5|+c

Example 16. Evaluate: Imdx

1 1
S I= dx = dx
Solution : Let sz 2x+5 -[(x+1)2 +2)°



Example 17. Integrate with respect to x

1
V5x—-6-x7

Solution : Let

I:I;dxzj ! dx
J5x—-6-x7 \J—6—(x* =5x)

1 1
- dx =
I\/(25/4—6)—(x2—5x+25/4) ’ I\/(1/2)2—(x—5/2)2

dx

1+ x)>
Example 18. Integrate ( g with respect to x
X+x

Solution : Let I:J‘(Hx) J’1+x +2x

x(1+x7)

J‘{(lvtx) zxz}dxi[ldxﬂ[ 22dx
x(1+x*)  x(1+x%) X 1+x

=log|x|+2tan"" x+c

X+x

sin 2x cos2x

\V9—cos* 2x

Example 19. Integrate with respect to x

sin 2x cos 2x

Solution : Let | = | —/——=dx
V9 —cos* 2x
Let cos® 2x =t = 2cos 2x.(—sin 2x)2.dx = dt
- sin2xcos2x dx = —%
‘5
———I ———sm —|+c
3
(cos>2x)
=—=— c
3

Example 20. If j dx =ksin™' 2" +¢, then find the vlaue of k

NE
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Solution : Let

A N S A
I—Iﬂdx Imdx

dt
log, 2

Let 2" =1=2"log, 2dx=dt =2 dx =

sin”' (1) + ¢ =log, e.(sin"' 2") + ¢

1 dt
I = =
log, 2 I Ji-¢> log,2

.[ 2 dx=1log,e.(sin"' 2") +¢
1-4°
2X - -1 Ax

.[ dx=k(sin™ 2%)+c

NIE

-, On comparison, k =log, e

but it is given that

Exercise 9.3
Integrate the following function with respect to x

I. (@

50+2x2
‘ 1
(1 _m

1
O Je-pe

.X'2
O T

o)

™ +2e* cos oc +1

1

® V3x-2-x°

_ sinx+cos x
)T
® vsin 2x
. |la—x
(M)

X

[251]

1
)" 32 2x

1
W Jrvar
1

(i 2
(2—x) +1

x4
O

1

2x" —x+2

(i)
_ l+tan’x
@) Jtan® x+3

1

() V4 +8x—5x*

1
() Vxt+2ax+b*

(i) a+x

a—Xx



10.

11.

12.

13.

o )
(1) m (1) (a2+x2)3/2

) 1 B x+1
DT @ e
, 1 y 1
O —ap— RN

COS X

1
O fax-D(x-2) W 4 sin® x

II1. Integration by resolving into partial fractions

(@)

Rational algebraic function

f(x)
Definition : If f (x) and g (x) are polynomials of x then fraction 2(x) is called rational algebraic
function.
x'—x—6 2x+1 x2 2x° x!
For example:

O +x-3x+4 20 +x+1 241’ (x—l)(x2+1)’ X 4+2x—4

Proper Rational Fraction : If in a rational algebraic fraction the power of numerator is less than the
power of denominator then it is called a proper rational fraction.

Improper Rational Fraction : If in a rational algebraic fraction the power of numerator is more than or
equal to the power of denominator then it is called an improper rational fraction.

. . X3 fract
orexample : >3 is a proper raction.
3+ x> +5x—4 3x° +x+2
For example : [P and m are improper fractions.

Remark : An improper rational fraction can be expressed into a proper rational fraction by division
process.

For example M =3(x=-5)+ M

x +5x+9 x +5x+9

The above rational algebraci function may be expressed or convert into partial fraction and then integrate
each fraction.

Partial Fraction : It is always possible to write the integrand as a sum of simpler rational functiosn by

a method called partial fraction decomposition.

2x-5 1 1
2 - +
x =5x+6 x-2 x-3

For example
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Rules of resolving a rational fraction into partial fraction

[A] First of all if the fraction is not proper then convert it into a proper fraction by using division method. So
that an improper fraction will be decompose into a polynomial and proper fraction. Keep the polynomial
same and decompose the real fraction into partial fraction.

[B] If denominator of proper fraction is not in the form of factors then factorize it.

[C] Now assume the constant term as equal to the power of denominator. The following indicates the types
of simpler partial fraction that is associated with various kind of rational functions.
(a) If denominator contains linear factors without repetition then the form of partial fraction will be

according tot he following example:

X A B C

- D(x+2)(x-3) (=1 (x+2) (x-3)

(b) If denominaot rcontains linear factors with repetition then the form of partial fraction will be ac-

cording tot he following example:

X A B C

(1) (x+3) (x=1) (x=1)  (x+3)

(¢) If denominator contains quadratic factors then the form of partial fraction will be according to the

following example:
X A Bx+C

(x-1)(x*+2) (x-1) ’ (x*+2)

Remark : If in a partial fraction both numerator and denominator contain x” i.e. quadratic then x’

must be considedred as linear and the partial fraction may be written as

X420 A B
(¢ +1)(x*+3) K +1 x*+3
[D] Finding the values of constant A, B and C
(@) Asdiscussed in [C] take LCM of denominators of partial fractions in RHS and find their sum.
(b) Fractions of both the sides are equal and denominators are also equal. hence by comparing their

numerators and factors of all powers of x and constant terms find equations. The number of such
equations should be same as number of unknown constants. Find the vlaues of unknown constants

from equations and get the required partial fraction.

(x+2)(x+1) (x+2)+(x+1)

2x+3  A(x+1)+B(x+2)

o (x+2)(x+1)_ (x+2)(x+1)
or 2x+3=A(x+1)+B(x+2) D
or 2x+3=(A+B)x+(A+2B)
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On comparision of coefficients of equal terms
A+ B =2 |onsolving
A+2B=3 |A=1B=1

2043 _ 11
(x+2)(x+1)  (x+2) (x+1)

SO

Alternative Methods :

(@

(i)

(iii)

Short Method : In the above example the corresponding vlaues of x of factors (x + 1) and (x + 2) as
x =-1 and x = -2 can be substituted in equation (1) to find the values of A and B.
Division Method : Division method is more sutiable for repeatign factors of denominator in fractions, in
this repeathin factor may be considered as y and the division process id done so that we can get inte-
grable terms.

2

X
F le ————
or example (x+1)3 (x+ 2)

Let (x+1)=y then

x’ (y-17 _(1-2y+y?)

(x+1)3(x+2) y(y+l) ¥y (1+y)

3
z%{l—3y+4y2—4i}
y I+y

3 4 4
2

1
—-

yooy oy I+y
1 3 4 4

()c+1)3 ()c+l)2 (x+1) (x+2)

which can easily be integrated
By inspection : If there is 1 as numerator in a real fraction and the difference of parts is a constant
quantity then this methdo can be used. For this divide by difference of parts and subtract the reciprocal
of bigger part from the reciprocal of smaller part.

1 1| 1 1
For example (x+2)(x—3) g[x—3_x+2} here difference of parts :(x+2)—(x—3):5

Some Standard Integrals

dx 1 x—a
; =—-1Io +c x>a
® J‘xz—az 2a g x+a ( )
dx 1 a+x
5 =—-1Io +c x<a
G ool — (x<a)
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Proof :

1 1 1 1 1
® -a® (x—a)(x+a) " 2a [x—a x+a} (By insepection)

Izl 2dx=i[ ! - 1 }dxi[ ! - 1 }dx
X —a 2a' | x—a x+a 2a| x—a x+a

_L ld—i 1
2a° x—a 2a’ x+a

dx

1 1
=—1log|x—a|l-——1Ilog|x—al+c
> gl I > gl I

1 xX—a
=—T1log +c
2a xX+a
Similarly
) 1 1 _L[ . }
(i) a’—x* (a+x)(a—x) 2ala+x a—x

Izl 2dx=i[ ! + 1 }dx
a —x 2a° | a+x a—x

=i[log|a+x|+w}+c
2a -1

:L[log|a+x|—log|a—x|]+c
2a

Remark : In some cases substittion makes the task easy. Specially when there is any power of x, Let
x""" is a part of numerator and remaining fraction is a rational function of x" then substitute x" =¢ and then
decompose in partial fraction.
Ilustrative Examples

Example 21. Integrate the following functions with respect to x

. 1 . 1
W T 9 W 54
Solution - (i 1 1
olution : (i) Let, = J‘ dx = I —  dx
16x*> -9 (4x)* —=(3)°

1
Let 4x=t=4dx=dt or dx:zdt
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t-3

I—lJ‘L—lx ! log|—|+c¢
P R N R
1 4x-3
=—1log +c
24 4x+3
Solution : (ii) Let 1= L = | L &
| o=ax G -2
Let 2x=t:dx=%
1 dt I 1 3+t
I:— = —X 10 —J+cC
P E et
1 3+2x
=—Ilog +c
12 3-2x
1 :
Example 22. Integrate 712 with respect to x.
. 1 1 _1[ 11 }
Solution : X —x=2 (x—2)(x+l) 3lx-2 x+1

.[Z;dlej{ L 1 }dx
X —x—2 39 (x—=2) (x+1)

:%[log|(x—2)|—log|x+1|]+c

—llo x=2 +c
3 8 x+1
xample 23. Evaluate: G-Dr—2)
) X+ x+2 14 4x
Solution : (x—l) (x_2) = (x—l)(x—Z) (on dividing)
Let 4x A N B
(x—l)(x—Z)_(x—l) (x—2)
or 4x=A(x-2)+B(x—1)

Now in (1)
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Put  x=2 8=B(2-1) or B=38
Put x=1 4—_AOF A=_4
4x -4 8
= +
x-D(x-2) x-1 x-2

G-ni-2) e

X+ x+2 f 4 8 }

If—x+2)dxzjil—i+ 8 }dx

N x=1)(x-2 x—1 x-2

= x—4log|x—1|+8log|x—2|+c

= x+4[2log|x—2|~log|x—1[]+c

(x-2)°

=x+4log |x—1| +c .
Example 24. Integrate with respect to x.
(x+1) (x2+1)
1 __A B CxtD
Solution : Let (x+1)2(x2+1) (x+1)  (x+1) (x2+1)
— 1=A(x+1)(x2+1)+B(x2+1)+(Cx+D)(x+l)2
— 1:A(x3+x2+x+1)+B(x2+1)+(Cx3+2Cx2+Dx2+2Dx+Cx+D)
= 1=x’(A+C)+x’(A+B+2C+D)+x(A+C+2D)+(A+B+D)
On comparison
A+C=0 ey A+B+2C+D=0 2)
A+C+2D=0 3 A+B+D=0 “)
From (1) and (3), 2D=0=D=0
From (1) and (2), B+C+D=0 onsolving, 2C=-1=>C=-1/2 ... A=1/2
From (1) and (4),  B-C+D=1
From (4), 1/2+B+0=1=B=1/2

1 1 1 1 1 X
+— =

1
(x+1) (7 +1) 27 (x+1) 27 (xe1) 272241
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1 11 e 1 ¢ 2x
j(x+1)2(x2+1)dx_5 (x+1)dx+§'[(x+1)2 dx_zj(xzﬂ)dx

1 1
2510g|x+1|—zlog(x2 +1)— 3

X +x+1

Example 25. Integrate

with respect to x.
x —

2 2
Solution : Let (x—l):y_-_x +x+1:(y+1) +(y+1)+1

(x—1)3 ys

_y2+3y+3_

3

3 3
2t 73
Yy

1
—+
y y oy
1 3 3

() et (1)

X+ x+1 1 3 3
J. (x—1)3 d)c=J.(X_1)dx+.|.(x_1)2 a’x+J.(x_1)3 dx

=log|x—1|— > 3 +c
(x=1) 2(x-1)*

Example 26. Integrate —

——————— with respect to x.
sin x +sin 2x

1
Solution : Let I = Imdx
1 sin x
= = d
J‘sinx(1+2cosx) -[sinzx(1+2cosx) *
=.[ sin x
(1—cos® x)(1+2cos x)
—dt
:.[(1_,2)(“2,) [where cosx=t=>—sinxdx=dt]

o dt
N I(1—;)(1+r)(1+2x)
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1 A B C
Aganlet TN (112)  (1-1)  (1+1)  (1+21)

or 1=A(1+1)(1+2t)+B(1—1)(1+21)+ C(1—1)(1+1)

On putting on both sides, put £ =1, 1=A(2)(3) = A=1/6
putt=—1, 1=B(1+1)(1-2) = B=-1/2

put7=-1/2, 1=C(1+1/2)(1-1/2)= C=4/3

1 Lo o114
(1-1)(1+2)(1+21) 6 (1-t) 2 (1+1) 3

(1+21)

1 4 1
=— —. d
I (1+t)+3(1+2t) t
6 (-) 2 32

:élog|1—cosx|+%log|1+cosx|—§log|l+2cosx|+c

2x
Example 27. Integrate (Z+ (X +3) with respect to x
. 2x
Solution : Let 1= j —————-dx
(x*+D(x"+3)
= jm [where x> =t = 2xdx =dt]

s

:l log|t+1|—log|t + 3| [+ ¢
2

1 (x+1\

1 e=Tog( £

1 +1
2 gt 3"

+c
X
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Exampler 28. Integrate with respect to x.

Solution :

) dt
Again, let .

X' =t=>nx"'dx=dt = x"'dx=—

(multiplying numerator and denominator by X" )

1 1 1 1
- =—||——=|dt=—[log|t—-1|-log|¢t|]+¢
I,(,_l) nj[t—l t} n[ gl | elel

1 t 1 x" =1
=—log|—|+ :—log +c
n
Exercise 9.4
Integrate the following functions with respect to x.
2 ! 3 —3x
@ 16 2) x? -36 ) (x+D(x-2)
X2 x2
O Gine-2a-3 © e D v e
2 2
o X 10 x+1 1 x +8x+4
O i) 10 o er WD Ta
13 1-3x 14 1+ x% 5 x> +5x+3
( )1+x+x2+x3 14 X —x ( )x2+3x+2
1 ! 18 ! 19 ¢
7 X —X X T~ «
D avena=esy I8 @iy T :
1 R &
QD L+ 22 a+b) 23 i +4)

(b) Integration of special forms of rational functions

. px+q
— = d
© jax +bX+C @ ax® +bx+c *

where a, b, ¢, p and g are constants.

2 2 b C
Proof : (1) ax +bx+c:a[x +—x+—}

a a
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3x-2
@ G+ (x+3)

2
X

®) (x+D(x-2)

12 T (x+2)

x—1
16) i +1)

sec’ x
(2+tan x)(3+ tan x)

(20)

(I—cosx)

(24)

cos x(1+ cos x)



- () ()

Case : (1) When b2 —4ac>o

then, I # _1 I dx -
ax +bx+c a ( b)2 b — 4ac
X+— | =\
2a 4a
b b* —4ac
=—|5—= here x+—=t =1
. I Y (where 2a and 17
etc.)
11 -1
=— —log +c
a 2. t+ A
Case : (2) : When b’ —4ac<o
dx
then '[ax tbx+c a J.t A7
1 [ tj
=——tan | —|+c¢
ar A
on again substituting the values of # and A the required integration can be done
(i) Let numerator px+ g = A (differential coefficient of denominator + )
or px+q:l(2ax+b)+,u
On comparing the coefficients of equal terms
2al=p=>A=—
2a
b
bl+u=q:u=q——p
2a
L px+q P 2ax+b ( j
H th tegral | —————dx= it
enee the givertntegr ax’ +bx+c 2a 7 ax +bx+c 7 I ax’ +bx+c
=L log|ax® +bx+c| +(q——pj
2a 2 ax’ +bx+c

Where secodn integral can be solved by method (i)
(C) Integration of irrational algebraic function
Irrational function : A function in which power of variable is fraction :

X% ++/x

For example ; f(x)= X+ x+1, g(x)= 2\/; +3, h(x)=—— etc.
p NI
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Integration of standard irrational functions

(i) |24

Vax? +bx+c

dx m there are two methods of integration.

@) I;dx
Nax® +bx+c

First Method : (i) Term 1 = [

N S
Vax* +bx+c

(a) where a > o then

a a

% xud;J ﬁjﬂﬂbjz[bzwj

It has three steps :

(i) where b*> —4ac > o then

b* —4dac

b
; t=x+—,A=
/—I /— where X+2 1
1
:—log‘t+\/t2—12 +c
Va

(i) when b”> —4ac <o then

[:LI dt
Ja (erbsz{\Mac—bz ]2
2a 2a

:LJ'_ dt her t—x+£ i_\/4ac—b2
NFENERFERE S

log|t+~t*+ A% | +c

-

(iii) when b* —4ac =0

1 dx 1 b
then, |=—|——=—loglx+—]+¢
\/g'[x+b Ja g 2a
2a
(b) when a<o let a=—oc
dx
then, [I=
'[\/—ocx +bx+c \/—'[ b +4c¢ o ( bjz
—_— x_i
4o 2 oC
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b b +4ca

v 2
\/—J‘\/r where ¢ = x ﬂ, a0

= Lsin’1 [ij +c
Ve 2

Second method 1=I—px+q dx
econd method : m
d
Let px+qg=A—~ (ax" +bx+c)+B
dx
or px+q:A(2ax+b)+B
p bp
. . A:_,B: e
on comparing and solving 2a q 2a
[P _ 2ax+b ( bpjj- 1 I
then, ST
en 2a7 \Jax® +bx+c 2a )7 \Jax* +bx +c¢

where in I integral put ax’ +bx+c =t and II integral can be solved by case I discussed earlier.

Ilustrative Examples

Example 29. Integrate with respect to x.

X +4x+1

1 1
s, I = dx = dx

| 1 dr=— 1o [x+2-43|,
(x+2°-(3)? 23 \x+2+ﬂ

Example 30. Integrate ox with respect to x.

1-6x—

Solution : Here 1-6x—9x* =9 [é - 69_x - xz}

=9 g—(x2+§+l)
9 39
=9[2/9—(x+1/3)2]
P
—6x-9x

1 1 1
= — dx:— dx
9I2/9—(x+1/3)2 9I(\/§/3)2—(x+1/3)2
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1 |\/_/3+x+1/3|

02 S NCyEmyR
|\/§+1+3x|
A N
Example 31. 1 _ X2
xample 31. Integrate ——5—— —— with respect to x.
d .,
Solution : Let 5x—2:Ad—(3x +2x+1)+B
X
or Sx-2=A(6x+2)+B

on comparing 6A =5 .'.A:% and B=-2-24=-2-5/3=-11/3

5x—2=§(6x+2)—E

6 3

I S5x-2

3x? +2x+1

_I5/6(6x+2)—11/3 B I 6x+2 11 1

3xT+2x+1 3x? +2x+1 3937 +2x+1

:210g|3x2+2x+1|— 1 I > ! dx

6 3x37 x"+2x/3+1/3

! dx
(x+1/3)> +(2/3)°

=%10g|3x +2x+1|——

:%10g|3x +2x+1| L an 1(X+1/3j c

\/_/3 V273

=%10g|3x2 +2x+1|—£tanl(3x+lj+c

32 V2

Example 32. Integrate with respect to x.

1
Vx*—8x+15

Solution : Here 1= I\/x 8x+15 I\/X 4 o

=log|(x—4)+~+x> —8x+15|+c
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1
Example 33. Integrate ———————=with respect to x
V1+3x—4x°

Solution : Let I = I ;dx

V1+3x—4x*

:lj- dx
2° 174435742

lj dx
2° [25/64—(x* —3x/4+9/64)

1 dx

Example 34. Integrate with respect to x

2x+5
VXt +3x+1
Solution : Let 2x+5=(2x+3)+2

(On changing numerator into differential coefficient of (x* +3x+1) by inspection)

dx

:I 2x+5 2x+3

2
——dx = dx+
VX' +3x+1 J‘\/x2+3x+1 I\/x2+3x+1

2

dt
=|—=+
Jx/? '[\/(x+3/2)2+(\/§/2)2
(x+3/2)+\/x2+3x+1‘+c
(x+3/2)++x° +3x+1‘+c

, where x*+3x+1=t¢

=2t +2log

=24/x> +3x+1+2log

Exercise 9.5

Integrate the following functions with respect to x

1 1 1
M X +2x+10 ) 2x* +x—1 3 9x? —12x+8 ) 3+2x—x*
5 6 COS X ; x-=3 g 3x+1
) X+ xt+1 ©) sin x+4sinx+5 ™ X’ +2x—4 ®) 2x*—2x+3
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9 x+1 10 (3sinx—2)cos x T 1 12) 1
®) x*+4x+5 (10) 5—cos® x—4sinx an 2e* +3e" +1 ( Vax? =5x+1
1 1 1 x+2
13) /7 14) 77— 15 7 16) 55—
(3) Vix—6-x° 19 VIi—x—x’ (s) Va4+3x=2x" (16) Vxt=2x+4
x+3 sin(x—a)

x+1
AN e _xr1 U8) T2 oxrn (19) Jsecx—-1 (20) sin(x+a)

x e’

@D X +x+1 22 e +6e" +5
IV Integration of Parts:

We have studied the methods of integration by substitution, trigonometric identities and algebraic meth-
ods. But integral of some functions is either difficult or impossible with above methods. Such functions can be
expressed in parts and then their integration is can be found.

Here the main functions are non algebraic functions like exponential, logarithmic and inverse trigonomet-
ric functions.

Rule of integration by parts or integration of product of functions:

Theorem : If u and v are two functions of x then
Iu.v dx = u(jv dx) = J‘[%J‘v dx}dx
Proof : For any two functions f(x) and g(x)

G080 =10 Fa (a9 S (0

integrating both sides with respect to x

f(x)-(x) ZI[f(X)%g(x)+ g(X)%f(x)}dx

or I 05 60) = £ (92 ()~f 0) ) 0
Now let f(x)=u,%[g(x)]=v:>g(x)z.[vdx

Put this value in (1)

Iu.vdxzujvdx—j[%jvdx}dx

If we take u as first function and v as the second function, then this formula may be stated
as follows:

"The integral of the product of two functions = (First function) x | (second function) dx—
| (Differential coefficient of first function) x integral of second function dx.
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Remark : The success of integration by parts method depends on selection of first and sec-

ond function. Function should be selected in a manner so that the integral of second function can
be done easily. Although there is no specific rule for selection of functions but following points
may be kept in mind.

@

(ii)

(i ifintegrand is a product of algebraic function of x and exponential or trigonometric function
them exponential or trigonometric function should be selected as second function.

@) Inintegration of single inverse trigonometric functions or logarithmic functions, unit (1) should be
taken as second function.

@) If integral obtained in original form in right hand side then integration should be done by transposing.

(iv) Integration by parts may be used more than once in an integral as per necessity.

Note : We can select the function as they appear in word 'ILATE'

Where : 1 = Inverse trigonometric functions sicj as sin™' x, cos™ x, tan™' x

L = Logarithmic functions such as log x, log(x* + a*)

A = Algebraic functions such as x, x +1, 2x, Jx
T = Trigonometric functions such as sin x, cos x, tan x

E = Exponential function such as a*, e*, 2%,3™"

Application of ingegration by parts
In Integral of the type Ie”‘[f(x) + f'(x)]dx and I[xf’(x) + f(x)]dx

Let 1=/ )+ f'ldx where [0 =5 (2
X
= J' eﬂ”‘ f(x)dx+ j e" f'(x)dx (on taking e* as II function)

= f(x)e" — j Fl(x)e'dx+ j e f(x)dx +c
(Integration by parts of first integral)
=e' f(x)+c

similarly [elf o+ fldx=e'f(x)+c
Let  1=[lxf'(x)+f(x)]ldx
=J.)Icf'l(1x)dx+jf(x)dx
put f' (x) as second function in first integral and then integrating by parts
= xf(x)—j1xf(x)dx+jf(x)dx
=xf(x)+c
[Lef' @)+ flde=x f (x)+c
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Ilustrative Examples

Example 35. Integrate x’e¢* with respect to x

Solution : Let I=|xe"dx

I I
On taking e* as II function, Integration by parts gives

2
=x"e" —|2xe" dx
I 1

=x"e" —2[xe* — I I1xe*dx]
=x’e" —2xe" +2¢"
=e" (x> —2x+2)+c

Example 36. Integrate xlog x with respect to x
Solution : Let I= J. fflolgx dx

On taking log x as I function and x as second function, Integration by parts gives

2

x° 1 x
I =(logx)——|—x—dx
(log )= jx .

2

=%(log x)—%jxdx+c

le X2+
=—logx——+c
) BTy

Example 37. Integrate x”sin2x with respect to x

Solution : Let I= sz sin 2x dx

I I

Taking x” asIand sin2x as II function respectively, Integration by parts, gives

Ja —Ccos2x _J-zxx—cosbcdx
2 2

2
—X
=——CoS2x+ jx~ cos2xdx
2 I I

Taking x as I and cos 2x as II functions respectively, again Integration by parts gives

2 . .
=icos2x+x sin2.x —lesmzxdx
2 2 2

2

—X X . cos2x
= Tcos 2x+Esm 2x+

+c
Example 38. Integrate log x with respect to x
Solution : Let I= '[11[ 10% xdx
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Taking one as second function, Integration by parts gives
1
= (log x)(x) — j_x x dx
X

=xlogx—x+c
=x(logx-1)+c
= x[log x —loge]+c = xlog(x/e)+c

Example 39. Integrate tan™' x with respect to x

Solution : Let [ = _[ tan™' x dx
I :.fl' tan~' x dx
I 1

Taking tan™' x as I and one as II function respectively, Integration by parts gives

:(tan*l x)(x)—j ! — X x dx

I+x
|
:xtan*lx——j ~_dx
29 1+x
a1 2 >
= xtan x—Elog(1+x)+c (where, let 1+ x” =¢)

Example 40. Integrate cos™ | Y dx with respect to x
a+x

_ X
Solution : Let I=[cos™ | ——dx
a+x

Let x=atan’ @ = dx =2atan O sec’ 6 dO

a+atan® 0

J- i ( tan 6
= | cos
sec@

= ZaJ.cos*l(sin 0).tan Osec’ 0 dO

2
I = J.cos’1 [Mj x2atan @ sec’ 6 dO

ija tan @ sec’ 0 dO

= ZaIcos”[cos(% —0)].tanOsec’ 0 dO
= ZaI(%—G).tanesecz 0 do

n
Taking (5 —0) asland tan@sec’ 0 as II function, integration by parts gives
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2 2
I =2a (E—Hjtan Q—I—lxtan 9d6’
2 2 2

2
{ jtan@seczé’dé’ = tar12 0}

= a(%—ﬁ)tan2 0+ aj‘(sec2 0-1)do

=a(%—9)tan29+a[tan9—0]+c
=a[7r/2—tan71x/x/a](x/a)+a[«/x/a —tan™' \/x/a}+c
:x-%—xtan*l Jx/a +Jax —atan" x/a +c

a1 Izx-%—(a+x)tan’lx/x/a+\/ax+c

Example 41. Evaluate .[ log[x+~x" +a’] dx

Solution : Here I = IIII log(x+ \/I x*+a’)dx

Taking one as second function, integration by parts, gives

1 2x
I =log[x+x>+a’].x— x{1+ }xdx
'[[x+\/x2+a2] X +ad?

1 (Nx*+a® +x)
= xlog[x+vx* +a’ I()H_m) m x x dx

—xlog[x+ x*+a’

Nt

(On putting x> +a” =t and solving)

= xlog[x ++/x° +a2]—%><2 X +a’+c

leog[)c+\/x2 +az]—\/x2 +a’+c

2

Example 42. Integrate - al > with respect to x
(xsin x+ cos x)

2
X

dx

Solution : Let I'= I (xsin x + cos x)*
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X XCOS X s X )
= I R —dx (Put x” = X XCOS X in numerator)
cosx (xsinx+cosx) COS X
X
Taking cosx B I and remaining as II function, integration by parts gives
X

P X.[ ‘xcosx 2dx_j i( x jxj- .xcosx v | ax
cosx * (xsinx+cosx) dx\ cosx (xsin x +cos x)

Let xsinx+cosx=t= xcosxdx=dt

_x X[ ‘ 1 }+J-[cosx+(:inx)x]>< ‘ 1 0
COSX | xsinx+cosx cos® x (xsinx+cosx)
—X

= ‘ +J‘sec2 x dx
cos x(xsin x + cos x)

—X
= - +tanx+c
cos x(xsin x+cos x)

—X sin x
- ' + +c
cosx(xsmx+cos x) Ccos X

—X +sin x(xsinx+ cos x)
= +c
cos x(xsinx+cos x)

—Xx+ xsin® x+sin xcos x

cos x(xsinx+cos x)

—x(l —sin? x) +sin xcos x
= ' +c
cos x(xsmx+cos x)

—xcos® x+sin xcos x

cos x (xsin x+cos x)

Sin x — X COS X
——+c¢

xsin x +cos x

X+sinx

Example 43. Integrate T

with respect to x.

Solution : Let I=

J«x+sinxdxzj«x+231n(x/2)cos(x/2) .

1+ cos x 2cos” (x/2)

:%j)fseﬂcz(x/z)dx+jtan(x/2)dx
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Taking x as I function in first integral, integration by parts gives
= %[2xtan(x/2)—I1x2tan(x/2)dx} +Itan(x/2)dx

= xtan (x/2) - [ tan (x/2)dx+ [ tan (x/2)dx

=xtan(x/2)+c
xe*
Example 44. Evaluate I(x e dx
xe" (x+1—1) e’
ion : I= dx=|———7—d
Solution : Let '[(x+1)2 X I (x+1)2 X

= 1 - 1 e'dx
‘jLHU <+1>2} ‘
='[ ¢ dx—j(xil)zdx

1
(Taking —— as I function in first integral, Integration by parts gives)
£ x+1

1 1 e’

- - tdx |- [—5—d
{(m)xe J ey I(m)z *
e’ e’ e’ e’
)C+1+J.(x+1)2 gy J.(x+1)2 g x+1+C

Exercise 9.6
Integrate the following functions with respect to x

1. (i) xcosx (i) xsec” x 2. (i) x’e* (i) x’sinx
3. () x’(logx)’ (i) xe* 4. (i) e¥e (i) (logx)’
5. () cos'x (i) cosec™ e (i) sin”(3x-4x’) (i) -
X I+cosx
7. () tan”' :_x (Hint: x =cos6) (i) cos/x
x

8. (D) Toens (i) x*tan'x

xsin”' x ytan~ x _ 2x+sin 2x

m 10. —— I1. e (Cotx+logsmx) Tt cosox

(1+x2)
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of 1—sinx . 1
13. e 14. e logx+? 15. e*[log(sec x + tan x) + sec x]

1—-cosx
X . 2 1 2
16.  e"(sinx+cos.x)sec’ x 17. e"(___J
XX
(1=x Y .. 1-x Y 1 2x
18. ¢ 2 Hint = 2| = 2y 232
1+ x 1+ x I+x") (d+x°)
cos@+sinf x?
cos26.log| — 20.
19. g(cos@—sm@j 0 (xcosx —sin x)°
21. cos™ (1/x) 22. (sin”' x)?

9.08 Some special type of Integral

Many times while integrating the product of two functions, integration does not come to an end, whaterver
the first or second function is. This happens in the case of exponential and trigonometric functions. In such cases

using transpose we can calculate the integral.
For Example :

Integration of e¢“ sinbx and ¢“ cosbx

let, I= .[ e sin bx dx

taking sinbx asIand e as II function, Integration by parts, gives

1 =sinbx[e j—jb cos bxxe—dx
a

a

1
or I =—¢" smbx——je cosbxdx
a

Taking cos bx as I and e* as II function, Integration by parts gives.

1 ax . ax
I:—e‘”‘sinbx—é{ .e - ¢ dx}
a a a a
1 ) b b -
or I=—e‘”s1nbx——ze‘”‘cosbx——zje sin bx dx
a a
b 2
or I =—e" sinbx—— e cosbx—— 1
a a a
or 1 Ll + — J a sinbx —b cos bx) [transposing the last term]
I= asinbx—bcosbx)+c
or 2+ b2 ( )
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ax

ﬁ[asinbx—bcosbxhc

or j e” sinbx dx=
a +b

ax

similarly j e™ cosbxdx = aze+ E [a cosbx +bsin bx] +c

9.09 Three Important Integrals
(@) V¥ +a*dx (i) [V —a*dx (ifi) [Va? —xdx
(@  Let I=j\/x2+a2dx=j\/x2+a2~llldx

Here, we will take va”® + x> as I and 1 as II function, Integration by parts gives

2
I=+x*+d° xx—I—xxxdx

WNx*+a’

2
x
or I:X\/x2+a2—.[?dx
VX" +a

2 2 2
(x +a )—a
=X\/x2+a2—.|.de
Vx“ +a

=X\/x2+a2 —J‘\/x2 +a*dx+a

dx

2J' 1
VX’ +a’

or [=xJx’+a’ —I+a’log|x+Vx*+a’ |+

or 21 =xNx* +a’ +a’ log| x+Nx* +a’ |+,

2
or I=§\/x2+a2 Jra?log|x+\/x2Jraz|+C—21
2
or j\/x2+a2dx=£\/x2+a2 +a?10g|x+\/x2+a2 | +c (where ¢, /2=c)

2
similarly

2
(i) j\/xz—azdngxhcz—az —%10g|x+\lxz—az|+c

a

2
(iii) _[\/az—xzdx=§\/a2—x2 +%sin1(£j+c

Ilustrative Examples

Example 45. Integrate ¢’ sin4x with respec tot x
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Solution : Let I= .[ e s1n4xdx

Taking sin4x as Iand e as II function, Integration by parts gives,

I_

= le“ sin 4x—ije3x cos4x dx
3 3 i I

Taking cos4x as I function, Integration by parts gives

3x 3x
I :le“ sin4x—i cosdx.S _Agindx xS dx
3 3 3 3

1
or I :le“ sin4x—ie3" cos 4x——6.[e“ sindx dx
3 9 9
63,\7 ) 16
or I =—[3sin4x—4cos4x]-—1I+c,
9 9
or %I = 1e3”‘ (3sin4x—4cos4x)+c,
63,\7
or [ = 3 [3sin4x—4cos4x]+c

sin(log x
Example 46. Evaluate j#dx
X

in (1
Solution : Let I=] sinlog9)

Let logx=r=>x=¢€ = dx=¢'dt

_.[(smt)e dt .[ 2
(e’
e i
=————[-2sint—cost]+c
2"+

ax

{ I e™ sinbx dx = ~[asinbx —bcos bx]}

a’+
x2
= ?[—ZSin (log x) —COos (log x)] +c

I= —5%[2 sin (log x)+ cos (log x)] +c
x
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sin'x

Example 47. Integrate - with respect to x.

1-x

sin” x

xe
Solution : Let [I= I N dx
- X

Let sin"' x=f= x=sint = dx = cost dt

B J- sint.e'

xcostdtzje’sintdt
CcoSst

1

et ) sin” x >
=—[sint—cost]+c= x—=v1=-x* |+¢
2 2

Example 48. Integrate ¢ cos(4x+5)dx with respect to x

Solution : Let 1= [ e cos(4x +5)dx
I

Integration by parts gives,

3x

edx
3

3x
¢ —j—4sin(4x+5) X

1 =cos(4x+5). 3

_1 3x 4 3x ¢
_Ee COS(4X+5)+§.[en sm(4x1+ 5)dx

Again, Integration by parts gives,

3x

3x
I:%e3xcos(4x+5)+g sin(4x+5)><e3 —'[4cos(4x+5)><e3 dx
1 3x 4 3x 16 3x

or I:§e cos(4x+5)+§e sm(4x+5)—gje cos(4x+5)dx

1 3x . 16
or I:§e [3008(4x+5)+4sm(4x+5)]—31+c1

25 1 5, .

or 51=5¢ [3cos(4x+5)+4sin(4x+5) |+c,

3x
or I= 625 [3cos(4x+5)+4sin(4x+5)]+c

Example 49. Integrate the following functions with respect to x

(1) Vx*+2x+5 (i) v3-2x—x? (i) Vx> +8x—6
Solution : (i) I= j Vx4 2x+5 dx = j Jx+D?+(2)%dx

_ (X;Ll) (x+1)7 +(2)° +%log (xH)ﬂ/m
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:xTH x2+2x+5+210g‘(x+1)+M‘+c
(i) 1= [V3-2x-xdr= [ [4-(x* + 20+ 1)ax
(x+1)

N IR P CI P Caa) I

2
x+1\/3 2x—x +2$1n1[x—+1j

2
(iii) Let I:I\/x2+8x—6 dx
= [J(x+4) —224dx

_x+4

== (x+4)° 22—2—2210g(x+4)+ (x+4)" —22+¢

:_(x;4)m_1110g\(x+4)+m e

Example 50. Integrate sec’ x with respect to x

Solution : Let I= Isec x.sec’ x dx
= j\/1+ tan® x.sec” xdx
Let tanx=t¢ sosec xdx=dt

I:I\/1+t2.dt

_L 1+t2+llog‘t+ 1+ +¢
2 2

= tarzlx\/l_'_ tan’x +%log tan x ++/1+ tan” x

+c

1 1
= Etan xsecx+510g|tanx+secx|+c

Example 51. Integrate e™* cos xv/4 — > dx with respect to x
SOllltiOll . Llet I — J‘eSinX COS X [4_625inx dx

Let ¢ = f = cos x.e"™"dx = dt
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I:j\/4—t2dt

t 4 . |t
=— 4—t2+531n '—+c

- %es"’x\/4 — ™™ +2sin™ (—gz J +c

Exercise 9.7
Integrate the following functions with respect to x

atan”'x

1. e*cosx 2. sin(log x) 4. 2

1+ )" cos(x+or)

5. e'sin’x 6. e 7. cos(blogx/a) 8. e cos4xcos2x

9. J2x—x* 10. /x> +4x+6 1. Jx* +6x—4 12, \2x* +3x+4
13. o —x 14, (x+DV+1 15 Jl—dx—x° 16. Ja_3x—24*

Miscellaneous Examples

Example 52. Integrate

1 .
— ——— With respect to x
a cos” x+b”sin” x

1

Solution : Let I= -
I a’ cos® x+b*sin” x

dx

Dividing numberator and denominator by cos” x, we get

[ j sec’ xdx
a’ +b*tan® x

Let tanx=t¢ then sec’ xdx=dt

dt 1 dt
I: _— - - —
ja2 +bt*  b? '[tz +(alb)?

1 1 1( t J
=—x tan” | — |+c¢
b* (alb) alb
1 l[btj
=—tan | —|+c
ab a

1 l[b j
=—tan | —tanx|+c
ab a

Example 53. Integrate with respect to x

1/2 1/3
X " +Xx
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Solution : Here [= le/z e dx

Let x=t"=dx=6 dt

1= '[t+t

6t ) 1
j dt—éj P —t+l——|dr
t+1 t+1

P
=6l ———+r—log|r+1]||+c
3 2

X xl/3
=6/ ————+x""~log(x"° +1) |+c
32 g( )
Example 54. Integrate cos Jx with respect to x
Solution : Let I= _[ cos/x dx

dx=dt = dx=2tdt

1
Let \/; 2\/;
I:Icostth dt

=2|tcostdt
1 1

:Z[tsint—jlxsintdt}
=2[tsint+cost|+c

:Z[x/;sin x+COS\/;]+C

tan x )
Example 55. Integrate ————dx with respect to x
sin x cos x

oy s

Solution : Let dx
sin x cos x tan xcos” x
On multiplying and dividing by cos x in denominator
sec” x ,
=_[\/— Let tanx =1 sosec” xdx = dt
tan x

=j%=2«/;+c=2\/tanx+c
t
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Example 56. Integrate (\/ tan x ++/cot x ) dx with respect to x

v/sin x \/cosx
Solution : Let I = I(\/tanx +\/cotx)dx :I{ '—cosx '—smx

sin x+cos x sin x +cos x
] dx =2 [ e

= | ———dx =
A/sin xcos x v/ 2sin x cos x

2.[ sin x +cos x dx:x/z (Slnx+Cosx) : »
\/1 1- 2S1nXCOSX) Jl_(sinx_cosx)
Let sinx—cosx:t:>(cosx+sinx)dx:dt

_\/7811’1 t+c

1Pl

—/2sin™ (sin X—Cos x) +c

5 1/5
Example 57. Integrate ———— with respect to x
X

1/5

5 _ 4N1/5
Solution : 1 :I(X 6x) dx = I xd 1/6x ) dx
X

_ 4N1/5
=j(1 LI

1 4 1 dt

1/5+1

I:ljtllsdt L
4 4(1/5+1)

6/5
LS o3 l—i4 +c
4 6 24

X
Miscellaneous Exercise 9
Integrate the following functions with respect to x

1. 1+ 2tan x(tan x + sec x) 2. e“sin’ x 3. x*log(1—x7%)
-8 8
R LR S
«/(x+a) 1—2sin” xcos” x 1+sinx
_ o 2L 9 I 0.« 2x
7. x+va? =2 " (1+x)° " cos2x+cos2a - s (1+x2J
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tan”' x
15,

1

1

3x-1
21. (x—2)’

(c) tanx—x+c

. l[ﬁxJ
(c) sin e +c

(c) xlog(x/e)+c

l10 X +c
© 578 i

[IMPORTANT POINTS]

8 6(log x)* + 7(log x)+ 2]

(d) cotx—x+c

(d) cos™(x/4)+c

(d) logx/e

d
If given function is f (x) and its integral is F' (x) then by definition of integration d_ F (x) =f (x) .
X

Integration is called antiderivative or primitive, it is a inverse process of differentiation.

" sin x —Ccos x sin 2x
" 4/sin2x sin® x +cos* x
3 1+x ” sin® x +cos® x
" (2+x)° " sin® xcos® x
6 — 7 —
" sin® x+sin2x " 4x* —4x+3
sin 2x cos 2x sin x 4+ coSs x
19 70— 200 ——————
? V4 —sin* 2x 0 9+16sin2x
1—cos2x
22. —dx:
I1+0032x
(a) tanx+x+c (b) cotx+x+c
1
SJ e ——
\32-2x°
(a) sin”'(x/4)+c (b) Lsinfl(x/4)+c
J2
24, [logxdr=
(a) xlog(xe)+c (b) xlogx+c
1
25. d
J.)c()c+1) *
(a) log (ij (b) log ("—”jw
x+1 X
1.
2.
3. For a constant %, jk f(x)dx =kjf(x)dx
4. LA )L (x)]dx=[ f(x)dxx] £, (x)dx
5. Some standard formulae for integration

n+l

X
+c,
1

() [x"dx = n#-1

n+

(iii) Iexdx =e' +c

1
(ii) j;dx=10g|x|+c

X

a
. )Cd —
() Ia g loga

+c
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(v) Isin xdx=—-cosx+c
(vii) Isecz xdx =tanx+c

(ix) Isecxtanxdx:secx+c

1
i de=sin"x+c=—cos ' x+c¢
i) | —

1 o O

(xil)) | ——=——===sec x+c=-cosec x+c
'[xxlxz—l

(xv) Idx=x+c

Integration by substitution

(0 I

dx-log|f(x)|+c

o (ax+b)”
(iif) I(ax+b) dx = (s ) +c
v) Ie”“bdx = il +c

(vii) Icos(ax+b)dx=w+c
a

Use of substitituon method in standard formulae

1
(1)I x="tan" T+c
a’+x° a a

(ii) Iﬁdleog|x+\/x2 +a’ |+c

Standard Integrals

) 1 1 xX—a
@) =—-1Ilo +c
J-)cz—az 2a g xX+a

2
(iii) j\/az ~-x’d =§\/a2—x2 +%sin’1£+c
a

(vi) Icos xdx=sinx+c
(viii) Icos ec’xdx=—cotx+c

x) Icosec xcotx dx=—cosecx+c

1
X+c

> =tan' x+c=—cot”
(xiv) Imdx = x|+c, x#0
X

(xvi) Io dx=c

[f (1" e

n+1

(i) [[f (x)] f'(x)dx=

:llog|ax+b|+c

—cos(ax+ b)

(vi) J.sm ax+b)d »

dx—sm xla+c

1
(iv) I—dx—log|x+\/x —a’ |+c
x—a’
1 1 a+x
dx=—1 +c
(H)J‘az—x2 2a ga X

2
(iv) j\/az +x2dx=§\/a2 +x° +%10g|x+\/a2 +x° |+

2
v) j\/xz—azdngxmz ~a’ —a?log|x+\/x2 —a’ |+c
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(vi)jtanxdx:10g|secx|+c (vii) Icotxdx:10g|sinx|+c
X 7
(viji)jsecxdx:10g|secx+tanx|+c=log tan(5+z)+c
(ix) Icosecxdx:10g|cosecx—c0tx|+c:log|tanx/2|+c
9. Integration by parts:
(i)  The integral of the product of two functions = (first function) x | second function dx — [ (differential
coefficient of first function) x [ integral of second function dx.
Le. J‘uvdxzuj‘vdx—.f ﬂxjvdx dx
I dx
. a " — e o
(i) je s1nbxdx—a2+b2[as1nbx bcosbx]+c—a2+b2s1n[bx tan"' b/ al+c
(ii) je‘”cosbxdx= - [acosbx+bsinbx]+c = - cos[bx—tan’lb/a}+c
a’+b’ a’+b’
@) [l @+ f@lde=ef(x)+c
W [ @+ flde=xf(0)+c
(vi) I[f(log x)+ f'(log x)]dx = xf (log x) + ¢
Answer
Exercise 9.1
3 s e 1/2)* X
T . N ‘e N
1. @ 5 X c (i1) 3 c (iit) (og1/2) @iv) 3 c
2. 5sinx+3cosx+2tanx+c 3. x/2+1/x+c 4. tanx-—cotx+c
x+1
5. 2/3-x"7+2/5-x"+c 6. +1+C 7. x—tan” x+c 8. X+cosx+c
x
9. tanx+secx+c 10. (7/2)x+c 11. x—2tan'x+c¢ 12. tanx—x+c
2 32 2 s
13. —cotx—x+c 14. §(1+X) +§X +c 15. tanx+cotx+c
16. x—tanx+secx+c 17. —cotx—cotxcosec x+c
18. x+tan*1x+3sec71x+log2+c 19. x+cosec x+c 20. x*/2+log|x|+2x+c
21. x+c 22. \2sinx+c 23. —cotx—tanx+c  24. —3cosec x—4cotx+c
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Exercise 9.2

1
1. (i) (=1/2)cosx’ +¢ i) 3 +D" e 2. (D) log|e” +cosx|+e (i) 2V1+e +e
x 1
3. (i) 2e" +1+log|— S| @ 2sin(e’™) + ¢ 4. (i) log|1+logx|+c (i) Z(1+1ogx)“+c
e +
mtan~' x t p+l
5. (1) ¢ +c ii %+c
p+1

1

6. (i) ﬁlog|secx+tanx|+c ; (i) log|cosec2x—cot2x|+log|cosecx —cot x|+c
1] . 1.

7.() S| SIn¥-FSINSX\+C (i) +2(sinx/2+cosx/2) +c

8. (i l[3x+2$in2x+lsin4x}+c. i _—3cosx—icos3x+c

i 2 R 2

: 1, .

9. (i) 10g|tanx|+5tan x+c; (ii) tan(xe*)+c
1 . 1 .

10. (i) E[x+log|smx—cosx|]+c;(u) 5[x+log|smx+cosx|]+c

2
11. (i) 2x/tanx+§tan5’2x+c (i) log|sin x +cos x| +c

12. (i) xcos2a +sin2a.log|sin(x—a)|+c ; (i) xcosa +sina.log|sin(x—a)|+c

1 . 1 .
13. (i) gloglsm3x|—gloglsm5x|+c : (i) log |sin(x+ 7 /6)sin(x—7/6)|+c

sin(x—a)
sin(x —b)

(x+tanl(4/3)J

1
14. (i) glOg *tC . (ii) cosec(a—b)log

15. (» log(acos® x+bsin® x)+ ¢ (i) \/2 sec a/tan xcosa +sina +c¢

2(b—a)

16. (i) Jtan xcosa+sina +c ; (i) 2[sin x + xcos a]+ ¢

cosa

Exercise 9.3

1 I . x 1
L. (i) Etan”gﬂ (i) 7o IZ+C 2. (i) log|1-~1=¢" | +c ; (i) Elog[2X+\/4x2+l}+c
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3. (i) %sin1 (b—xJ+c s (i) —log |(2—x)+vx> —4x+5|+c
a

1.
4. (i) %10g|x3+\/x6+4|+c (i) sin ‘(X)) +c

(x=1/4)+ ~1/2x41] ¢

5.(@) tan"'(x+3)+c¢ ; (i) %log

i e +cos o
6. (1) 1[ J+C (i) log|tan x+~/tan® x +3|+c

sin OC sin oc

. .. 1 . -1 5X—4
7. (1) sin"'(x—=3)+c ; (i) ﬁsm 6 +e
8. (i) sin”'(sin x—cos x) +c¢; (ii) log|(x+a)+~x* +2xa+b* | +c
9. (i) asin™ \/x/a +\/;\/a—x+c ; (i) —acos™ x/a—a*—x* +c

1 X

10. (1) %sinl(x/a)y2 +c; (ii) a [+ d

+cC

11.(1)J:7+C;(ii) Va2 +1+log(x+Vx* +D)+c  12.() ZSinl(;_ocj+c;(ii) sin” (x—1D+c

—X

13. () log‘(x—3/2)+M‘+c ; (ii) sinl(“gx}rc

Exercise 9.4

L10 dx—3 +c L10 T
L7 g4x+3 2. 15708 16 3. log| x+1|+2log|x—2|+c
11 x+1| 5 1 4 9
lo +—lo c ——1 +1]|+=1 -2|+—log|x+3|+
4. log—— i+~ logl——+ 5. ~log|x+1]+logx—2[+ log|x+3]+c
6 ll X~ +£ta -1 i +c 7‘ ll g|x+1| 1
"7 Clx+2| 7 J3 4 °|x-1] 2(x- D
4
8. x+110g(x_2) 0. 21 —[atan™ (x/a)—btan” (x/b)]+c
37 |x+1] —b
1 3 2
10. —glog|x|+ﬁlog|x—2|—EIOgIX+3|+C 11. —log|x|+3log|x—2|-log|x+2]|+c
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x+2| 1 (1+x)’

12. —log 13. lo —tan” x+c 14 10g|X|—110gx—_1+C
FEIETEN R ' 2 Fxr1
I X+ l10 e +c
15. x+3log|x+2|-log|x+1|+c 16. log o] te 17. 59981 5
18. log L — 19. log| 2 |4 e 20. log (M) e
-1 e -1 3+e" 3+tanx
1 5 > +c
21.10g|x|—§10g|x +1]+c 22. 2+ b
1 _
23. log|x+2|—§10g(x2+4)+tan "(x/2)+c 24. log|secx+tanx|-2tan(x/2)+c
Exercise 9.5
2 — 1 -2 1 x+1
. ~tan'| X +l +c 2. llog 2x -1 3. —tanl(3x—J+c 4. —log tc
3 2 3 7|2x+2 6 2 4 13-x
! tanl[zx +1}Lc 1 L | 2x—4|-
5077 6. tan '[si 7. —o X% +2x—
\/g \6 tan [sin(x+2)]+c¢ g \/— x+1+\/—
3 V5 (2x-1 1
“log|2x* —2x+3|+—tan 1( J+c —log|x* +4x+5|—tan"'(x+2)+c¢
8. 3 log] 1+ NG 9. 7 log| I (x+2)
10. 3log|2—sinx|+——+c¢ 11. —l|e’2”‘+3e’x+2|+glog ¢ *l +c
2—sinx 2 2 e +2
1 2 - -1 . 2x+1
12. 510g|(x—5/8)+\/x —5x/4+1/4|+c 13. sin'(2x=5) +¢ 14. sin ?+c
1 - -1 4X—3
15. =S | - te 16. \x* —2x+4+3log|(x =) +~+x* —2x+4 | +c
V2 J41
3
17. \/xz—x+1+§10g|(x—1/2)+\/x2—x+1|+c 18. ‘/x2+2x+2+210g|(x+1)+ /x2+2x+2|+c
19. —log|(cos x+1/2)++/cos® x+cos x | +c
20. —cosocsinl(cosxj—sina.log|sinx+\/sin2x—sin2a | +c
cosa
—xz—x+itan’1 2xtl +c llog e+l +c
21 5 5 NE 2. 4% e s
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Exercise 9.6

1. (1) xsinx+cosx+c; (ii) xtanx—logsecx+c

. — 3 2 . . .
2.(1) —e (X +3x"+6x+6)+c; (i) —x° cos x+3x’sin x+6xcos x—6sin x +¢

4

X 1 1 1 2, 2
3. (1) —| dogx)* —=log x+— |+c¢ ; (i) =¢" (x"—D+c
(1) 4[( g X) Slogx 8} ¢ ; (i) >

4. (i) (e' =1 +c ; (i) x(logx)* —2xlog x+2x+c

5. (1) xcos" x—+1—x" +c; (i) (x+a)tan”' Vx/a —Jax +c¢

6. (1) 3xsin”' x+3v1-x> +c; (i) xtanx/2-2log|secx/2|+c
1
7. (1) E[XCOSIX—\II—X2}+C;(ij) 2[\/;Sin x+cos&]+c

3 6

—x(1—si _
8. (i) m+log(l+31nx)+c ; (i) x—tan’lx—x—+llog(1+x2)+c
COos X 3 6 6
PO
9. (i) —sin~' x.cos(sin”' x) +x+c¢ jo —@n X, X ..
\/1+X2 \/1+X2
11. e'logsinx+c¢ 12. xtanx+c 13. —e*cotx/2+c 14. e*(logx—1/x)+c
15. e“log|secx+tanx|+c  16. e*secx+c 17. e—2+c 18. ~+c
X 1+x
i sin x + cos
19. Lsin2010g[<2 0801 1100 (cos260) + ¢ 20, 2.
2 cosf—sinfd| 2 XCOS X —sin x
21. xsec™' x—log[x++/x* —1]+c 22. x(sin' x)* +2V1-x*(sin"' x) —2x +¢
Exercise 9.7
1 [2cos x-+sinx]+ 2. L x{sin(log x) - cos(log 1)1 + ¢ BN DA% 3
) cosx+sinx]+c .= - . —
2 g g 1+a2 1+x2
4 %e”‘/ﬁ Lcos(x+oc)+sin(x+oc) +c 5 i—i[COSZ)c+2sin2x]+c
"3 J2 "2 10
6. ¢ [x+avl-x*]+c 7. al ~[cos(blog x/a)+bsin(blog x/a)]+c¢
l+a’ 1+b
€4X 1 . 1 . X—l 2 1 - 1
8. 5 B(4cos6x+6sm6x)+§(4cos2x+2sm2x) +c 9. Tx/2x—x +-sin (x—1)+c

10. )HZ_Z\/)cz+4x+6+log|(x+2)+\/x2 +4x+6|+c
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2 —
(x+3)Vx*+6x-4 13 /7x2+6x—4|+c

+—log|(x—-2)+
5 5 log|(x-2)

43 1 23 4x+3 , 3 1l s 5= a . (X
. 2x +3x+4+ I + /(X +=x+2)+c 13. —=x'VJa’ —x*+—sin"'| — |+¢
12. 73 16y2 Og( 4 ) \/( 2 33 2 a

14. %(x2 +1)3/2 +§\/x2 +1 +%10g | x+vx>+1]|+c 15, %sinl[xjgz}r X;Z\/1—4x—x2 +c

I1.

(4x+3)\/72 412 . (4x+3
X)) Ja3v—2 + V2 te
16. 73 32 Ja

Miscellaneous Exercise - 9

X

1. 2(tanx +secx)—x+c 2. ;—O[sin3x—3cos3x+20$inx—20cos x]+c

+c 4. \/x2+ax—2\/ax+a2+alog(\/a+x—\/;)+c

X 2 x 1 1+x
Zlog|1-x*|-Z| x+=— |+=log|—=
3.3gIXI3x3 Jlogl—

5 —51;12)6_'_ 6. x(tan x —sec x) —log | sec x| +1log | sec x + tan x | +¢
1. _
7 5[sm '(x/a)+log|x+va® —x*|]+c g 210g|(1+x)|+1i+c
+ X

+¢ 10. 2xtan' x—log(1+x*) +c¢

9 lcosec20¢~log (x—a
© 2 (x+a)

11. —log|(sin x+cos x) ++/sin 2x | +c 12. tan”'(tan” x) +c¢ 13. log|x+2|+2 +c
+x
_tan”! tan~ x)2
14, tany—cotx—3x+c 15— X @ 07 o0 I e 6 1o
X 2 J1+ 12 tan x+ 2
1 2x-1 in’
17. —tan™' (x—j+c 18. logM+c 19. lsin’1 sin” 2x +c
2 V2 3logx+2 4 2
s0. L 0g|5+4(s%nx‘c"”)|+c 21, 3log|x—2|—i+c
40 ‘5—4(smx—cosx)‘ x—2

22 (c) 23. (b) 24. (¢) 25. (a)
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Definite Integral

10.01 Definite Integral

The definite integral is a powerful tool in mathematics, physics, mechanics, and other disciplines.
Calculation of areas bounded by curves of arc lengths, volumes, work, velocity, path length, moments of inertia
and so forth reduce to the evaluations of a definite integral. The definite integral has a unique value. A definite

b
integrals is given by a function f (x) in the interval [a, b] and denoted by '[ f(x)dx where a is called the

lower limit of the integral and b is called the upper limit of the integral. The definite integral is introduced either
as the limit of a sum or if it has an anti derivative F in the interval [, b], then its value is the difference between the
values of F at the end points, i.e., F (b) — F (a).

() Definite Integral as a limit of a sum

(i) Fundamental theorem of Integral Calculus

(i) To find the value of common definite Integral

(v) Basic properties of definite Integral
10.02 Definite integral as a limit of sum

In a series if the number of terms approaches to infinity and each term approches to zero, then definite
integral is defined as limit of sum.

Definition : Let f (x) be a continuous function defined on close interval [a, b] and interval [a, b] is

divided into n equal parts by the points a+h, a +2h, a+3h,...,a+(n—1)h (where h is the length of each
part), then

L”f(x)dx=ggg[h{f(awf(a+h)+...+f(a+n71h)}} (where n—> o0 and nh=b—a)

=1hi£r01[h{f(a+h)+f(a+2h)+...+f(a+nh)}]

This method of finding the definite Integral is called ab-initio method.
Proof : Let f (x) be real and continuous function in the interval [a, b]

Dividing the interval [a, b] into n equal sub-intervals with 42 width AA = OA, —OA

or AA+AA +AA A+ +A A =b-a
h+h+h+..+h=b—a
or ntimes
or nh=b—-a 3h:b_a
n

let y=f(x) when x=a, y= f(a)
According to figure, coordinates of B will be (a, f(a))
Le. AB = f(a)
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similarly
AB, = f(a+h), AB, = f(a+2h),..,AB, = f(a+nh)

Let the area of rectangular blocks below the curve in the given figure be A, then—

Ya
y=f )
Cn—l ------ .B
Bn—l EDn
C B;
C B, '
B:l---_:% iD;
1
T 7 7
] % ¢
< » X
Of——a——y A A A, A, A
v

A, =Rectangle AA D B+ Rectangle AA,D,B, +....+Rectaangle A _ A D B,
=ABxAA +AB xAA, +...+A B xA A
= f(a)xh+ fa+h)xh+ f(a+2h)xh+...+ f(a+n—1h)xh
= h[f(a)+f(a +h)+ f(a+2h)+...+ f(a +nT1h)]
and if we denote y = f(x), x - axis and two ordinates x = @, x = b and the area bounded by

AA,B BA A then the vlaue of A, will be less then A again let
A, =Rectangle AAB,C+ Rectangle AA,B,C, +....+ Rectangle A (A B C,

=AB xAA +A,B, xAA, +...+A B xA, A,
= f(a+h)xh+ f(a+2h)xh+...+ f(a+nh)xh

=h[f(a+h)+ f(a+2h)+...+ f(a+nh)]
This area will be greater then A therefore the vlaue of A will be greater than A, and less than A, 1ie.
A <A<A,
again A,—A =hf(a+nh)—hf(a)
=h[f(b)- f(a)] (a+nh=b)
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clearly as the rectangular strips become narrower and narrower, £ will be minimum and # — 0 then

the value of A, and A, will be close to A

ie. limA, =limA, =A

h—0 h—0

A= jf dx_llmh[f(a)+f(a+h)+ + fla+n- lh)]

- A =j”f(x)dx =limh[f(a+h)+ f(a+2h)+..+ f(a+nh)]

Conclusion : Definite Integral can be expressed as a limit of a sum
NOTE : We can define the formula as

0 [ (x)dx=timh[ f@)+ fla+h)+..t fla+n—1h)],
b—a
where h= clearly n— oo then 72— 0
n
(i) [" Fdx=limh[ f@+h)+ f(a+2h)+..+ f(a+nh)], where h= b-a
a h—0 n

Any of the above given formula can be used to find the integration.
Some Important Results:

n(n+1)

0 Dr=1+243+..+n=

n(n+1)(2n+1)
6

L)

(i) Zr3:13+23+33+...+n3={ 5

G) D.r=r+2+3F+. 40" =

) D (2r-1)=143+5+..+(2n-1) =
i) a+(a+d)+(a+2d)+..+(a+n-1d)== [2a+(n 1d ]

a1 _a(r’ —1)
(r=1

Ilustrative Examples

(vii) a+ar+ar’ +..+ar r#l

2
Example 1. Find jo (2x+1)dx as the limit of a sum.

Solution : By definition I:f(x) dx = %i_r}(l)h[f(a+h)+f(a+2h)+f(a+3h)+...+f(a +nh)],

where nh=b—-a
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a=0,b=2, f(x)=2x+1, nh=2-0=2
I{j(2x+1)dx:%i_n}gh[f(0+h)+f(0+2h)+f(0+3h)+...+ f(0+nh)]
=1gh[f(h)+f(2h)+f(3h)+...+f(nh)]
=£i£rgh[(2h+1)+(4h+1)+(6h+1)+...+(2nh+1)]
:£i£rgh[(2h+4h+6h+...+2nh)+(1+1+1+...+nEn?)]

=limA[2h(1+2+3+...4n)+n]
h—0

- limh[Zh ”(”2+ D, n} =lim| /°n(n+1)+nh |

h—0 h—0
=lim [nh(nh+h)+nh]=lim[2(2+h)+2] (w nh=2)
=[22+0)+2]=4+2=6.

1
Example 2. Find J:l e* dx as the limit of a sum.
Solution : Here f(x)=e", a=-1, pb=1 (.nh=1+1=2)
J‘jle”‘dx:%in(l)h[f(—1+h)+f(—1+2h)+f(—1+3h)+...+ f(=1+nh)]

:limh[e—Hh +€—1+2h +e—1+3h +“‘+e—l+nh:|

h—0

= limh[e’l.eh +e e +el e+ .+ e’l.e”h}

h—0

=limhe ™ [e” +e v 4.+ e”h}

h—0

h n__
! mh.eh.M

——li
e -0 e" -1
nh 2
~Lime e L Lpimper € 7 [ nh=2]
e h—0 e _1 e h—0 61_1

2

_e —1._. hoqe _ - o 1:
=— lime .kl_r}geh_l—(e 1/¢)e .1”15’13—((611—1)//’1)

( 1} 1 1
=l e—— |XIx—=e——.
e 1 e
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Example 3. Find '[01 x* dx as the limit of a sum.
Solution : Here f(x)=x*, a=0, b=1 o nh=b—-a=1-0=1
lez dxz%i_)ngh[f(0+h)+f(0+2h)+f(0+3h)+...+ f(0+nh)]
=1gh[f(h)+f(2h)+f(3h)+...+f(nh)]
= 1hi£rolh[hz +40° + 90 +...+n°h*]

= 1hin01h.h2[12 +22+3% .. +n7]

h—0 6

(1+0)(2+0) 2 1

6 6 3
Exercise 10.1
Evaluate the following definite integrals as a limit of sums

b 3
1. J'j(x_z)dx 2. L x> dx 3. L (x* +5x) dx

4, J‘:e’xdx 5. J.Oz(x+4)dx 6. f(2x2+5)dx

10.03 Fundamental theorem of integral calculus
Statement : If f (x) is a continuous function defined on an interval [a, b] and

di[F (x)]= f(x), i.e., the anti derivative of f (x) is F (x) then
X

[" fdx=[F )L, = Fb) - F(a)

:%irgh[f(a+h)+f(a+2h)+...+f(a+nh)], h

where F (b) — F (a), gives the value of the definite integral and it is unique.
10.04 Definition

If f (x) is a continuous function defined on an interval [a, b] and the integration of f (x) is F (x) then

[/ f(x)de=[F()]. = Fb) - F(a).
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where a is called the lower limit of the integral and b is called the upper limit of the integral. The definite
integrals is introduced either as the limit of a sum or if it has an anti derivative F(x) in the interval [a, b], then
its value is the difference between the values of F (x) at the end points, i.e. F(b) — F(a).
10.05 To Find the value of definite integrals

To find the definite Integral, firstly we find the integration by the known method and then the limits are
substituted in place of variable. The following examples show the procedure:-

@) Ioﬂlzcosx dx = [sin x]gl2 = sin%—sino =1-0=1

2, AT 20 1115
(ii) L x dx:{fl :1_124_121.

1 dx T . . P p
(i) Lmz[sm x]ozsm (1) —sin (O):E_O:E

We can find the vlaue of definite integral by the methods used to solve the indefinite integral, usually the
methods are used:

() Using standard formula

(1) Substitution

(i) Partial fraction

(iv) Integration by Parts

10.06 Evaluation of definite integral by substitution

b
To evaluate If (x) , by substitution, the steps could be as follows:

)] Consider the integral without limits and substitute, the independent variable (say x) with new variable ¢
to convert the given integral to a known form.

(i) Integrate the new integrand with respect to the new variable ¢ without mentioning the constant of
integration.

(ii1) Resubstitute for the new variable and write the integration in terms of the original variable and solve it
for given limit.

Ilustrative Examples
Example 4. Evaluate the following definite integrals

(2 dx o2 dx ... resin(tan™ x) L 2y
(l) Jll 3X— 2 (11) 4 m (111) .[0 de (lV) 01+ _x4 dx.
2 dx 1 1
Solution : (i) Let I= L Gr_2) = E[IOg |3x-2]|2, = 5[10g4—10g | =511

= %[log4—log 5]= élog%.
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(ii)

(iii)

(iv)

72 dx 72 dx 1 g2
Let I:I =I — =—I cosec’x dx
74 1—cos2x 74 2sin"x 2 Jn/4

1 w2 1 1 1
:5[—cotx]”/4 :5[—cot7r/2+c0t7r/4]:5[0+1]:5

» sin(tan’1 x)

Let [=| ———*dx
~[0 1+x°
Let tan*l)c:t:1 ! ~dx=dt  when x=0 then t=0; x=c0, t=7/2
+Xx

/2
I =J.0 sint dt =[—cost]}'* =—cos/2+cos0=0+1=1.

12
Let I = x4a’x,Let X =t=2xdx=dt
01+ x
when x=0 then t=0; x=1, r=1
1= —[tan*t]})=tan*‘(1)—tan*1(0)=%—0=%

01472

Example 5. Evaluate the following definite integrals.

Solution : (i)

(ii)

(iii)

. 7/4 o) 2 3 Dd .. J'l e’ 1 *d
@) .[0 (2sec” x+x" +Ddx (i) o—d1+e2x X (iid) one x

wl4 2 3
Let 1:]0 (2sec’ x+ x° +1) dx

4 /4 4
| 2tanx+t x| =|2anZ+lfE)LE —(0+0+0)
4 4 44 4

0

1 ot =« A
=2x1+—x +—=2+ +—.
4 256 4 1024 4

X

1
Let I:I ¢ dx Let e =t=e'dx=dt
01+e*

when x=0 then t=¢° =1

when x=1 then r=¢'=¢

e , _ ) L7
= =[tan' 7] =tan 'e—tan'(I) =tan 'e——
Il 1+¢° : 4

1
Let I= IO )Ice; dx  (Integralsting by parts taking e as second function)
=Lxe'Ty - [ 1xe'dr=[1e' ~0]-["],

=e—[e'—e’]l=e—e+e’ =€’ =1
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Example 6. Evaluate the following definite integrals:

_rl2 cos x dx 1+ xlog x
d.
W ], (I+ sin x)(2 +sin x) (i) [ e ( jx
/2 cos x dx
Solution : (i) Let = IO Let sinx=¢ ..cosxdx=dt

(1+sin x)(2 +sin x)

when x=0,7=0 and when x=7/2,t=1

I:J'l dt :J'l[l B 1}07
0A+1)2+1) 0|14+t 2+t

=[log|(1+¢t)|-log|2+¢|];

1+1¢ 1 2 2 4
:{log ZL}O zlog——logazlog(EX—J :logg.
. 1+ xlogx
(ii) Let I= I ( jdx
—I [ +10gx}dx
~[e*logx] e T+ ldx=ef (0

=e‘loge—e'logl =¢* x1-ex0=¢°

Example 7. Evaluate the following definite integrals.

" 74 sin2x
i I dx

i) [
0 sin* x+cos* x « a4+

. w4 sin2x
Solution : (i) Let I=| ——————dx

0 sin* x+cost x
7/4 28In XCOS X

= — dx
0 sin* x+cos’ x

Dividing Nr and Dr by cos’ x, we get

=/4 2 tan xsec’ x
0 1+tan” x

Lettan’ x =7 = 2tan xsec’ x dx = dt

as x=0 then t=0 and when x=7/4 then =1

U dr ) 7 S
I:jol+t2 =[tan™'7]) = tan"'(1) — tan I(O)ZZ_OZZ

; P
@ N
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Let x=atan @ = dx=asec’ 6d6
when x=athenO@=7x/4 and x=cothen O=7/2

jn/z asec’ 6d6O

™4 q* tan® O\ a® + a’ tan®

_¢r2 asec’0d0
=14 g* tan® O x asecO

_ (7’2 sec0dO _LIMZ 1/cos® 40
w14 g*tan* @  a* /4 sin* @/cos* O
1 ¢7 3 1 ¢=2(1—sin?

_ L /209540d9:_4j~ 12 ( smﬂ?cos@d@de
a” 7’4 sin” 0 a” Jml4 sin” 0

Let sin@=t=cos0dO =dt

as O=r/4 thent=1/v2 and O=7/2then t=1

1 -7 1 1 1
I=—4 L l)dt:_ 1 113,
a* vz a* vt

__L+1T 1 (llj( 11 J
L b a3l 3x1/242  1/42

L%{& ZHLF&ﬁ}

Q&| —
(O8]
-~
(98]
-~

3 3 3

1[24242-3v2| 1(2-42) 2-\2

a4_ 3 at 3 - 34
dx

a’cos® x+b*sin” x

/2
Example 8. Evaluate IO

72 dx

Solution : Let I= -
0 g’cos® x+b’sin’ x

Dividing Nr and Dr by cos’ x, we get

jm sec’ x dx
0 g*+b’tan’x

Let btanx=t=bsec’ xdx=dt,when x=0 then r=0, x=x/2 then t =

lee dt 1 1] (]
I =— —5 =—X—|tan | —
b’ a+t" b a a) |,

:i[tan’loo—tan’l 0]= ! —[n/2-0]=
ab ab 2ab
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Example 9. Evaluate J. (v/tan x ++/cot x)dx
Solution : Let I= J.:/Z (Vtan x ++/cot x) dx
B n/{ vsin x \/cos X }

\/COSX \/Sll’lx

7/281N X + COS X
=.[ dx

0 {/sin xcos x

\/—jm (sin x +cos x) dx
v/ 2sin xcos x

J-m (sin x + cos x)dx J~ (sin x + cos x)dx
o J1-(1- ZSlnxcosx) 0 \/1 (sin x —cos x)*

Let sinx—cosx:t:>(cosx+sinx)dx:dt,Also when x=0 then r=-1, x=7/2 then t=1

_\/7[811’1 t:l

:ﬁ[smlm_sm«-MF—FH

_I[n ﬂj N

Exercise 10.2
Evaluate the following definite integrals:

} 3 72 sinx 3 cos (log x)
L[ (2x+1) ax 2 ]y e 5, Jreotoe
S /2 ¢
By 5. [ Jiesinx o [—2—ay
o °\Jy+c
7 J-we‘anlxd g jz(l+logx)2 I 9 jﬁL fsa
) . ° - . D)
0 1+x2 1 X a (X—O[)(ﬁ—
[ cosx) 0 [ [T
0 9+16sin2x " Jire x(log x)*”° -J.O sin 2x cos 3xdx
1 ! X = 1—sinx
13. - dx 14. dx 15, i
.L |:10gx (IOgX)2:| .[ \/1 x Iﬂ/Zl_Cosx
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/4 d /2 i 1
i6. |, . 17, [ 18. [ xtan™ xdx

4sin” x+5cos” x sin x +cos x
1xsin” x - ¥ 2
19. 20. dx 21. | logxdx
j‘) V1-x* jo (x* +a’)(x* +b%) L
r z i dx 3 X
0 (1 1 53, [*?__Sinxcosx o4, / dx
4/”( XSJCOS(X dx IO cos’ x+3cos x+2 '[0 3—x
1 _x2 5 1
25. ~dx 26. j
01+ x U(x+D)(x+2)

10.07 Basic properties of definite integral
Property-I If the limits are not changed then by changing the variable in definite integral the vlaue of
the integral does not change.

e ["f(x)ax={"r(1)an
Proof : Let [ f(x)dx=F(x) s (e)de=F (1)
J| f(x)ar=[F(x)], =F(6)-F(a)
and [ r(e)ar=[F(0)] = F(b)-F(a)= f (x)d

[[£(x)ax={"r(1)an

Property-II If the limits are interchanged then the sign of the integral changes while value remain same.

ie. ["£(x)dx=—]"f (x)ax
Proof : Let [ £ (x)dx=F(x)
[ r(x)ax=[F(x)] =F(b)-F(a)
and J, £ (x)dx=[F(x)]; = F(a)~F (b)=~[F (b)~ F (a) ]= =] f (x)dx
similarly ["f(x)dx=—]"f (x)ax

Property-IIIIf a<c<b
ij(x)dx :j:f(x)dx+ff(x)dx
Proof : Let [ f(x)dx="F(x)

[/ £(x)ax=[F(x)] = F(b)-F(a) (1)
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again [\ £(x)x+ [ f(x)ae=[F ()] +[F(x)]
(c)-F(a)+F(b)-F(c)

F
=F(b)-F(a) @

from (1) and (2) j” fdx =" fx)dv+ j:’ F(x)dx
Generalization

If a<c <c,<...<c,<b,

I:f(X)dx:I:lf(x)dx+J‘:f(x)dx+....+J:f(x)dx

Note: This property is used when integrand is obtained from more than one rule for given interval of
integration say [a, b].

Property-IV '[bf(x)dx=jbf(a +b—x)dx
b

Proof: LHS=L f(a +b—x)dx

Let a+b—-x=y=-dx=dy

when x=a then y=5b and when x=b then y=a

LHS=[" £ (3)-(~dy)=[ F (3)dy (by property-1I)
= '[: f(x)dx=RHS (by property-I)
ie. J.:f(x)dx=_|.:f(a+b—x)dx

Special condition : If a=0 then

J.:f(x)-dx=_|.:f(b—x)dx

If a fucntion f (x) does not change by putting (b — x) in place of x then this property is used. For using
this property the lower limit has to be zero.

Ilustrative Examples

/2 1
Example 10. Evaluate j dx .
O 1++/cotx

zl2 1
Solution : Let = .[0 —1 N m dx
I jm \sin x i (1)
ob 0 /sin x ++/cos x
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G
ool o(5-

dx

_.[m cosx d
or Jcos x ++/sin x
adding (1) and (2)
o] - .[71'/2 A/sin x .[ﬂ/2 COSX dx
\/sinx+x/cosx x/cosx+x/smx
2I_jn/2\/sinx +\/cosxdx_ md [ ]m T
ob Jsin x ++/cos x 0 2
_1 w2 1
I= 1 or J‘(

Note: Similarly using property IV, the value of the following integrals will also be 7/ 4.

. (72 sin”"x .. 72 cos"x |
O f, oy ) [ e i) [,

sin” x+cos" x 0 sin" x+cos" x

.2 1 w2 sec” x r2 cosec”x
(iv) .[ —_— (v) j dx  (vi) .[0 dx

0 l+cot"x 0 sec”" x+cosec"x sec” x+cosec”"x
Example 11. Prove that: J: f(x)dx= fa f(=x)dx-
Solution : Let =] f(x)d
By Property-1V, I= J: f(=a+a—x)dx = fa f(=x)dx

:

Example 12. Evaluate .[ ﬁdx
x

I .[ Jxdx
—x+x

—I dx
b N x)+\/5 X
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or, dx

——dx=
> 1++/cotx

)

(D
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Adding (1) and (2),

Property V : J. f(x)dx=n J. f(x)dx, and f(a+x)= f(x), where f(x) is periodic function with period

a.
Proof : By property III

na

me(X)dx=I:f(x)dx+Lzaf dx+j f(x)dx+..+ f(x)ax

(n-1)a
Now in integral J.:af(x)dx putting x=a+t = dx=dtfwhen x=a, t=0 and x=2a, t=a
J.zaf(x)dx:jaf(avtt)dt =jaf(a+x)dx =Iaf(x)dx ['.'f(a+x)=f(x)]
Now

f(x):f(x+a):f(x+2a)= ..... =f(x+na)

J.:af(x)dxzj.:f dx+jf )dx +.. +jf

n times

=nJ.:f(x)dx

Ia f(x)dx= ZI:f(x)dx ; If f(x)is an even function i.e. f(—x)= f(x)

Property-VI i o
0 ; If f(x)if an odd function i.e. f(—x)=—f(x)
Proof : By property III
J:a f(x)dx=_|:o f(x)dx+_|.af(x)dx (v-a<0<a)
=1, +J.:f(x)dx D
where I, =J:0 f(x)dx
Let x=—-y=dx=-dy
when x=—a then y=a, x=0 then y =0
L={"=f(-y)dy=]"f(-y)dy (Property II)
= J': f(_ x) dx (Property 1)

from eq. (1)
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faf(x)dx=j:f(—x)dx+j:f(x)dx )
Case (i): when f(x) isan even functionif f(-x)= f(x)
then [ F(x)ax=["f(x)dc+| f(x)ax=2["f(x
Case (ii): when f(x) is an odd function if f(—x)=—f(x)
then [ r(x)de==]"f(x)dx+[ f(x)dx=0

Ia f(x)dx= 2I(jf(x)dx ; If f(x)is an even function then f(-x)= f(x)
—a 0 ; If f(x)is an odd function then f(—x)=—f(x)

2 2("F(x)dx ; If fQRa-x)=f(x)
Property-VII: I( f(X)dx—{ Io (x) X a—x X

0 ; I fQRa—x)=—f(x)
Proof : [ r(x)dx=["f (x)de+[ " £ (x)ax [property 11l .0 < a<2a]
[ F(x) i+, (1)
here 1= f(x)dx

Let x=2a—y=dx=—-dy when x=a then y=a and x=2a then y=o0
I, =J.a —f(2a—y)dy=_|.o f(2a—y)dy (property II)

= J. : f (2a - x) dx (property I)

substituting the vlaue of 1, in (1)

J-oz“f(x)dx:j:f(x)dx+j:f(2a—x)dx

Case (i): when f(2a—x)=f(x)

then [ r(x)ax={"f(x)ax+["f(x)ax=2["7 ()
Case (ii): when f(2a-x)=-f(x)

then [ r(x)av="r(x)ax-["f(x)dr=0

[ f(x)ax= 2f, f(x)dx I fRa-x)= f(0)
| 0 ; I fQRa—x)=—f(x)
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Note: (i) when f (2a — x) = f (x) then f (x) should not be considered as even function f (x) is even function
only when f (—x) = f (x).

(i1) If the lower limit is zero then we use property-1V i.e. we substitute x with f (a + b — x) but some time f (x)
doesn't change then we use property VII.

10.08 Special property (Eliminating x)

Iff (@ +b—x) = f (x) then eliminating x from | x f(x)dx

I:xf(x)dxz a;bjjf(x)dx

Proof : Let 1=["f(x)dx
Using Property IV
[[(a+b=2) f(a+b-x)dx
but given fla+b—x)=f(x)

I ='[:(a+b—x)f(x)dx
=(a+b)_|jf(x)dx—_|jxf(x)dx

or I:(a+b)'[:f(x)dx—l

or 21:(a+b)jjf(x)dx:I:a;bjabf(x)dx

Ilustrative Examples

T xsinx

Example 13. Evaluate IO 1+—2dx
cos” x
7 xsinx
Solution : Let = I 11 cos? x
7 sin x
I=| x| ——|dx
ob 0 (1+coszxj
sin x
h J—
ere, f( ) 1+cos” x
Flr—x)= sin(x—x)  sinx )
l+cos’(m—x) 1+cos’x
-, Eliminating x,
T J~ sin x
1+cos’ x
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Let cosx=t=>sinxdx=—-dt x=0 then t=1 and x=x then t=-1

-1 _dt T -1 1
N Ee J‘11+ 2( s

T -1 . -1, ZE E_ 1 zz E :7[_2.
_E[tan () —tan™ (-1) | 2{4 (4)} 2[2} 1

Important standard integral
/2 . T /2
Il :IO logsmxdx:—ElogZZIO log cos x dx
/2 .
Solution : Let I= J.O logsin x dx (1)

Using property 1V,

I= J.;T/zlog [sin(ﬂ/Z—x)]dx

/2
or I = J.O log cos x dx 2)
Adding (1) and (2)

21 = J.;/Z[log sin x +log cos x] dx

= J.:/zlog(sin xcos x)dx

0

— (" log ( o ij dx = J‘:/z (logsin 2x—log2)dx

= [ logsin2x dx~log2[ " d
= |, logsin2xdx—log2|  dx

_ J':/zlog sin 2x dx — (log 2)[x ]

T
/2 .

when I, = J.O logsin 2x dx

Let 2x=t=dx= %

when x=0 then r=0 and x=7/2 then =7

1= ) 1 72 )
I, = 5.[0 log(sint) dt = 5 X ZI() logsint dt (Property VII)
/2
= J.O logsin x dx (Property I) (Using equation (1))
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T T
. from equation (3) 2l =1 —Eloge 2=1= —E(loge 2)
/2 . /2 T
or IO logsmxa’x:j0 logcosxdx:—ElogZ_

71'/21 _ 71'/21 _7[1 2
IO ogcosecxa’x-j0 ogsecxdx—E og?2.

Ilustrative Examples
Example 14. Evaluate the following definite Integrals

4x+3,1<x<L2
3x+5,2<x<4

@ ff(x)dx when f(x){

Solution : (i) J?f(x) dx = jlzf(x) dx+j:f(x)dx

dx+3 ; 1<x<

=J'12(4x+3)dx+j:(3x+5)dx {.'f(x):ijLS ’
) 2 | 3x° )

=[2x +3x]1 -{T-'_le

=[(8+6)—(2+3)]+[(24+20)-(6+10)]=9+28=37.

2 1 2
(ii) J.0|1—x|dx=J.0|1—x|dx+J.l|1—x|dx
1-x x <1
{ |1_X|={—(l—x), x> 1

:Jl(l—x)dx+f(1—x)dx
[
I

x—x2/2] —[x—x2/2]

1 2
0 1

(1-1/2)-0]-[(2-2)-(1-1/2) |=(1/2)+(1/2) =1.

(i) '[02|1—x|dx (iii) J:llelxldx

>0
I N U N R
(iii) Le dx—jle dx+.[oe dx { | x| {—x, <0

0 1
=J. efxdx+_|. e'dx
-1 0
0

=[-e"[, +[ex]§) =(—e’+e')+(e—e’)=2e-2.
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Example 15. Evaluate the following definite integrals

(1) J.:‘xz -3x+ 2‘ dx (ii) J.;Jlogg X

dx (i) J. : |cos x| dx

Solution : (i) Here x?=3x+2= (x— 1)(x— 2)

The sign of x> —3x+2 will be different for various vlaues of x

J.02|x2—3x+2|dx=_|.01|x2—3x+2|dx+_[12|x2—3x+2|dx

=J.01(x2 —3x+2)dx+'|.12—(x2 —3x+2)dx

3 2 1 3 2 2
= x——3i+2x - x——3i+2x
3 2 0 3 2 |

=[(1/3-3/2+2)-(0)|-[(8/3-6+4)—(1/3-3/2+2)]

52,552
6 3 6 3 3
e 1 e

(ii) J.1/8|10g8 x| dx=_|.1/e|10ge x| d)anJ.1 |log, x| dx

= J.II/ —log, x dx+ J.: log, x dx {| log, x|= {

—log,x, If 1/e<x<l
log, x, If I<x<e

=—[x(log, x— 1)]1/6 +[x(log, x-D] [ Iloge xdx = x(log, x— 1)}

=—[0-1)~1/e(~1-D]+[e(1-1) = (0-1)]
=1-2/e+1=2-2/¢

T /2 T
(i) J.|cosx|dx=_|. |cosx|dx+_[ | cos x| dx
0 0 /2
/2 T | | COS X ) O<XS7[/2
- +J' _ “ |cosx|=
J.o cos x dx ﬂ/z( cos x) dx —cosx ; nml2<x<rw
=[sin x]]"* —[sin x]7 ,

=(sinz/2-sin0)—(sinz —sinz/2)=(1-0)-(0-1)=2
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Example 16. Evaluate the following definite integrals:

__(7/2 SINX—COS X
o [P,

/2
i log cot x dx -
@ J.o g ) 1+sinxcosx

l2
Solution : (i) Let I = J.O log cot x dx
l2
or, I =J.0 log[cot( /2 —x)] dx

/2
or, 1 =J.0 log tan x dx

adding (1) and (2)
/2 /2
21=J.0 logcotxdxvtj0 log tan x dx
/2
=J.0 [log(cot x)+log(tan x)] dx
=J.ﬂ/210g(cotx><tanx) dx
0
/2 1 7l2
_jo log( )dx_jo (0) dx
or, 21=0 S 1=0
(i Let o[ sm?c—cosx I
0 14sinxcosx
using property IV
L osin (5 - x) —cos (5~ x)
I = J”T 2 2 dx
’ 1+ sin (Z— x)cos(l— X)
2 2
or 7 :Im cos‘x—smx I
0 14sinxcosx
adding (1) and (2)
2 =0=1=0

Example 17. Evaluate the following definite Integrals:
8 \x a dx
) | =———=dx ii
()'[Ox/x+ 8—x W 0 2
1= —"
0

x++va? —x?
X
—dx
\/;+ 8—x

Solution : (i) Let

using property IV,

V8-x

8
I = dx

° 8= x+,/8—(8—x)
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or

adding (1) and (2)

(ii)

Let

Property-(IV)

adding (1) and (2)

/2
Example 18. Evaluate .[0

Solution :

using property [V

sin x +cos x

e G ®

21 = “ax=[ de=[x] =8, . I=4
'[\/8 x+x/_ '[

a dx
I:()x+ a’—x’

x=asinf = dx=acos6 db
when x=0 then =0 and x=a then =7/2

- acos@df =2 cosO
0 gsin@+acos@® 0 sinf+cosd

—— b (1)

/2

Vs
——-0)do
cos(2 )

—Jdo

. T V4
——0)+ —-0
sm(2 ) cos(2 )

/ _Im sin@do )
0 cos@+sinf 2)
2 = I(MJ 40
0 \sin@+cos@
/2 /2
=], do =1[0]; _5_0
=7
4
dx
z2  sin®x
=" ————adx (1)

0 sinx+cosx

.ol T
s sin (2—xj
I:.[ dx
0 . (7 T
sin| ——Xx [+cos| ——Xx
(2 j (2 j
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dx

72 cos’ x

COS X +Sin x
Adding (1) and (2),

s 02 2
7/281n~ X+ COS™ X
21 :j —dx

0  sinx+cosx

1 ¢r/2 1
290 sinx+cosx

1 1

1—tan’(x/2)

B e

1+tan? (x/2)

|

)

(converting sin x and cos x into tan x / 2)

1+ tan® (x/2)

dx

sec’ (x/2)

'[ﬂ/Z
2790 2tan(x/2)+1-tan’

(x/2)

or -

1
Let tangz = Eseczgdx =dt

when x=0 then t=0; when x=7/2 then ¢ =1

. di U dr
0142012 02 (1-1)°
1 |f+(t n||
2\/5 i o

V2 21

'[ﬂ/Z
2% 1+2tan(x/2)—tan®

(x/2) gy

T
:mlog\/, \/§+1}

—L_OH V2 +1 1
N1 RN I N
(2]

1
B 2\610g (2-1) 22
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Example 19. Evaluate the followng Integral

_[a /a—xdx
e\ g+ x
a /a—x
Solution : Let 1= _[ dx
e\ g+ x

J-a a—x J
=| ——dx
- 2
“Ja*—x

_ a a d a X d
el g

or, =1-1,
h = = 2af e (e f ) function)
where I_J‘aﬁ x = aj‘oﬁ x (~+ f(x) is an even functio
using property VI
=2a [sin’l x/a]0 = 2a(sin’l(l)—sin’l(0)) =2ax(n/2-0)=7na
and L[ =0

a —Xx

(property VI when f(x) is an odd function '[ l f(x)dx=0)

o from (1), I =ma—0=rma
Example 20. Prove that:

nl4 T
IO log,(1+ tan x)dx = gloge 2.

/4
Solution : Let I= J.O log, (14 tan x) dx

Using Property IV,

I= .[:/4loge {1 + tan (% - xﬂ dx

/4 tan (77 /4)—tan x
='[ log, |1+ dx
0 1+tan(zr/4)tan x

:J‘Zloge [1+1—tanx}dx
0 1+tan x

/4 2
=| log, dx
0 1+ tan x
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/4
= J'O [log, 2—log, (1+ tan x)]dx

/4 /4
= jo (log, 2)dx— jo log, (1+ tan x) dx

or 1=(og, )[x]7"* -1

or 21:%10&2:1:%10&2
nl4 T

= IO log(1+tan x) dx = gloge 2, Hence proved.

Example 21. Prove that: [ = J.: log(1+cosx)dx=rmlog,(1/2).

Solution : Let I= J.O log (1+cos x)dx
Using property IV,

1 =J.Oﬂlog[1+cos(7z—x)]dx

or, I =J.:log(1—cosx)dx
Adding (1) and (2),

21 =J.:log(lwtcosx)+10g(1—cosx) dx
=J.: log {(1+cos x)(1—cos x)} dx

= J.: log(1-cos” x) dx

(" ) _ ” .
or 21 —J.O logsin” x dx = 2.[0 log sin x dx
or 1 =J.:10gsinxdx
/2 .
or =2 J.O logsinx dx (property VII)
/2 .
or [ =21, and I, =J.0 log sin x dx
/2 .
or I, = J.O logcosx dx (Using property IV)

Adding equations (3) and (4),

21, = J.:/z(log sin x +log cos x) dx
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/2 .
= J.O log (sin xcos x)dx

/2 sin2x
or 21, = J‘O log( 5 jdx

/2 /2
or 21, =J.0 log(sinZ)c)dx—j0 (log2)dx
or 21, =1, —(log 2)[x];"
or 21 =1, -Zlog2

2

where I, = J:/zlog(sin 2x)dx

Let 2x=t = 2dx=dt and when x=0 then r =0, when x=7x/2 then t=7n

1 ¢~ ) | )
1, :5.[0 log (sint) dt _EI‘) log (sin x) dx
_1 ) ;r/21 . d
or, Iz_Ex IO og(sin x)dx

/2 .
or, I, =J.0 logsinxdx=1,

putting the value of I, in equation (5)

T
21 =1 ——log?2
1 1T g

T 1

I, =—log—

or 17508,

=21 :Zx%bg%:nlog%

" 1
o I() /210g(1+cos x)dx= ﬂlogz

Example 22. Prove that

T xtan x

I—dXZH[(ﬂ/Z)—l]

0 secx+tan x

. J-n' xtanx o ﬂx[ sin x jdx
Solution : 0 sec x4 tan x 0 "\1+sinx

sin x

Here, f(x): -
1+sinx
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B sin(ﬂ—X) __sinx
then, f(”_x)_Hsin(ﬂ_x)_1+sinx_f(x)
a+b
.". Eliminating x rule, I .[ f
e Sinx
0 secx+ tan x 0 1+s1nx
T n[l_ j __J-[ 1- smx]
2o l+sinx/ 270 cos” x
7[ T

2

(1 —sec’ x+sec xtan x) dx
0

T . T
za[x—tanx+secx]o :E[(ﬂ—O—l)—(0—0+1)]

:%[n—z]:n(n/Z—l), Hence Proved

Exercise 10.3

Evaluate the following definite integrals:
L[ [2x+3]dx

4
3. J.l f(x)dx, where f (x) = {
5. J.m x° cos’ x dx

—-rl4

dx

37l4 A/sin x
7. |

/4 \Jcos x ++/sin x

/2
9. J.O sin 2x.log tan x dx
11. 1log[l—lj dx

0 X

72 sin x
i i

) sin x+cos x

T
/4 (x+4j
15. j S~

-7l4) —cos2x

Tx+3 ; 1<x<
8x ; 3<x<4
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2. J.i‘l—xz‘dx

3
4. J. ,[x]dx when [] is the greatest integer function

——dx

In sin xcos x
-7 1+ cos’ x

cosx

[ e
8‘ .[0 COSX —Cosx dx
e +e

1 2—x
10. Illog[2+x}dx

/3 d_x

12. —_—
I’”" 1++/tan x

/2
14. J.O logsin 2x dx

16. J.:log(l—cos x) dx



17. j”” sin® x dx 18. [ —"—dr
—/4 0

I+sinx
19 J.ﬂxsin3xdx 20.- J.mlog(tanxntcotx)dx
“Jo “Jdo
%12 COS X b S (x)
AR I 2. |, F(O)+ fla+b—x)

Miscellaneous Examples
Example 23. Prove that:

Jwr X dx __7a
0 l+cosasinx sina
1
Solution : Let f (X) =
1+ cosasinx
1 1
f(m—x)= = =f(x)

1+cosasin(7r—x) 1+cosasin x

eliminating x rule
1

AN 4 (N —
0 1+cosasinx 270 1+cosasin x
:Zr ! dx
270 2tan(x/2)
1+cosa I
1+tan (x/2)
T oen sec’(x/2)
:_I( dx

279 1+ tan’ (x/2)+2cos o tan (x/2)

Let tan(x/2):t:%secz(x/2)-dx:dt
when x=0 then r=0 and when X=7 then t=

T X VA 2
I —_dx:—j T o
0 1+cosasinx 2790 1+t +2tcosx

3 dt
:”I 2 . 2
O (t+cosa) +(sina)

1 L t+cosa
=T X— tan~ | ——
sina sina o

dx
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- [tan’l (00)—tan™" (cot a)]

sino
V4
= [12—(m /12— = _
no [z/2—(x/2-a)] [~ cota =tan(z/2-a)]
V4 o
sina (a) sina
o dx
Example 24. Evaluate I{) (x2 N az)(xz N bz)
.o (e dx
Solution : Let I = IO (x2 + az)(xz +b2)
1 © 1 1
= 2 —b Io [ JENE - 2+ azjdx (Partial fractions)

1 [1 ,x 1 le
= —tan ———tan —
(az—bz)_b b a a |,

a

:( ! )[%tanloo—ltanlooj—(O—O)}

T [a—bjzz( T (a—b) T

a+b)(a—-b) ab  2ab(a+b)
Example 25. Evaluate J. ﬂ//j cos 2xlogsin x dx

l2
Solution : Let I = _[ p co§12x log sin x dx
4 I

dx

=| logsin x.
g /4

r . /2 .
sin 2x x/2 sin 2x
—'[ cot x X
V3

[ 1 1 /2 )
= _0—§logﬁ} —L/4 cos” x dx

gl L
2 g\/i 2 dxi4

(1+cos 2x)dx
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_llogZ—l Jrs1n2)c
4 2 2 1.
—llog2—l ZETE,
4 2(\ 2 2
214 2
—llog2—£+l_
4 g8 4

=log (1+x%)

Example 26. Evaluate .[0 e dx .
x

Solution : Let x=tan0 = dx =sec* 0 d6O

when x=0 then §=0 and x=o0 then @ =7/2

g2 log (1 +tan’ 0)
'[0 (1+tan20)

/2

sec’ 0 do

T
4

2

sin7r/2ﬂ

(A) 2 J.: sin® x.x dx

2. The value of Lj \/——7
x+N7—x

(A3

= Klzlog(lnt tan’ 0)d0 = J.;T/zlog sec’ 0 dO

/2 /2
= 2'[0 logsecO dO = —2.[0 logcos @ d6

= —ZJ:/zlogcos(ﬂ/Z—H)dH

(Property IV)

) j:lzlog sin0 df = —2(~m /2log 2) (standard integral)

=rmlog, 2

Miscellaneous Exericse -10

/4
The value of '[0 V1+sin2x dx is

(B)0 () a’ (D) 1
dx is
B)2 ©)3/2 D)1/2
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3. The value of _f:::f(x+c)dx is
(A) j:f(x+c)dx (B) j:f(x)dx

4. If A(x)= I:HZdH, then the value of A(3)

(A9 (B) 27
Evaluate the following definite integrals:-
5. I 2 M dx

I'x ( X+ 2)

b 1 1

7 I /28)( +s1nxjdx
0 1+cosx
/2

9. IO x* cos? x dx

/4 . .
11. IO sin 3xsin2x

Iﬂ 2x(1+sin x)
13. 1 (1+cos” x)

15. jol (cos™" x)dx

2
T xdx b8

17. Prove that

0 g’ cos’ x+b*sin*x  2ab

© [ f(x)ax ) [ f (x+2e)dx

1S

©3 (D) 81

xe”

° '[1 (1+ x)2

dx

8' 1 (x_xj))l/?)

1/3 X

dx

1
10. J.Otan’lxdx
2 2
12. J:2|1—x |dx

V2 sin™!
4. j a

0 (1-x%)" dx

dx

”—,a>1
16. IO 1—2acos x+a’

(

| IMPORTANT POINTS]

1. The vlaue of definite integral is unique.

2 0 [kf@dr=k[ fdr
(iii) j f(x)dx=0
3. () [ feode=tim [ f(x)dx

Gi) [ feodx=tim [* fdx
4. Properties of definite integral:

O [ f(x)ax=["(e)ar

@ J,

[fpo]dv=] fOodet [ g

(i) [ fode=tim [* f(x)dx

(ii) ij(x) dx = —J.:f(x)dx
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(i) ij(x)dx :j:f(x)dx+ff(x)dx, where a<c<b

Generalisation: a<c, <c, <c,<..<c, <b
[ f (= [ (e [ p(x)x+ [ F(x)dxrt [ f(x)ax
@) [ f(x)ac=["fla+b-x)dx = [ f(x)de=["f(a-x)dx
W |, f(x)dx=n["f(x)dx if f(a+x)= f(x) [f () is a periodic function of period a]

ZJ:f(x) dx, If is an even function i.e. f(—x)= f(x)
0, If £(x)is an odd function i.e. f(—x)=—f(x)

o) [ f(x)dx= {

2af(x)dx_{2j:f(x)dx, If f(2a-x)=f(x)
0, Iff(2a—x)=—f(x)

Rule of eliminating x If f(a+b—x)= f(x) then

.[:xf(x)dxz a;b.f:f(x)dx

71'/21 . d _ 7[1 2_ 71'/21 d
IO ogsin x x——Eog —IO 0gcos x dx

/2

T /2
and | log cosecx dx = 510g2 = IO log sec x dx

Definite Integral as a limit of sum : If f (x) is continuous function in given interval [a, b] then divide
interval [a, b] in n equal parts having width / .
To evaluate definite integral from this is called "Integration from first principal".

[ FOoydx=timh[ f(a+h)+ f(a+2h)+..+ f (a+nh)],where n—co,nh=b-a

Answers
Exericse 10.1
1

1. 4 2. 5o -a) 3.86/3 4 e
5. 10 6. 82/3

Exercise 10.2
1. 290 2. ml4 3. sin(log3) 4. 2(e-1)
5.2 6. 2(2-\2)e 7 e 8. ~(1+10g2)’ -
' "3 ' "3 3
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13. (€/2)-e
17. ©/4

21. 10g(4/e)

25. 1-n/4

—log, 3
10. 5 log, 11. 0
14. 2/3 15. log(e/2)
18 =2 19. 1

. :

z_m L los(9/8
2555 A B 0g(9/8)

26. log(9/8)

2.4 3. 62
6.0 7.p12
10. 0 11.0
14, Zlog 5 T
_O R
8% 63
2
18. ~« 19. ?
" b—a
) 2
Miscellaneous Exercise 10
2. (C) 3.(B)
6. =(2¢-3) 7. "
6
T 1 3\/5
= ——log?2 N2
10. 1 5 g 11. 0

T 1
———log?2 -
14. 177 g 15. 7 -2

[320]

12.

16. —~=tan

20.
24. 31 /2
4.3

8. pl2
12.p/12

16. 7lo l
. g2

20. mlog?2

4. (A)




Application of Integrals : Quadrature

11.01 Introduction
Quadrature means the process of finding out the area bounded by a given curve.
11.02 Area under a curve

Theorem : The area bounded by the curve y= f(x), the ordinates x = a, x = b and x-axis is
b
expressed by definite integral Ik f(x)dx = L ydx
Proof : Let the equation of curve PQ be y = f (x) where f (x) is single valued real and continuous
function of x in domain [a, b]. According to figure, we need to find the area of figure PRSQP.
Let E(x, y) is any point on curve and F (x+ &x, y+8y) is a point in the neighbourhood. EA and FB

are ordinates of £ and F' respectively.
Draw a perpendicular EC from E to FB and a perpendicualr FD from F to extended AE
AB=0B—-0A=(x+6x)—x=6x
FC= FB—CB=(y+5y)—y=5y

Let area RAEPR=A

Now if the increment in x is d x and the increment in corresponding area is o A, then
0 A = area ABFEA

From figure, (area of rectangle ABCE) < area (ABFEA) < (area of rectangle ABFD)

= y5x<5A<(y+5y).5x

Y
5A A Q
= y<—<—<y+oy yy
ox
D E
When, F — E then 6x—o0 and y+8y -y . E/C
. . 0A . x=b
< — <
> fimys lim Z0slim (y+5)
dA ’
- ySESy X5 R_A B S > X
“ v Fig. 11.01
X

Integrating both the sides with respect to x and within the limits x = a and x = b.

j:dA _ j” F(x)dx

or (AT, = [ f(x)dx
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b A
or (area A when x = b) — (area A when x = a) ='[ f(x)dx
or area PRSQP 0= f(x)dx
b b
or area PRSQP:'[ f(x)dx or '[ y dx
The area of curve y = f(x), under ordinates x=a and x=b X435 > X
Y b v
and X-axis is = '[ f(x)dx or J.a y dx Fig. 11.02

Similarly, the area between curve x = ¢( y) , y-axis and the abscissa y =c, y=d is given by

d d
= I ¢(y)dy or = I xdy

Remark : To find out the area of figure, a rough sketch should be made so that it is easy to determine
the limits of curve and symmetry of curve with respect to axes.
11.03 Symmetrical Area

If the curve is symmetrical with respect to any axis or any straight line, then find the area of one
symmetrical part and then by multiplying with number of symmetrical parts in order to get area.

For example : Find the area enclosed by circle x* + y* =a’

Solution : Clearly the centre of circle is (0, 0) and radius is a and it is also symmetrical about both the
axes.
Total area of circle =4 x [area of OABO in first quandrant]

=4 x [Area bounded by circle y = Ja® —x* , x-axis x = 0 and x = d]

=4J.bydx=4j.b\/a2—x2dx
2
4| ZJa> - ¥ +a—sin1£}
2 2 a

4 (Oﬂ—;%j-(ow)}:mz

- Fig. 11.03
11.04 Area of a curve around x-axis

Y
Area is always considered as positive. It may happen that some
is below the x-axis (which will be negative). Therefore the total area
A
." B 1"[ _

can be calcualted by adding up the numerical values of both the areas.
For Example : Find the area enclosed by the curve y =cosx and x-

axiswhen o< x< 7. _

Solution : It is clear from the graph that the required area's portion is 2 Ol o z%y 3n/2
above x-axis and some portion is below x-axis. c

Fig. 11.04
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/2
So required area = J.O cos x dx +

T
.[ cos x dx
/2

=[sin x]}'* +[sin xI,| = (1-0)+| 0~1]
=1+1=2sq. units
Ilustrative Examples

Example 1. Find the area bounded by the parabola y*> =4x and line x=3.
Solution : On tracing the given parabola and line

Y
Required area = area AOBMA Il A
=2 x area AOMA (- Parabola is symmetrical about x-axis) V¥ =4y %/_
3
— x=3
=2 IO y dx
3 3 X'« ) i > X
=2I V4x dx =2><2J. Jx dx
0 0
2 ] 8
=4X[—x3/2} =_[33/2_0} —
3 o 3
v
g Y Fig. 11.05
=—x 3\/5 = 8\/3 Sq. units.
3 Y
A
Example 2. Find the area enclosed above x-axis by curve y = 2v1—x’ 5 y=2
and x-axis. Z
x=1
Solution : On simplifying y = 2+/1- x
Xy X' > X
=4l or =l @ ) of & [A°
Clearly, curve y =2v1—x" is upper part of ellipse (1) so according to
figure, we have to find out the area of shaded region.
required area =2 x area OABO
v
1 1 ’
=2j ydx=2j 21— x2dx Y
0 0 Fig. 11.06

r 1
=4/ 21— +lsin1x}
2 2

0

= 4_(0+%.§j —(0 +0)} =T sq. unit.
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Example 3. Find the area enclosed by y2 =4ax , x-axis, line x = 2a and latus rectum.

Solution : We have know that the equation of latus rectum of parabola y* = 4ax is x=a . This is presented
by LSL' in figure and line PMQ is x = 2a.

So required area = area SMPL
2a 2a Y
=I ydx=j 4dax dx 4 P
a a L 7/_
/
2a
=2J;jza&dx=2\/;[%x3’2} v=a x=2a
- , . X'« 5 Sl o ™ > X
_ 2\/g —><(2a)3/2 _Z P
L3 3]
— - L\
42 2 v Q
= 2\/5 ava ——a\/g ,
3 3 Y
B B Fig. 11.07

2
_da” [2v2-1].
3
Example 4. Find the area enclosed by parabola y = 4x” and lines, y=1 and y=4.

1
Solution : Parabola y =4x” so x* = 1 y and lines y =1 and y =4 will be traced as followed.

So, required area = area PORSP Y oA o
=2 x area ROLM / 4

4
R

=2j14xdy M V=

o =] v N\

2 4 2 0 X
:_[(y)yz] :_[43/2_13/2]
3 3
2 14 ;{'
- 5[8 ~1]= < 5. units Fig. 11.08
2 2

X
Example 5. Find the area bounded by the ellipse — +% =1 and the ordinates x = 0 and X = ae | where
a

b*=a*(1-¢€*),e<]1.

Solution : The required area of the region BPSQB'OB is enclosed by the ellipse and the lines x =0 and x = ae
The area is symmetrical about x-axis. So

required area BPSQB'OB =2 _f ” ydx
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So, by the equation of ellipse

2
or y2=b—2(02—xz) or yzévaz—xz
a a

ae b
So,  required area = 2.[0 g\/ a’—x* dx

Fig. 11.09

_%é J=e + % gin-
= 2.a1 e +2sm (e)}

2
= 2a b[exll—ez +sin”! e}

2a
=ab [exll —e” +sin” e} sq. units.

Example 6. Find the area of the region in the first quadrant enclosed by x-axis, line x = V2 ¥ and the circle
X’ +y'=9.
Solution : The centre of circle x* + y* = 91is (0, 0) and radius is 3 unit. Straight line x = 2y passes through

origin and cuts the circle at P. On solving the equations of circle and line.

2

x2+%:9:x2:6:_x:i\/g then y:i\/g

Coordinates of P (\/8, \/3), 0 (3,0)and M (\/8, 0). X
required area = area OMPO + area PMQP
N3 p p P(/6,/3)
N 0(y from line) y o+ J.\/g(y from circle) y *
H X
“10dx M Q (3, 0)

.[ dx+L_\/ﬁdx

2 V6 9 3
[ V99— x? +Zsin li} Y’
2 3

2‘/_ ¥ Fi.g 11.10
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6]

(2 40)- [(m 55+ 2w 8

)%
3 973 £9( 2

= Lﬂ 2sin”

J2)
ﬁ 4 2 2 \/gJ sq. units.

Example 7. Find the area of the smaller part of the circle X*+y’=a’ cut by the line x =

Solution : On solving the equations of circle and line,

Coordinates of P (a/\/z, a/ﬁ)

required area = area PSQRP
=2 x area PSRP

=2Liﬁy dx=2.[:/ﬁ\/a2—x2 dx x=

Fig. 11.11

<
|
&

2 a
=2 f\/a2 P+ Lsin X
2 2 a/\/E

2 2

i 2
=2 [%\/az—az +%sinlﬁj [ z_a_+a sin™! ﬂ

242 a2

4 )7 N% 4 )Td

= %(ﬂ— 2) sq. units

2 2

X
Example 8. Find the area of the smaller part of the ellipse — + = =1, cut by line y=c, when c<b.
a

Solution : According to figure the area bounded between ellipse and line is shaded.
required area = area BOPRB
=2 x area BOPRB
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b
:2jxdy
= 2}%«/192 —y’dy

= 2%{%1%2 -y +

b2
—sin™’ (
2

2
_2a O+b—sin’1(1)—£\/a2—c2 LA
b 2 2 2

Y

b

I

c
b s units

A
B
Qm >»R y=c
/ p
o) » X
A 4
YI

Fig. 11.12

Example 9. Find the area bounded by line 2x+ y =4, x-axis and ordinates x =0 and x = 3.

Solution : According to figure, line 2x+ y =4, meets x-axis at x =2 and y-axis at y =4 . When x is from O

to 2, then the graph is above x-axis and when x is from 2 and 3, then graph is below x-axis.

So, required area

AN

=.[02y dx+U;y dx
:.[02(4—2X) dx+‘jj(4—2)€) dx

= [4x—x2]i +‘[4x—x2]2

=[(8-4)-(0-0)]+[(12-9)~(8-4)

=4+[3-4|=4+1=5

x
Find the total area of ellipse —
a

Exercise 11.1

2

2

b

2

Y ~1

= area OABO + area ALMA

Find the area enclosed by parabola y* = 4gx and its latus rectum.
Find the area bounded by circle x* + y* =4, y-axis and x = 1.
Find the area enclosed by y = sin x and x-axis, when 0 < x<27.
Find the area enclosed by y = 2./x and between x=0, x=1.
Find the area enclosed by y =| x|, x =-3, x =1 and x-axis.

Find the area enclosed by x* = 4ay, x-axis and line x = 2.

X
Find the area enclosed by ellipse T + Ky =1 above x —axis.

X
Find the area enclosed by line 2 —% =2 and both axes.
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10. Find the area bounded by lines x+2y =8, x =2, x =4 and x-axis.
11.  Find the area bounded by y = x*, x-axis and ordinates x=1, x=2.

12.  Find the area bounded by y =4x* (in first quadrant), x=0, y=1 and y=4.

11.05 Area between two Curves

Theorem : The area between two curves y =f(x) and y = g (x) N
dx
y=£()

b P
and between the ordinates X=a and x=0b is =_[ [f (x) -8 (x)]dx T S
Proof : In the figure the shaded region represents the area between i )
the curves y = f (x) and y = g (x) and two lines x=q and x=5. - -
The area of this region = area POBAP — area RSBAR == "
b b X'« 5 . B > X
=], Fodx=[ g (nax ' Fig 11.14
b
= [0 -g(0]dx ;
b b / = \
o L G=r dx _L =g dx ”
A=g0y x=fQ)
Remark : The area between two curves x = f (y) and x = g (y)
and linesy=c and y=d is -
b X'« 5 \ / > X
=[,[r (-2 ()]ay Fig. 11.15

Special Cases :
Case-I : If two curves intersect each other at two points then area fo common region is

= [T ()~ g (x)]dx

A

X'« 0 > X y
v A
v A , 0)
Fig, 11.16 y=f 0o §§ y=g®
Case-II: If two curves intersect at one point and the area between D %%g\
them is bounded by x—axis then, X' ' :34.&5?3& X
) C(a0) B dx Di(,0)
c b ' xX=c '
required area =_[ f(x)dx+j g(x)dx v oy
Y' =da
Fig. 11.17
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[where both curves intersect each other at A(C, O)]

Case-III: If two curves, intersect each other at more than two points.

In the interval [a, b], two curves y = f (x) and y = g (x), intersect each other at A, B and C. Clearly
in [a, c] f (x) > g (x) and g (x) > f (x) in [c, d].

required area = area APBQA + area BECDB

=[[Lr )=+ L) ()]s

A

Fig. 11.18
Ilustrative Examples
Example 10. Find the area bounded by parabola y* =4ax and line y = x in first qudrant.
Solution : On solving the equations of parabola and line
y> =4ax or x(x—4a)=0:>x=0,4a S y=0,4a
So, the line cuts the parabola at 0 (0, 0) and A(4a, 4a) so the area between parabola and lines is

4a 4a

= y dx— - ydx
0(y from parabola) 0(y from line)
4 4 4 4 N y=2x
a a a a A
:I 4dax dx—j xdx:2\/gj \/;dx—j xdx .
0 0 0 0 b
A (4a, 4a)
x=|0 :
4a '
2 4a _x2 x=4a
:2\/Z><— O - = x |
T 5] :
X'« o) l > X
4 4q)?
_Ha [(4a)” —o}{( 9) —o}
3 2
Q
_32a2_82_gs : v
3 @ = 3 °4 unis. Y’ Fig. 11.19
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Example 11. Find the area bounded by circle x*+ y* =a” and curve y =|x]|.
Solution : The lines represented by curve y =| x| are y = x and y = —x. They intersect the circle at points

A and B whose coordinates are (q/ \/5 ,al \/5) and (—q/ \/5 ,al \/5) . Required area is shaded in Fig.
required area = area AOBCA

y=-x
=2 x area AOCA
a3 _a a
=2I0/ 2(\/az—xz—x)dx [ 2
where f (x) in taken from circle and g (x) is taken from line y = x <
r ) ) al2
=2| 2Va? - + L sin ' 2o
2 2 a 2|
- v
[ Fi Yil 20
2 2 2 1g. 11.
) Z_a_+a = |-2[0+0-0]
2I af 2x2
B 2 2 2 2 2
_, A A
2( f 2 4 48 4

2
wa

= . units.
4 59 units

Example 12. Find the area between the parabolas y* = 4ax and x> = 4by .
Solution : The equations of given paraboals are
y>=4ax and x* =4by

On solving both the equations Y
(x2 /4b)2 =4ax or x'=64ab’x

or x(x* —64ab*)=0= x =0, 4(ab*)"?

So both the curves will intersect x-axis at x =0 and x = 4(ab*)"”

On tracing the curves we get the fig. 11.21

. X'«
Hence the area between the curves is OCABO
4((1})2)”3 4((1})2)1/3
N jy(From; y2=4ax) B jy(From x? 4by)
Q

4(ab*)'3 4(ab*)'3 v

—J‘ vdax dx— I dx '
0 4b

Fig. 11.21

2 1 3 4(ab2)1/3
3/24(ab®)"3 X
:2\/2.§[x T ——{—}

4b| 3

0
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ol T

12b

:_\/_[8( b )”2] [64 ab’]

_32Ja
3

1
ab——x64ab®
\/_ 12b

32, l6ab _16ab -
3 3 3 g. units.

2 2
X X

Example 13. Find the area of smaller region bounded by the ellipse — + % =1 and line 5 +% =1,
a

Solution : As per diagram, the smaller region between the ellipse and line is represented by shaded region.
Clearly the line cuts the ellipse at A(a, 0) and B(0, b). So required area ACBDA

a a Y
— _ A
N 0 (y from ellipse) y dx 0(y from line) y dx
I —a’ —xzdx—jaé(a—x)dx
o a o a
b r 2 a X'«
22— +a—sm lf “Zlax-2
E L J
=__(0+a—2><£\—(0+0) _2 (az_a_Z\_(O_O)
a _L 2 2J a L 2J ;{'
7r_ab B a_b ab (7[ 2) " Fig. 11.22
4 ) 4 Sq. units.

Example 14. Find the area between the parabola x* =4y and line x=4y—2.
Solution : On solving the equations of parabola and straight line

x=x'=2 or x—x’=2=0=(x-2)(x+1)=0=>x=2,-1

Clearly, the line cuts the parabola at x=2 and x=-1.

2 2
SO’ reqUired arca ABOA - J.—l(y from line) y dx - J.—l(y from parabola) y dx
2 x+ 2
B .[—1 4 _.[ a dx

-G (] | mens
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2

- X S T AT o AT o SQ. units.

B 12 472 12 8 438

_1[6 3} 9 1 .15 9 15 3 9
4

Example 15. Find the area of smaller region between x>+ y* =2 and x=y* .
Solution : The area of smaller region between circle x* + y* =2 and parabola x = y* is presented by shaded
region, to find out the points of intersection. On solving the equation.
X +x=2=x"+x-2=0
=(x+2)(x-1)=0
= x=-2,1 when x=1 then y==1

So both the curves intersect each other at A(1, 1) and B(1, —1). Y
So required area = area AOBCO = 2 x area AODCA

=2[AODA + ADCA]

[ 1 NG
=2 _[ ydx+ I y dx .
0(y from parabola) 1(y from circle) X

=2_I1J;dx+jﬁ\/2—x2 dx}
L 0 1

A

_2 1 x\/— 2 X V2
=2[=1x" +{— 2—x2+—sinl—} Y
3{ f 2 27 2, Fig. 11.24

R

I N 2 NN O I .4 .
32 2 4] “le6 4] |3 2] saunts

Example 16. Using integration, find the area of region bounded by the triangle whose vertices are (-1, 1),

(0, 5) and (3, 2). N
Soluton : Let A(—1, 1), B(0, 5) and C(3, 2) are vertices of triangle. L 505
Equation of line AB r,%
5-1 ] //
—l=—(x+1 BN
y 0+1 (x ) / Yo
or y—l=4x+4 ///
+ %) C(3.2)
or 4x-—y+5=0 9] N7 A*
equation of line BC o :
,. D ‘E
y_5: S(X—O) X< x=-1 O ,\';3 > X

Y Fig. 11.25
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or 3y—-15=-3x

or x+y-5=0 2)
equation of line CA
—1="—(x+1
Y 3+1( )
or 4y—4=x+1
or x—4y+5=0 3)

So, area of AABC = area of trapezium ABOD + area of trapezium BOEC — area of trapezium ACED

0 3 3
:I ydx+I ydx—j y dx
—1(from line AB) 0(from line BC) —1(from line CA)

0 3 3x+5
= [ (4x+5)dr+] (5-x)dx-] L

= [sz +5x]?l - {Sx—g} —i{§+5x}l
:[(0+o)—(2—5)]+[(15—9/2)—(0—0)]—%[(9/2“5)—(1/2—5)]

:[3]+[21/2]—i(39/2+9/2)

21 21 15
=3+——6=—-3=— i
> > > 54 units.

Exercise 11.3

1.  Find the area between parabola y* =2x and circle x* + y* =8.

2. Find the area between parabola 4y =3x* and line 3x—-2y+12=0.
3. Find the area between curves y =+/4—x* x= \/3 y and x-axis.

4. Find the the area between circle x* + y* =16 and line y = x in first quadrant.

5. Find the common area between parabolas y> =4x and x* =4y.

6.  Find the area between x” +y> =1 and x+ y =1 in first quadrant.

7. Find the area between y2 =4ax, line y=2a and y-axs.

8.  Find the area of circle x* + y*> =16 whcih is exterior to the parabola y* = 6x.

9.  Using integration, find the area of region bounded by triangle whose vertices are A(2, 0), B(4, 5) and

C(6, 3).
10. Using integration, find the area of triangular region whose sides have the equations
3x—2y+3=0,x+2y-7=0 and x-2y+1=0.
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Miscellaneous Examples
Example 17. Find the area in first quadrant bounded by curves x* +y” =7 and y =sinx.

Solution : The area bounded by x* + y*> = 7° and y =sin x in first qudrant is shaded in figure.
Required area = OCABO

T T

X
0(y from circle) y O(yrfrom y=sinx)

=_[0ﬂ\/7r2 —x dx—J.Oﬂsinx dx

T

2
2o+ it —[-cosx]’
2 2 T |, 0

<
<

- {0 + %sin‘(l)} —{0+ 0}} +[cos 7w —cos 0]

Fig. 11.26

2 3 3
Tt (_1)_1=7r__2=7r—8
4 4

sq. units

Example 18. Find the area between the circles x°+ y* =1 and (x—1)>+y* =1 |

Solution : Given circles are
X2+ y2 =1 (1)

(x-1*+y" =1 ()
Centres of circles (1) and (2) are (0, 0) and (1, 0)
respectively and the radii of both circles are 1. On solving the x'<
equations of circles (1) and (2).

x° —(x—l)2 =0
or X -x"+2x-1=0
- x=1/2 =  y=+3/2 Fig. 11.27

Coordinates of A = (1/2, ~/3/2) and coordinates of B (1/2, — J312)
where A and B are point of intersection of both the circles
So required area = area OACBO
=2 x area OACDO
=2 [area OADO + areca ADCA]

:2[
= ZUSQW dx+.[ll/2m dx}
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1/2 1
.[ ydx +I y dx}
0 (y,from circle (2)) 1/2(y, from circle (1))



1/2 1

) XT_l 1—(x—1)2+%sinl(x—1)} +2[§\/1—x2 +%sinl x}

0 1/2

Example 19. Find the area between the curves y =sinx, y =cosx, y-axis and 0 S X<7/2,
Solution : On solving y =sinx and y =cosx, sinx=cosx = tanx =1
= x=ml4

Hence both intersect at x=7/4

So at B x=r/4 hence
required area = area of AOBA » 7 s
= area ABEO - area OBEO ) le: B L 2.
l4 d J~ﬂ/4 d
= 0 x— . x ’
0 (y, From y=cosx) y 0(y, from y=sinx) y Y Fig. 11.28
/4 /4 .
='[ cosxdx—j sin x dx
0 0
=[sin x]g/4 —[cos x]gl4
= sin£—0+ cosz—coso
4 4
1 1 2
=—+-—=-1=—=-1=(2-1) sq. units.
V2 2 2 .
Example 20. Find the area of region {(x, y)|x*<y< x} ,
Solution : Given that:
=x’ 9]

@)

and
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Curve (1) is upward parabola and line y = x passes through origin. The region between parabola and lines

has been shaded. On solving equ. (1) and (2).

[336]

Y
A
xzzx:x(x—l)zo YIS
’(%
=x=0,1 A
A y= 0,1 x=1
Hence parabola and line intersect each other at (0, 0) and (1, 1) x=0 C
Required area = area OCABO B
1 1 dx
- 0(y from line) y h IO(y from parabola) y u X'« > X
:ledx—jlxz dx
0 0
v
2 1 3 1 ,
=[¥ 2] -[x13], Y
Fig. 11.29
=(1/2-0)—(1/3-0)=1/6 sq. units
Example 21. Find the area bounded by the y = X+ 2, lines y=x,x=0 and x=3.
Solution : Curve y = ¥’ +2isa parabola whose vertex (0, 2) is Y Sy 2
A =X
on y-axis. y = x is a line passes through origin. The required area
bounded by curve y =x*+2, y=x, x=0 and x=3 is shaded
in figure. In the figure the coordinates of point Q are (3, 11) which Q
is a point of intersection of x=3 and y=x*+2.
Required area = area OPQRO Q@@ <
p il N\
N 0(y from parabola) y T 0(y from line) y *
dx
=" +2)dx— [ xax X'e > X
0 0 x=3
3
=[(w3)+2x] -[*/2] !
v
={(27/3+6)}-(0+0)-[(9/2)-0] Fig. 11.30
=9+6-(9/2)=21/2 sq. units.
Miscellaneous Exercise — 11
1. The area bounded by curve y = «/; and y = x is (in sq. units)
(a) 1 b)1/9 ©)1/6 (d2/3
2. The area (in sq. units) bounded by curves y*=x and x* = y is
(a)1/3 (b) 1 (c)1/2 (d)2



10.
11.

12.
13.

14.

15.

The area (in sq. units) bounded by parabola x> = 4y and its latus rectum is
(a)5/3 (b)2/3 (c)4/3 (d)8/3

The area (in sq. units) bounded by ¥ =sinx, % Sxs 37” and x-axis is

(a) 1 (b) 2 (c)1/2 (d) 4

The area (in sq. units) bounded by ¥* =2x and circle x>+ y> =8 is

(a) (27 +4/3) (b) (7 +2/3) (c) (4m+4/3) (d) (z+4/3)
Find the area between parabola y* = x and line x+y=2.

Find the area between y? =2gx—x* and y” =ax in first quadrant.

Find the area between parabola y = x* and y = | x]| .

Find the common area between circle x* + y> =16 and parabola y* = 6x.

Find the area bounded by x*+ y* =1 and x+y>1.
Using integration find the area of a triangle whose vertices are (-1, 0), (1, 3) and (3, 2).
Find the area bounded by line y = 3x+ 2, x-axis and ordinates x=—1 and x=1.

Find the area between y* =2x, y=4x—1and y>o.

Find the area between y® = 4x, y-axis and line y =3.

Find the area between the two circles x* + y> =4 and (x— 2)2 +y*=4.

(

| IMPORTANT POINTS]

The area bounded by curve y = f (x), x-axis and ordinates x = a and x = b is given by definite integral

J.:f(x) dx or J.:ydx i.e. area =J.:f(x) dx=_|.:y dx.

The area of the region bounded by the curve x = ¢( y) , y-axis and the lines y = ¢, y = d is given by the

d d
formula : Area =J. o(y)dy =j xdy.

If the curve is symmetrical about any principal axis or any straight line, then the total area may be
calculated by multiplying the area of one symmetrical part by number of symmetrical parts.
Quadrature is always considered as positive. So if some portion of area is above x-axis and some portion
is below x-axis then calculate the required area as a sum of individual parts of both areas.

The area of the region enclosed between two curves y = f (x) and y = g (x) and the lines x = @ and
x = b is given by the formula.

Area = [ [f(x) - g()]dx, where f(x)2 g(x) in [a, b]

N
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6. The area of the region enclosed between two curves x=¢(y) and x=y(y) andy=candy=dis

given by the formula = Ld [6(»)—w(y)]dy

ANSWERS

Exercise 11.1

1.8/3 a?sq. units 2. (\/§+2ﬂ'/3) sq. units 3. 4 sq. units

4.4/ 3 sq. units 5. 5 sq. units 6. 2/ 3a sq. units 7. 3p sq. units
8. mab sq. units 9. 2ab sq. units 10. 5 sq. units 11.7 /3 sq. units
12. 7/ 3 sq. units

Exercise 11.2

1. 27 +4/3) sq. units 2. 27 sq. units 3. /3 sq. units
4. 27 sq. units 5. 16/ 3 sq. units 6. m— 2 /4 sq. units 7.2 a*/ 3 sq. units
8.9/ 2 sq. units 9. 7 sq. units 10. 4 sq. units

Miscellaneous Exercise — 11

1. (c) 2. (a) 3.(d) 4. (b) 5(a)
6.9/ 2 sq. units 7. a’(m/4-2/3) sq. units 8. 1/3 sq. units

9. 4/3(J/3 +4x) sq. units 10. 7 —2/4 sq.units  11. 4 sq. units

12. 13/ 3 sq. units 13. 1/ 3 sq. units 14. 9/ 4 sq. units

15. (87 /3-2+/3) sq. units
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Differential Equations

12.01 Introduction

Most of the problems in science and engineering are solved by finding how one quantitiy is related
or depends upon one or more quantities. In many problems, it is easier to find a relation between the
rate of changes in the variables than between the variables themselves. The study of this relationship gives
rise to differential equations. Therefore, an equation involving dependent variable, independent variable
and derivative of the dependent variable with respect to independent variable is called a differential equation.

Differential equations which involve only one independant variable are called ordinary differential
equations. If the differential equation involves more than one independents variable, then it is called a
partial different equations. Here we shall confine ourselves to the study of ordinary differential equations
only. Now onward, we will use the term 'differential equation' for ordinary differential equation.

dy , d’y

'y .
For example : —=x"y, -5—+6y=sinx,
P dx Y dx* dx Y

Where x is independent variable and y is dependent variable.
12.02 Order and Degree of a Differential Equation

Order of differential equation: Order of a differential equation is defined as the order of the
highest order derivative of the dependent variable with respect to the independent variable involved into
the given differential equation.
For example :

dy .. o : .
(1) Differential equation d_)yc =e" is the order one because in this equation the dependent variable y

has maximum one differentiation.

2
d Z + xﬂ + 2y =sin @, because in this equation the dependent variable y
X

(i) Differential equation x’ y
x

has maximum two times differentiation.

dyY d
(i) Differential equation (d_ij +d—i+ 3y =0 the of order one because the dependent variable y has

maximum one differentiation.
Degree of a Differential Equation :

The degree of a differential equation is the degree of the highest order derivatives, when differential
cofficients are made free from redicals and fractions.

3

3.2 d
(1)  The degree of (%) +%— 3y =0 is two because the highest order derivative is d_i) whose
x X x

power is 2.
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(i1)

(i)

2 2 2/3
The degree of %4_{14_(?} } =0 1is three, because on rationalization it becomes
X X

3 2 2

d’ d

(a’ Zj = —{1+ (d_yj } and the power of highest derivative is 3.
X X

. . dy Xy
The degree of differential equation —— = is one.
dx Xy

Remark : Order and degree (if defined) of a differential equation are always positive integrals.

Illustrative Examples

Example 1. Find the order and degree of following differential equations.

_dy . d’y dy . Lod’y (dyj
M dx cos (it dx*  dx y=¢ (i1 dx’ * dx *
2 d'y . (d’
@iv) y=xﬂ+ a (v) —i)+s1n z) =0
dx dy/ldx dx dx

Solution :

@

(i1)

(i)

(iv)

™)

d
The highest order derivative of y in this differential equation is a’_z so its order is 1 and the highest

power of a’_z is 1, so its degree is 1.

2
The highest order derivative of y in the given differential equation is 1 Z so its order is 2 and the
X

2
highest power of 1 Z is 1, so its degree is 1.
X

2
The highest order derivative of y in the given differential equation is d_z’ so its order is 2 and the
X

2
highest power of 7 Z is one, so its degree is 1.
X

o N . o (ayY d .
On simplification we see that the given differential equation is x(d—yJ +a’ = yd—y, hence order is
X

X

1 and degree is 2.
4

The highest derivative of y in the given differential equation is d—i}, so its order is 4, also the given
X

differential equation is not a polynomial in context with diffrential coefficients. So the degree of
equation is not defined.
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Exercise 12.1
Find the order and degree of following differential equations.

2

dy

1. —=sin2x+cos2x 2. = =sinx+cos x

dx dx

4> 2 d 3
3. ( ZJ +(—yJ=0 4. (QJ L

dx dx dx)  dyldx

d2 d ) 3/2

Y Y

Cr | Z2 , _
5. adx2 l: (de } 6. xdx+ ydy=0

ay) | (dyY dy 3,
7. +y|—| +y =0 8. x—+———=

[dxzj y(dx Y dx (dy/dx) Y

12.03 Formation of differential equation
If the given family f of curves depends on only one constant parameter then it is represented by an
equation of the form

f(x y,a)=0 (1)

Differentiating equatioin (1) with respect to x

, ,_d
¢(x, y, ¥y, a)=0 [where y =d—)yc] (2)

The required differential equation is then obtained by eliminating a from equation (1) and (2) as
Jx y, y)=0
This is called the required differential equation of family of curves. Similarly if the given equation
has two arbitrary constants then differentiatign twice and by eliminating the arbitrary constants, we get
the equation of family of curves.
Illustrative Examples
Example 2. Find the differential equation of family of straight lines which passes through orgin.
Solution : The equation of straight line passing through origin is

y =mx, where m is arbitary. (1)
On differentiating equation (1)
dy
e 2
On eliminating m from (1) and (2)
dy o o : :
X I =y, which is the required differential equation.
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X

Example 3. Find the differential equation of family of y = ae® +be”
Solution : y=ae™ +be”" (D

Differentiating eq. (1) with respect to x

b _ 2ae* —be™ ()
dx
Again differentiating
2)’ 2
=4ae™ +be” 3
dx’ )

From (2) and (3)

2
ﬂ _d_y =2ae** +2be ™" = 2(aez" + bef")

dx*  dx
d’y _d_y_2 (From eq. (1))
dx*  dx . 4

This is the required differential equation.

Example 4. Find the differential equation of family of curves for y=e" [A sin x+ B cos x]

Solution : y=e"[Asinx+Bcosx] Differentiatign with respect to x (1)
Ay iae . .
d—:e [Asin x+ Bcos x]+e*[Acos x— Bsin x]
X
- ﬂ: y+e*[Acos x— Bsin x| ()
dx
d*y dy ) .
=—+e¢"|Acosx—Bsinx|+e"[|-Asin x—Bcosx
= dx2 dx [ ] [ ]
d’y dy _dy
7 T __ From (2
= A dx dx (From (2))
d’y dy+2 0
or -2—= =0.
dx* dx Y

This is the required differential equation.

Exercise 12.2

b
1. Find the differential equation of family of curves for y =ax+ e

2. Find the differential equation of family of curves for x*+ y* =a?.

3. Find the differential equation of family of curves for y = Ae’ + Be™ .
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4. Find the differential equation of family of curves for y=¢*[Acosx+ Bsinx]|.

5. Find the differential equation of family of curves for y = acos(x +b) , where a and b are arbitrary

variables.
12.04 Solution of a Differential Equation
The solution to the differential equation used in the equation refers to a relationship in the independent
and dependent variables which does not contain any differential coefficient and the given differential equation
is satisfied for derivative obtained.
The solution of a differential equation is also called its primitive because the differential equation is
a relation derived from it.
General, particular and singular solution
(i) General solution : In the solution of a differential equation if number of arbitrary constant are
equal to the order of it then that solution is called general solution. This is also called total solution
or total integral or total primitive.

d2
For Example : y = Acos x+ Bsin x is a general solution of differential equation 7 Z +y =0 because
X

arbitrary variables present in the solution are equal to the order 2 of the equation.
(i) Particular solution : The solution of a differential equation obtained by assigning particular values
of the arbitrary constants in the general solution is called "particular solution'.

2

For Example : y =3cosx+2sinx is a particular solution of differential equation 7 Z +y=0
X

(iii) Singular solution : Singular solutions of a differential equation are those where arbitrary constants
are not present and fails to have a particular solution of general solution.
Remark : Singular solution is not there in syllabus. Hence we will not discuss it here in detail.

Ilustrative Examples

a d
Example 5: Prove that Yy =c¢xX+— is a solution of differential equation y = P A .
c dx dyldx
Solution : Given equation is y=cx+(a/c). (D
differentiating with respect to x
dy
—=C 2
I ()

On eliminating ¢ from (1) and (2)

ZX(Q}L
Y5 )y dv)

Hence y =cx+a/c is solution of given differential equation.
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2

d”y

Example 6. Prove that y =asin2x is solution of given differential equation +4y=0.

x2
Solution : Given equation is ¥ =asin2x (1)
differentiating with respect to x
d _ 2acos2x 2)
dx
again differentiating with respect to x
d’y )
=—4asin2x 3
P (3)
'y
—+4asin2x=0
dx
d’y
and 1 +4y=0 [From Eq. (1)]
X

Hence y =asin2x is a solution of given differential equation.

Example 7. Prove that y+x+1=0 is solution of differential equation (y—x)dy —(y*—x*)dx=0.
Solution : Given equation is

y+x+1=0

y:—(x+1):>dy:—dx (D)
LHS of given differential equation

(y—x)dy—(yz—xz)dx

=(y—x)(—dx)—(y—x)(y+x)dx [ From eq. (1)]
:—(y—x)(l+x+ y)dx

=0

= RHS

Hence y+x+1=0 is a solution of differential equation.
Exercise 12.3

2
1.  Prove that y* = 4a(x + a) is a solution of differential equation y = |:1 — (%j } = 2)(? .
X X

d’y  dy
~+—-2y=0.

2. Prove that y=ae > +be* is a solution of differential equation
q X~ dx
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3. Prove that y=—> is a solution of differential equation (1 + xz)?+ (1 + y2) =0.

1+cx x

2
d Z+xﬂ+y=().
dx dx

4. Prove that y = acos(logx)+bsin(logx) is a solution of differential equation x’

2

d
5.  Prove that xy =logy+c is a solution of differential equation A (xy * 1) )

dx 1-xy
12.05 Differential Equation of First Order and First Degree

There exists a dependent variable x, an independent variable y and 2 in an differential equation

dx
of first order and first degree. hence the equation may be written as
fl_y: (x, ), where f(x, y) is a function of x and y
X
dy _f(x)
o dx  g(x,y)
or f(x, y)dx+g(x, y)dy=0

As it is not possible to integrate every function similarly it is not possible to find solution of every
differential equation. But if the differential equation is in standard form of any one out of below mentioned
then it is possible to have solution of such differential equations.

(A) Differential equation in which variable separation is possible.
B) Variable separation is possible by substitution.

©) Homogeneous differential equations.

(D) Differential equation are reducible to homogeneous form.

(E) Linear differential equation.

F Differential equation are reducible to linear differential equation.

Remark : Apart from above discussed methods in some situation the solution of differential equation
is possible by finding integral multiple, but as not a part of syllabus, the studies of such cases is not porvided
here.

(A) Variable separable form
In the equation M (x, y)dx+ N(x, y)dy =0 on separating the variables and writing in the form of
J(x)dx+g(y)dy=0 (1
here the variables are separated hence on integrating the each term of equation (1) following solution
is obtained.

I f(x)dx +Ig (y)dy =C, where C is any arbitrary cosntant.
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dy
Example 8. Solve

Solution : Given equation is ——=¢€ -€

Ilustrative Examples

“r ex+y
dx
d

x y

dx

now on separating the variables e'dx=e"dy

integrating both the sides Iexdx = J.e*y dy
= e'=—e"+C
or e*+e’ =C, where C is integral constant.

This is the required solution.

d .
Example 9. Solve d_z =smx—x .

d .
Solution : Given equation is d_z =SInx—x
on separating the variables, dy = (sin xX— x) dx
integrating both the sides, I dy = I(sin x—x)dx
x2
or y=—COSX— > + C, where C is integral constant.
This is the required solution.
Example 10. Solve xcos’ ydx = ycos” xdy.
Solution : Given equation is xcos” ydx = ycos” xdy

dy xcos’y xsec’x

or ) )
dx ycos"x ysec'y

On separating the variables

or ysec® ydy = xsec® x dx
integrating both the sides I ysec’ydy = J.xsec2 xdx
on integrating by parts

ytan y —logsec y = xtan x —logsec x+ C , where C is integral constant.
This is the required solution.
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1-—
Example 8. Solve: ﬂ+ Y .

dx 1-x

. . L dy 1-y?
Solution : Given equation is R
X -X
N ting the variables —= dy
ow on separating the variables =-
p g N \/1 S

inteerating both the sid | d__ [ dy
integrating bo e sides N == -
I-x \/l—y

sin”' x =—sin"' y+C, (First form) where C, is integral constant
If we take C, as sin™' C then

sin”' x+sin”' y=sin"' C

by inverse circular formula [sin*1 x+sin”' y = sin’l{x\/l N }}

sin”! [x\/l— v+ y\/l—xz} =sin”' C

or x\/l—y2+y\/1—x2:C
This is the required solution.

Exercise 12.4
Solve the following differential equations.

1. (ey+1)cosxdx+eysinxdy:0 2. (1+x2)dy:(1+y2)dx
3 (x+1)d_y:2xy 4 d—yzex’y+x e’

) dx ’ dx
5. (sinx+cosx)dy+(cosx—sinx)dx=0 6 d—y=w

' Y B T dx e te

, ) dy x(210gx+1)

7. sec” xtan ydy +sec” ytan xdx =0 8. E_m
9. (1+cosx)dy =(1-cosx)dx 10. 1-x%dy = X’dx

(B) Differential equation reducable to variable separable

In this method the given differential equation may be reduced to variable separable form by suitable
substitution and by getting its solution and again substituting required solution can be obtained. Following
examples will explain the above method.
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Illustrative Examples
d
Example 12. Solve d_y =(4x+y+ 1)2 .
X
Solution : Let dx+y+1=t

On differentiating with respect to x,

4+ﬂ:£:ﬂ:£—4
dx dx dx dx

by substitution in given equation

dt

——4=r
dx
d
—=t+4
= dx

= T2 dt =dx (seperation of variables)
on integration J‘;zdt = jdx
1*+(2)
or %tan1 (t/2) = x+C, where C is integral cosntant
or tan"' /2 =2x+2C
or t=2tan(2x+C,), where C, =2C

putting the vlaue of ¢ the desired solution is

4x+y+1=2tan(2x+C,)

d
Example 13. Solve: (x—»)’ d—z =a’.
Solution : On writing the given equation in the following form

2

@ (1
dx (x—y)

Let x—yzt:l—%:%

So from eq. (1) 1—%=?—22

on simplification % = 1—?—22 = i t—zaz



SO

On integration

or

jdx=f{r+ﬂ?iﬁ}dt

1 t—a
x=t+a’ 2—10g (ITJ +C, where C is integral constant.
a a

putting the value of ¢ the required solution is

yzﬁlog{m}w_
2 X—y+a

d .
Example 14. Solve: d_z: sm(X+ y)+cos(x+ )’).

Solution : Let x+ y =¢, on differentiating with respect to x

=

1+Q:£
dx dx
dy _dt _
dx dx

on substitution in given equation

or

or

or

on integration

or

dt )
——1=sint+cost

dx
dt .
— =1+sint+cost
dx
dt _d ‘ .
(sint+cost+1) =ax [separation of variable]
2
(1/2)sec (I/z)dtzdx
I+tan (1/2)
2
(1/2)sec(t/2) dtzjdx
1+tan(t/2)

t
log [1 + tan 5} =x+C, where C is integral constant

(x+y)
log{ljttan 7 }=x+C_ [~ onputting r=x+y |
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Example 15. Solve {M}ﬂ _Xty+a

x+y—-bldx x+y+b

Solution : From the given equation

dy _ (x+y+a)(x+y-b)

dx (x+y—a)(x+y+b) (1)
dy dt ) _
Let x+y=t=>l+—=— (on differentiation)
dx dx

dr (t+a)(t—b)

Rl i | |

3. & (1—a)(11b)
o dar 2(r-ab)
on simplifying & (1—a)(t+0)
t(b—a)

2dx =1 d

o gy { " tz—ab} :

t(b—
on integration J‘ZdX=J‘[1+ t(z_;;)} dt
b—a

2x=t+

log(t - ab) +C, where C is the integral constant

on putting the vlaue of ¢, the requried solution is

b—a

X—y= log[(x+y)2—ab}+C_

Exercise 12.5
Solve the following differential equations.

1. 2 dy _ 2 s dy_ 1
(X+y) dx ¢ dx x+y+1
3. cos(x+y)dy =dx 4. ™ D
dx
dy x+y+1
5. (x+y)(dx—dy):dx+dy 6. L =_"72""°
dx  x+Yy
7. x+y:sinl(ﬂj g d__1 .,
dx dx x-Yy
dy dy _ (x—y)+3
9. E—sec(x+y) 10. o —2(x_y)+5
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(C) Homogeneous differential equation
Differential equation f(x, y)dx+ g(x, y)dy =0 is called homogeneous differential equation if it

could be expressed in following form

dy y
2 _FlZ
dx ( x} M
re.in f(x, y) and g(x, y) the sum of degrees of x and y in every term always remains same.
Let, y=vx 2)
differentiating with respect to x
N (3)
dx dx
Using (2) and (3) in (1)
v
vtx—=F(v
o =F)
dv
x—=F{W)—-v
or I )
! dv = ax i i
or F(v)—v . [separationof variable]

) ) 1 ..
on integration dv = _[ —dx =log x+ C, where C is integral constant.
X

On solving LHS and putting v = % , gives the required solution of differential equation.

dx
Remark : If the homogeneous differential equation is of the form T = f(x, y), where f(x, y)
y

dx dx
is a homogeneous function of degree zero, then put x =vy and find d_y and put the value of E =f(xy)

and find the general solution of differeneation equation.
Ilustrative Examples

dy 3xy+y’
Example 16. Solve, & =xy—2y
dx 3x
dy 3xy+y’
Solution : Given equation 2o xy—zy (D
dx 3x
Given equation is homogeneous differential equation
so let y=vx (2
N _, 3 3)
dx dx
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using equation (2) and (3) in (1)

dv 3vn? +v7x? 3y +v?

VHEX—= > =
dx 3x 3
dv 3v+y’ v
OI‘ X—= -y =—
dx 3 3
1 1 ) .
or v—zdv = gdx [on separating the varaibles]
1 1 ..
or ——= glog|x| + C, where C is integral constant
v
x 1 y
or ——=—10g|x|+C_ cy=2
y 3 X
this is the required solution.
d
Example 17. Solve : =2 tan (zj :
dx x X
d
Solution : DY tan (zj (1)
dx x X
This given equation is homogeneous differential equation
So, let Y =VX
SN
= dx dx
v
now from (1) v+x—=v+tanvy
dx
1 . .
or ;a’x =cotvdy [by separating the variables]
on integrating log | x|=logsin v +log C, where log C is integral constant.
or x=Csinvy
on putting the value of v required solution is
x=Csin (lj _
X
. d .
Example 18. Solve xsin (XJ—); = ysin (XJ -X
x )dx X
Solution : From the given equation
dy _ysin(y/x)—x
dx xsin(y/ x) (1)
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Given equation is homogeneous differential equation

So, let y=vx 2)
b, )
dx dx (
b i erXﬂ_vsinv—l
s0 by eq. (1) dx sinv
dv
or V+X— =V —Cosecv
dx
1 ) ) .
or ;a’x =—sinvdy [by separating the variables]
log(x/c)=cosv, where C is integral constant
Or x — CeCOSV

on putting the vlaue of v required solution is

cos(y/x)

xX=ce
dy
Example 19. Solve : x—-=y (log y —logx+1)
X
: : : dy _>, |
Solution : From given equation I x og 24 (1)
equation (1) is homogeneous equation
So, let y=VXx 2)
b, .
dx dx (

using equation (2) and (3) in equation (1)

v+xﬂ=v(logv+l)

dx
xﬂ =vlogv
or I
1 1 . .

or dv=—dx [by separating the variables]

vlogv X

(l/v)

on integration log v J.
or log(log v) =logx+logC, where log C is integral constant
or logv=Cx
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or log2 = Cx [ v=y/x]
X

This is the required solution

Exercise 12.6

Solve the following differential equations.

1. xzydx—(x3+y3)dy=0 2. d—y=l+sin(1j
dx x X
2
3. xd—y+y—=y 4. xsin[l}d—y:ysin[l}—x
dx x x |dx X
5. xdy—ydx=+x>+y*dx 6. (x2+y2)dy=2xydx
7. (1+e”")dx+e"/y(l—ijdyzo 8. (3xy+y2)dx+(x2+xy)dy=0
y

9. )c2?:)c2+xy+y2 10. x(x—y)dy=y(x+y)dx

X

(D) Differential Equation Reducible to Homogeneous Form
dy ax+by+c a

. . . . _—_— _i_

When differential equation is of the form dx a'x+b'y+c'’ where PIAAY (D)

where ¢ and c' are constants then this may be reduced to a homogeneous eq. by substitution x =X + 5

and y=Y +k we may get the required solutions

so, let X=x-h : Y=y—-k
dx =dX ; dy=dY
d_Y_ a(X+h)+b(Y+k)+c
s0 by eq. (1) dX ' (X +h)+b'(Y +k)+c'
dY _ (aX +bY)+(ah+Dbk+c)
or dX (a'X+b'Y)+(a'h+b'k+c) 2)
In order to make equation (2) a homogeneous, the constants / and k are selected such that
ah+bk+c=0
[ [ " (3)
a'h+b'k+c'=0
on solving them the values of /& and k are found now using equation (3) in equation (2)
d_Y _aX +bY 4
dX aX+b'Y “)

which is homogeneous, hence solve (4) by homogeneous method and at last put X =x—h and

Y = y—k and get the required solutions.
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1

a
Remark : The above methods fails when — = — because then the vlaues of 4 and k will be either

b b

a b 1
infinite or not defined, in such case let o = o = . then the equation (1) will be of form.

dy _ ax+by+c

dx_m[ax+by]+c' ®)
Now solving eq. (5) by substitution ax+by =v
il =a+ b( vre J
dx myv+c'
which can be solved by method of separation of variables.
Ilustrative Examples
Example 20. Solve : @ = 7x—3—y—7
dx Ty—-3x+3
a
Solution : Given equation is reducible to homogeneous differential equation because 7 # o
SO put x=X+h, y=Y+k
dy 71X -3Y+(7Th-3k-1)
dX  3X +7Y +(7K —3h+3) 1
Select & and k such that
Th-3k-7=0
and Tk -3h+3=0
on solving these, h=1 and k=0
So, fi ion (1 ar _1X- 2
o, from equation (1) X 33X 177 2)
which is homogeneous, so put Y =vX
d_Y =v+ X ﬂ
dX dX
from (2 pex T3
s, from (2) dx 3+7v
dv T7-3v
X—= -V
= dX  —3+7v
X T3y, tion of variabl
or X -1 [separation of variable]
dX T( 2v 3
] —=— dv — dv
or p% 2(#—1} V-1
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On integration —7log X = %log (v2 - 1) —glog (V—_D —log C, where log C is integral constant
v+

(VZ _1)7/2(v+1)3/2
R =logC

log X" +log
log[ (v+1)’(v=1)* | X" =log C
5 2
. Y Y ,
putting the value of v log |:(;+1J (;—lj }X =logC

or (Y+X)(Y-x)=C
now put X=x-land Y=y

(y+x—1)5(y—x+1)2 =C

This is the required solution.

dy x+y+1
Example 21. Solve : —=———.
dx x+y-1
: : : : . : a_b
Solution : The given differential eq. is not reducible to homogeneous form because here P = o
So, to solve such equation we will substitute.
xX+y=v
dy dv
I+—==—
of dx dx

a’_y_dv v+1

SO I de = o1 [From given eq.]

_ v
o dx v-1
-1
or 2dx = (V ) dv
%
1
or 2dx = (1——}61\/
v
1
on integration, Ide = I 1—; dv
2x=v—logv+C, where C is integral constant
on putting the value of v, 2x=x+Yy —10g(x+ y) +C
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or,
This is the required solution.

dy x+y+l

Example 22. Solve dx 2xTy+3

x—y+log(x+y)=C

dy x+y+l a _b

Solution : Given equation

dx 2x+2y+3 a'

=; is of the form

so le xX+y=v = I dr
ﬂ_ v+l

o dx 2v+3

dv  v+1 3v+4
or —= 1=

dx 2v+3 2v+3

2v+3dv—dx S tion of variabl

or vid [Separation of variable]

jB%&vlﬂﬂdVZjdx

on integration

2 1
30t 510g (3v+4)=x+C, where C is integral constant.

6v+log(3v+4)=9x+C,

or 6(x+y)+log(3x+3y+4)=9x+C,

or 6y—3x+log(3x+3y+4)=C,

This is the required solution.

(where, C, =9 C)

(on putting the value of v)

Exericse 12.7

Solve the following differential equations.

1 B 3xH2yS 2.
dx 2x+3y-5
3. (2x+y+1)dx+(4x+2y—1)dy=0 4,

(E) Linear Differential Equation
A differential equation in the form

dy
—+P = ’
I y=0
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dy  x—y+3

dx 2x+2y+5

dy 1-3x-3y dy _6x-2y-7
dx  2(x+y) dx 2x+3y-6
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Where P and Q are cosntants or functions of x only, is known as first order linear differential equation.
Another form of first order linear differential equation is

dx
& +px=0 )

where P, and Q, are constants or functions of y only.

I Pdx

Solution of linear differential equation (1) : Multiplying both sides of (1) by e
J'de [;ly N Py} _ eJ'deQ

X

d Pdx Pdx
or a[yej }=€I 0

integrating both the sides
[ pax

y-e = J' ng dedy+C , where C is integral constant.

J. Pdx I Pdx

or (Joe' M dax+c)

Whcih is the required solution of (1).
Remarks:

(1) eI " is called as integrating factor of eq. (1), which is abreviated as L.F. .
(i) Before solving the differential equation the coefficient of derivative should be always one.

Iﬁdy

dx :
(i) In linear differential eq [d_er Px= Qlj the integrating factor is e’ and its solution is given by

x= eijPldy {I Qlejpldydy + C}
Ilustrative Examples

Example 23. Solve (l—xz)—
x

—-xy=1.

Solution : On writing the given equation in standard form

dy [ X j 1
o B N |V 2
dx 1-x%) (I-x%)

here

So integrating factor



so, solution will be y(LF.) = I (LF.) Qdx + C , where C is integral constant

y\/1—2=I\/1—x2- ! dx

(1-x%)

or yVl—-x> =sin”' x+C.

This is the required solution.

d .
Example 24. Solve : sec xd_ic) =y+sinx,

Solution : On writing the given equation in standard form
dy )
—— — yCOSX=SinXxCcosx,
dx

here P=—cosx, Q=sinxcosx

So integrating factor (IF) = ej pax _ e*f cosdv _=sinx

s0, solution is ye = Isin xcos xe "dx+C , where C is integral constant
= J.te*’dt +C [here ¢ =sinx, ... df = cos xdx |
=—¢'(1+1)+C [integration by parts]
=— "™ (1+sinx)+C (" t=sinx)
or y =Ce™* —(1+sinx)

This is the required solution.

dy
Example 25. Solve : xlog XE"' y=2logx

Solution : On writing the given equation in standard form
2
dy vy _2

dx xlogx x

1 2
where P = =T
xlog x X
. _I.de .I.xlol xdx log(log x)
Integrating factor (LF)=¢' " =& ™" =e =logx

2
Integrating factor ylogx= I;log xdx+C , Where C is integral constant

(log x)2

=2 +C
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or y =(log x) +

(logx)
This is the required solution.
Example 26. Solve : (1 + yz)dx = (tan*l y— x) dy .
Solution : From given equation
dx 1 tan”' y
—+ X = =,
dy (1+ y ) I+y
1 tan”' y
P =, =
heI‘C 1 1+ y2 Q] 1+ y2
. . jﬂdy J‘1+yz [an’l y
so integrating factor (LF)=¢"" =e¢ =e
. . tan”" y tan”" y tan% y .
so, the solution is xe = _[ e it dy+C , where C is integral constant
y
= Ite‘dt +C [where tan™' y=1¢]
=(t-De'+C

on putting the vlaue of ¢, the required solution of equation is

—tan™! y

x=(tan” y—1)+ce

Exercise 12.8
Solve the following differential equations.

d
1 Zioy=dx 2. cos2xﬂ+y:tanx
dx dx
2\ dy 42 _ 3\ 4y _
3. (1+x )E+2yx—4x 4. (2X 10y )E"‘)’—O
5. d—y+ycotx:sinx 6. (l—xz)ﬂ+2xy:x\/l—x2
dx dx
d
7. sinl[d—y+%y}:x 8. x2i2y=x"logx
dx x dx
v 2 2 tan’ly dy
9. dx+xdy=e"sec’ ydy 10. (1+y )+(X—€ )E:O

(F) Differential Equation Reducible to Linear Differential Equation
Bernoulli's equation

dy
4 Py=0y"
I y =Qy (1)
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Above equation may be transformed in linear differential equation by dividing the differntial equation

by y" so dividing by y" to both sides

*ﬂd -n
v Py =0 2)
dx
Let ylf”:v
o dy dv
l-n)y"—=—
( )y dx dx
wdy 1 dv
dx (l—n)dx
putting the above value in equation (2)
1 dv
———+Pyv=
(1-n)dx 0
dv
—+(1=n)Pv=(1-n
or D (1-m) Py =(1-m)0

which is a linear differential equation and can be solved by the method discussed in article (E).
Ilustrative Examples

dy

Example 27. Solve : xa+y:x3y6 .

Solution : On dividing both sides of equation by xy°

1 dy 1
ot =X (1)
y dx  xy
A, Sdy_dv
Let y’ v dx  dx
. v 1 2
so, transformed form of (1) is ———+—Vv=x
Sdx x
dv 2 C . . . .
or E—;V =—5x", which is linear differential equation (2)
s lar 1
so, integrating factor (I.F.)= eI e Fer _ e = —
X
. . 1 1 5
s0, the solution of equation (2) VF = IF(_SX Ydx+C
or Lz—ij’de+C= > +C
x° 2x7
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so, putting the value of v, the required solution is

5
P =2y +6x
y ) )
d |
Example 28. Solve : 2 =e_2 —.
x x x
. ) ) dy 1 €
Solution : From given equation —t—=—
dx x x
,d !
dividing by ,* e’ d—z+%=? (D
_ ,dy dv
Let el == eV =
dx dx
. dv 1 1
so, transformed form of (1) is ——+—Vv = 7
dv 1 1
or & (2)
which is linear differential equation.

so integrating factor

—e e—logx l
X
) ) 1 1 1
so, the solution of (2) will be Ve—= I— —— |dx
X X\ x
% 1
—= +C
o x  2x?

on putting the vlaue of v the required solution is
2xe” —1=2x°C .
dy -1 3 2\ _
Example 29. Solve : E+(2xtan y—x )(1"‘ y )—0 :

d _
Solution : Given equation is d—z+ (2xtan” y—x")(1+y%)=0

1 d _
or (1+y2)d—i}=—(2xtan 1y—x3)
1 _
or md—z+2xtan ly =x (D
. 1
Let

@ _dv

an oy =v= (1+y2)dx_dx
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4 3
so, fromeq. (1) —+2xv=x

dx
which is a linear differential equation, where P=2x,Q0=x
Integrating factor ( I ,F,) = e2J e
so required solution is yeet = .[ Celde+C

:%sz (2x)ex2dx+C

:%I’etd"“c , [where t=x?, .. dt = 2xdx ]
| .

—5¢ (t-1)+C [Integration by parts]

=le”‘ (x2—1)+C, [ t=x2]
2

again substituting the vlaue of v

(tan*l y)e)‘2 =—e" (x2 —1)+C

tan”' y = %(x2 —1) +ce ™

This is the required solution.

d :
Example 30. Find the particular solution of differential equation d—z‘*' 2ytanx=sinx If x=x/3 and

y=0.
Solution : Given differential equation is
d .
—y+2ytanx:slnx (1)
dx
Here P=2tanx, Q =sinx
LF. = €2J.tan,\'dx — e2logsecx _ elogseczx _ SeC2 X
General solution of differnetial equation is
yxLF.= j (LF.) x Qdx
or y-sec’ x = J.sec2 x x sin xdx
or y-seczxzjsecxtanxdx
or y-sec’ x=secx+C (2
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when x=7/3, y=0 putineq. (2)

O=secr/3+C
or C=-2
put C =-2 in equation (2)

ysec’ x=secx—2

or y =cosx—2cos’ x
Which is the required solution.

Exercise 12.9
Solve the following differential equations.

dy 3 3 dy X=y X y

1. —+xy=x 2. ——=¢e "|\e e
ey & oerfe-e)
d A

3. —y—ytanx:—yzsecx 4. tanxcosyﬂ+siny+es‘”:0
dx dx

5. d—y+xsin2y:x3coszy 6. —dy+110gy:_);(10gy)2
dx dx x X

d 1
7. (1+x2)d—z+2xy :W ; where x=1, y=0
Miscellaneous Exercise 12

1.  Solution of (x2 +1)ﬂ —1is
dx

(a) y=cot' x+C (b) y=tan"' x+C (c) y=sin"'x+C (d) y=cos ' x+C

d .
2. Solution of D iox=¢ is
dx
(a) y+x2=§e“+c (b) y—x2=%e3x+c (c) y+x'=e"+C  (d) y-x'=¢"+C

. dy .
3. Solution of o +cosxtany =0 is

X
(a) logsin y+sinx+C (b) logsinxsiny=C
(c) sin y+logsinx+C (d) sinxsiny=C

X+ —X
4. Solution _:ex eix is
dx e" —e

(a) y=log(e'+e)+C (b) y=log(e* e )+C
(©) y:log(ex+1)+C (d) yzlog(l—e’x)+C
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10.

11.

12.

13.

14.

15.

ey d .
Solution of e e A is
dx

(@) ¢ =¢"+C (b) ¢*=¢*+C ©) eV =e*+C (d) eV =e"+C

dy 1
Solution of —+—+y=0 ig
dx vy

1
(a) x+§10g(1+y)=C (b) x+%log(1+y2):C
(c) x+10g(1+y)=C (d) x+10g(1+y2):C
. dy 2 .
Solution of ——=c¢08" y is
dx
(a) x+tany=C (b) tany=x+C (c) siny+x=C (d) siny—x=C
d x oy 2
Solution of d—y=€y +e'x’ is

X

3 3 3 3
(a) e +e’ =%+C (b) e’x+ey+x?=C (c) e+ =%+C (d) ex+e”'+%=C

2

d
By what substitution will the differential equation d_y+ RAR y_2 change in the linear equation
X x X
1 1
(a) y=t (b) y* =t (C);:’ (d)7:’

d . ) ) .
By what substitution will the differential equation d—)yc+ xXy=e y3 change in the linear equation
1
(@) 5= (b) y?=v (c) y? =v (d) y*=v
. . . . . dy 2x
Find the general solution of differential equation E +2x=e"",

d :
Find integrating factor of differential equation d—z+ ytanx=sinx,

X

d
Find integrating factor of differential equation =y ——y=e
dx sinx

d
Differential equation cos(x+ y)d—i =1 is of which form?

d *
Differential equation d—y— ytanx =e"secx is of which form?
X
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16.

18.

20.

Find general solution of following equations.

dx 3x+2y+1 Codx x

xﬂ:y+2\/yz—x2 19. d—yzex’y(ey—ex)

dx

d .
& | xsin2y = x*cos? y
dx

( )

| IMPORTANT POINTS |

An equation involving derivatives independent variable, dependent variable and derivative of the
dependent variable with respect to independent variable is known as a differential equation. Differential
equations are of two types:

(1)  Ordinary differentaial equation

(i) Partial differential equation

Order of a differential equationis the order of highest order derivative occuring in the differential

equation.

Degree of a differential equationis the degree of the highest order derivative, when differential

cofficients are made free from redicals and functions.

Solution of differential equation:

The solution to the differential equation used in the equation refers to a relationship in the independent

and dependent variables which does not contain any differential coefficient and the given differential

equatiion is satisifed from derivative obtained.

The solution of a differential equation is also called its primitive because the differential equation

is a relation derived from it.

(i) General or total solution : In the solutioin of a differential equation if there are arbitarary
constants equal tot he order of it then that solution is called general solution. This is also
called total solutiion or total integral or total primitive.

(i) Particular solution : The solution of a differential equation obtained by assigning particular
values to the arbitrary cosntants in the general solution is called particualr solution.

(i) Singular solution : The solutions of a differential equation where arbitrary constants are
not present and fail to have a particualr solutiion of general solution.

Differential methods to solve differential equation of first order and first degree:

(A) Variable Sepaerable Method : Differential equations with variable separable on wriing

the equation in general form f(x)dx+ g(y)dy =0 and then on integrating, the required solution

may be accurid.

(B) Varable separation by substitution : The given differential equation may be reduced to
variable, separable form by suitable substitution and by getting its solution and again substituting
required solution can be obtained.
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(D)

(E)

Homogeneous differential equation : If the general form of differential equation may be )

d , +b
written in the form of - = Silx,y) _ax+by

dx  f,(x,y) cx+dy

where f (x,y) and f,(x,y),x are homogeneous

functions of x and y then to reduce in variable separable equation use substitution y =vx.
Equation reducible to homogeneous form

. d + by + a
(1 form _y:%, where — # —
dx a'x+by+c a b

to reduce into homogeneous use x= X +h, y=Y +k cosntants & and k are selected such

that ah+bk+c=0 and a'h+b'k+c"=0 on solving them the vlaues of & and k are found.
Atlast put X =x—h and ¥ =y—k and get the required solutions.
a b
(i) when 7 = o then put ax+by =v and reduce the equationto variable separatio form
and then get the solution.

Linear differential equation

d
(1  Generalrm d_z + Py =0 where P nd Q, are constants or function of x

Integrating factor (I.F.)= A

Soution : y(LF.) = j (LF.)x Qdx+C

dx
(i)  General form E"‘ Fx=0, where P, and Q, are constants or function of y

then integratign factor (1.F.)= eI e

Solution xxLF.= II.F. xQdy+C
Differential equation reducible to linear differential equation (Bernoulli's equation) % +Py=0y",
where P and Q, are constants or function of x, to reduce it into a linear differential equation

1 —n . .
divide by y", then put — =7 and solve. At last put =Yy = to get required solution.
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Answers
Exercise 12.1

. order 1 degree 1 2. order 2 degree 1 3. order 2 degree 2 4. order 1 degree 4
. order 2 degree 2 6. order 1 degree 1 7. order 2 degree 3 8. order 1 degree 2
Exercise 12.2
d’y  dy dy
2
+x—-y=0 2. x+y—=0
dx’ dx Y Y dx
d’y _dy d’y . dy d’y
- —8—+15y=0 4. —2%42y=0 5. +y=0
dx’ dx Y dx* dx Y dx* Y

Exercise 12.4

) sinx(ey+1)=C 2. y—x=C(l+xy) 3. 10gy=2[x—10g(x+1)]+€
1
: €y=€x+gx3+c 5. ¢ (sinx+cosx)=C6. y=e>+C 7. sin’ x+sin* y=C

X L.
. ysiny=x"logx+C 9. y=2tan§—x+C 10. y=§sm '+ C

Exercise 12.5

-C
' x+y:atan(ya J 2. x+y+2=ce’ 3. y=tan(x;yj+c 4. x+e ™ =C
. x—y+c:10g(x+y) 6. 2(y—x)=10g(1+2x+2y)+C1
. x=tan(x+y)—sec(x+y)+C 8. 2x+(x—y)2:0
: yztan(x;y}c 10. 2(x—y)+log(x—y+2)=x+c
Exercise 12.6
. y:CeX}m3 2. tanzl:Cx 3. (x+cy):y10gx 4. x=Ce™"
X
Ly Yy =Cx 6. y:C(xz—yz) 7. x+ye’ =C 8. x*y’+2x’y=C
X
. tanl(ljzlog)ﬁc 10,—+10g(xy)=0
X y
Exercise 12.7
. 3(x2+y2)+4xy—10(x+y—1):C 2. x—2y+log(x—y+2):C
. x+2y+10g(2x+y—l)=C 4. 3x+2y+C+210g(1—x—y)=O
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5. 3(y—1)2+4(x—%}(y—l)—6(x—%} =C
Exercise 12.8

4x° C

1. y=2x—1+Ce™ 2. y=tanx—1+Ce ™3, y= + 4. 2 =2V +C
’ PTa(ew) (ee) T
5. ysinx:%x—isin2x+C 6. y=vl-x"+C(1-x)
7. xzy:C+(2—x2)cosx+2xsinx 8. 16x°y =4x*logx—x"+C
1 tan’ly —tan’ly
9. xe’ =tany+C 10. x=2e +Ce

Exercise 12.9

) . 1 .
1. y?=1+x"+Ce" 2. ¢ =¢' —1+Ce® 3. ——sinx+Ccosx=0

y
4. sinxsiny=C+e™" 5 tany:l(x2 —1)+Ce’x2 6 1 =——+Cx
’ Y= ’ 2 “logy 2x
7. yd+x*)=tan"' x—7/4
Miscellaneous Exercise 12
1. (b) 2 (a) 3. (a) 4. (b)
5. (a) 6. (b) 7. (b) 8. (d)
[P
9. (c) 10. (b) I y+a=2e"+C 12 secx
13. tanx/2 14. Equation reducible to variable separation  15. Linear equation
16. 2x° +3xy+y* +x+y=0 17. 1og(lj=0x 18. y+4y =" =Cx°
X

: ; 1 )
19. ¢" = +1+Ce” 20 ¢ tany=_(x"~1)e+C
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Vector

13.01 Introduction

As we knows that many useful physical quantities in nature are of two types, scalars and vectors.
Scalars are those quantities which are completely determined by a single real number when the units of
measurement of that quantity are given. Scalars are not related or assigned to any particular direction in
space. For example, mass, volume, temperature, density etc are scalars. Scalars depend only on the
points in space but not on any particular choice of the coordinate system. Vectors are those quantities
which are completely determined if their lengths (also called magnitude) and their directions in space are
given. For example displacement, velocity, acceleration, force, weight, momentum, electric field intensity
etc. are vectors.

In this chapter, we will study basic concepts about vectors, various operations on vectors and their
algebraic and geometric properties.

13.02 Basic Concepts

Let L be any straight line in plane or three dimensional space. This line can be given two directions
by means of arrow heads. A line with one of these directions prescribed is called a directed line. Now
observe that if we restrict the line L to the line segment AB, then a magnitude is prescribed on the line L
with one of the two directions, so that we obtain a directed line segment (Fig). Thus, a directed line
segment has magnitude as well as direction.

Fig. 13.01
Each directed line segment has following properties:

(i) Length: The length of directed line segment AB is the length of line segment represented by AB

or | AB|

(ii) Support: The base of a directed line segment AB is a line L. whose segment is AB

(iii) Sense: the point A from where the vector AB starts is called its initial point, and the point B

where it ends is called its terminal point. A directed line segment BA is from A to B where as

for it is from B to A
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Note: Although AB and EA have same length and base yet they are different vectors as AB

—

and BA are opposite senses.
Vector Quantity : A quantity that has magnitude as well as directionis called a vector notice that

—

directed line segment is a vector, denoted as AB or simply as a , and read as vector AB or vector d
Magnitude of the Vector: The distance between initial and terminal points of a vector is called

the magnitude (or length) of the vector, denoted as |d | or |ﬁ;| where a thus the magnitude of vector

=|d|=a
Note : |é|20
13.03  Various Types of Vectors

(1)  Unit vector : A vector whose magnitude is unity (i.e. 1 unit) is called a unit vector. The unit vector
in the direction of a given vector 4. We denote the unit vector in the direction of vector a, b, ¢ as

A

a, b, ¢ and it is given by

a is read as a cap.
(2)  Zero or Null Vector: A vector whose initial and terminal points coincide, is called a zero vector

(or null vector), and denoted as O . Zero vector can not be assigned a definite direction as it has
zero magnitude. Or alternatively otherwise, it may be regarded as having any direction. The vectors

—_ —
AA, BB represent the zero vector.

also |al=0

re. if | AB |: 0
then A and B coincides.
(3) Like Vectors: If two vectors have same direction or senses then they are called

Like Vectors. _‘tD ‘f
- : . b
(4) Equal Vectors: Two vectors a and p are said to be equal, if they have the same 4c 4F
magnitude and direction regardless of the positions of their initial points, and written 1g ?——E
A

as a,b . - A

— |

In the fig : (13.02) the initial and terminal points of vectors A—B) , C—D) ,ﬁi) represented ~ Fig. 13.02

by da,b and ¢ are different but their length is same therefore they are equal vectors.

ie.  AB=CD-= EF

If G and p are equal vectors then we write them as ;5 =}
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(5) Unlike Vectors: If the direction of the vectors are opposite then they are called unlike vectors.

(6) Negative Vector: A vector whose magnitude is the same as that of a given vector (say, g4 1is
negative of the vector 2p, and written as g4 — _ApB
- If G=AB then BA=-d

Position Vector
From a rectangular coordinate system consider a point P, having coordinates (x, y) with respect to

the origin O(0, 0). Then the vector a; having O and P as its initial and terminal points, respectively, is
called the position vector of the point P with respect to O. Using distance formula (from Class XI), the

magnitude of OP (or 7 ) is given by N
P

o= (77 “
For Example : Represent graphically a displacement of 40 km, 30° east @\5
of North. 305
Solution : The vector OP , represents the required displacement (Fig: W< o >E
13.03) M
13.04 Addition of Vectors Fig. 13.03

(A): Addition of Two Vectors

If there are two vectors AB and CD ina plane whcih are denoted by @ and 5 then we add

the two vectors by two methods.

I.  Triangle law of Vector Addition: A vector OE simply means the F
displacement from a point E to the point F. Now consider a situation that a+b
a girl moves from O to E and then from E to F (Fig. 13.04). The net
displacement made by the girl from point o to the point F is given by the _ B
a

vector OF and expressed as Fig. 13.04

Sy

OE + EF = OF
d+b=OF where OE =g and EF =b
This is known as the triangle law of vector addition. In general, if we have two vectors a and

b (Fig. 13.04), then to add them, they are positioned so that the initial point of one coincides

with the terminal point of the other. According to this law, "If two vectors in same order represents

the two sides of a triangle then their sum is represented by the third e
B >

side of triangle in opposite order".

II. Parallelogram law of Vector Addition: We have two vectors d

and p represented by the two adjacent sides of a parallelogram in

magnitude and direction (Fig. 13.05), then their sum G +p is represented O él, A

in magnitude and direction by the diagonal of the parallelogram through
their common point.
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Let OA=d and OB=bh

Now OACB is a Parallelogram and OC is the digonal of OACB Here! OA=BC=4 and
OB=AC=b .

In triangle OAC using triangle law of addition OC = QA + AC =g +b

So, if two vectors are represented in magnitude and direction by two adjacent sides of a parallelogram,
then their sum is represented by diagonal of parallelogram which is cointial with the given vectors. This
is known as 'parallelogram law of vector addition'.

(B) Addition of more than two Vectors:

For addition of more or more than two vectors the triangle law of addition can be used. This addition

of vectors is known as Polygon law of vector addition.

Example : Suppose we have to add vectors g, b ,C, d . Let us take point O in a plane. Draw O—A> =as,

also draw E — p similarly draw B—C> =¢ . Now by triangle law of vector addition p d C
1

we have fj -
_ — — L — fg ‘
OA+AB=0OB=a+b=0B N
_ — —> _ E— 0] B
OB+BC=0C=a+b+c=0C
_— — — = - —_— A

and OC+CD=0D=G+b+¢+d =0D Fig. 13.06

sNow vector 0—15 denotes the sum of vectors &,I; ,C ,(f . Polygon OABCD is called as Polygon of

vectors.
Note : If the initial point of first vector and terminal point of last vector coincides then the sum of
the vectors is always zero.

13.05 Properties of Vector Addition:

Vector addition has the following properties:

(i) Commutativity: Addition of vectors follows the commutative law i.e. for any two vectors ¢ and p
d+b=b+a
Proof : Let OA=d and AB=b
By Triangle law of addition we have

O_B):O_A)+E3):&+I; - (D) -
Complete the parallelogram OABC, such that

CB=0A =a

and OC=AB=b

In triangle OCB,
OB=0C+CB=b +d ... (i) Fig. 13.07
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From equation (i) and (ii),
G+b=b+a
Thus addition of vectors is commutative.

(i)  Associativity: Addition of vectors obeys the associative law 1.e. let g, p and ¢ are three vectors then

(a+5)+5=a+(5+5)

Proof : Let vectors a, b and ¢ are denoted by O_A),ES) and B—C), thus O_A) = @Eg) —p and
B_C) = ¢ . Using triangle law of vector addition in triangle OAB and OBC

O—B):O—A)+§3):a+l;

and OC=O0B+BC=(d+b)+¢ (1)

Similarly triangle law of vector addition in triangles ABC and OAC
A_C) = ES)+ ﬁ =b+7¢

and &:O—A>+A—(f=a+(5+6) 2)

from equation (1) and (2)

(Zz+l5)+6 =5+(5+6)
Thus the addition of vectors is associative.

Note: It is clear from the above rule that addition of vectors g ,]; ,¢ does not depend in the order

in which they are added. Thus the above addition can be expressed as G +b +¢ .
(iii) Identity:
For every vector d@ , g+0=a=0+d , where 0 is a zero vector is known as identity vector for

addition
Proof : From definition of addition of vectors

_ — —

OA =OA+AA=G+0

(iv) Additive inverse : For every vector d, there corresponds a vector —a such that g + (-g) = (-ad)+d = 0

—

Proof : Let vector d = OP then by definition of Negative Vector, (—Zl) will be denoted by pQ

Now a+(—a)=0P+PO=OO=() 0] > P
a
similarly (-d)+d=PO+OP = PP = 0 Fig. 13.10

thus from (1) and (2) d+(-d)=(-d)+a=0
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13.06 Subtraction of Vectors
Let @ and , are two vector quantities and let AB=a and BC =b . Now if we have to find

G—b then at point B draw a line BD opposite in direction and equal in length to BC which represents

the directed line segment as BD = —p C
Join A and D. Now using triangle law of addition in triangle ABD b
AD=AB+BD=d+(-b)=d—b A B
Similarly if we have to subtract @ from p i.e. we have to find (G—b) then
add the negative of vector 4 i.e. (—d) to vector p Fig. 13_1%

13.07 Multiplication of a Vector by a Scalar

Let a be a given vector and A a scalar. Then the product of the vector a by the scalar A is
denoted as Aa , is called the multiplication of vector a by the scalar A Note that, A4 is also a vector,

collinear tot he vector a . The vector, Aa has the direction same (or opposite) to that of vector a
according as the value of A is positive (or negative). Also, the magntiude of vector A4 is |/1| times the
magnitude of the vector a , i.e.,

[4a| =|2]lal

A geometric visualization of multiplication of a vector by a scalar is given in Fig. 13.10,

o 24

7 z

Fig. 13.11

What A =-1, then Ad =—a which is a vector having magnitude equal to the magnitude of a .

The vector —a called the negative (or additive inverse) of vector a and we always have

i+(-d)=(-d)+a=0.

Also, if A =%, provided a #0, ie. a isnot a null vector, then
a
- TR
= 2l = lal =1
al

So, Aa represents the unit vector in the direction of a

L

" g
a

a=
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13.08 Components of a Vector
Let us take the points A (1, 0, 0), B(0, 1, 0) and C (0, 0, 1) on the x-axis, y-axis and z-axis
respectively. Then, clearly

|OA|=1,|0BI=1 and |OC =1

The vectors 5A, JB and 0_)C , each having magnitude 1, are called unit vectors along the axes
OX, OY and OZ respectively and denoted by ;, j and k respectively
Let P (x, y,. z) is a point whose position vector is 5P . Therefore

JL =xi Nf

OM =LO=y}

- -

00=0L+L

At

=xi+y] AL

N

again op = 0Q + QP oo

:(xf+y})+z1€

=xi+yj+zk Fig. 13.12

Thus with respect to O we get the position vector of Pi.e. OP=xi+7y j+ 7k .

This is known as the component form of the vector where x, y and z are the scalar components
of oP and xi,yj and 2k are the vector components of QP Some times x, y and z are also termed
as rectangular components.

If O—P:?:xiA+y}+zl€ then

O—P=|17|:\/)cz+yz+z2
13.09 Vector joining two points

If Pl(xl,yl,zl) and P,(x,,y,,z,) are any two points, then the vector joining P, and P, is the

vector PL_P; (Fig. 13.12). Joining the points A, and P, with the origin O, and applying triangle law, from

Z
the triangle OP P, OP+ PP, = OP, we have Il P2 (4 32 2)
Using the properties of vector addition, the above equation becomes
BP, =OP,-OF, k1
142 2 1 k P, (x, v, )
1e. P1P2Z(le'+y2j+22k)—(xzi+ylj+11k) o 6" Ji >Y
:(x2—xl)f+(y2—yl)}+(zz—zl)k X
Fig. 13.13
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The magnitude of vector P1—P; is given by

g 2 2 2
BB (5= 5) + (3= 9) +(22-2)
13.10 Section Formula
Let P and O be two points represented by the position vectors OP and 0Q with respect to the

origin O. Then the line segment joining the points P and Q may be divided by a third point, say R, in two
ways-internally and externally. (Fig. 13.10 (a) and Fig. 13.10 (b)). Here, we intend to find the position

vector OR for the point R with respect tot he origin O. We take the two cases one by one.
Casea I: When R divides PQ internally

Let R, divides PQ internally in the ratio m : n (Fig. 13.13(a))

PR _m
RO n
nPR =mRQ P
nPR = m@ Fi.g 13.14 (a)

n (position vector of R —position vector of P) = m (position vector of Q —position vector of R)

n(F—-a)=mb —7)

Y

(m+n)F =mb +na

. mb+na
y = —

U

m+n
Here, the position vector of the point R which divides P and Q internally in the ratio of m : n is
given by
OR = mb + na
m+n

Cases II: When R, divides PQ externally:
Let the position vector of the point R which divides the line segment PQ externally in the ratio
m :n (Fig. 13.14(b) then

PR m

OR n
= nPR =mQR
= nPR = mQR

=n (Position vector of R —Position vector of P) = m (Position vector
of R — Position vector of Q)

Fi.g 13.14 (b)

= n(F-a)=m(i-b)
= mb —nd = mi —n¥
. mb-na
= r=
m-—n
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Note: if R, is the midpoint of PQ, then m : n. And therefore, from Case I, the midpoint R of P—Q> ,

. . " —— a+b
will have its position vector as OR =

Ilustrative Examples
Example 1. Find the sum of the vectors a = f—2}+l€, b= —21°+4}+3I€ and ¢ = 5—6}'—712 .

Solution : The sum of the vectors b+¢
-2

4 25+4j+51€)+(f—6}'—71€)

=d+b+¢
(F-2]k)+(

( it /2)+( i +47- 6k)+(f+5j—712)
=0-i-4j-k=-4]—k

Example 2. If vectors a = Xi+2]+z k and b =21+ yJ +k are equal then find the value of x, y and z.

Solution : Two vectors are equal if their scalar components are equal.

Thus if ¢ and p are equal if x=2, y=2, z=1
Example 3. Let d=i+2] and b =2{+ ] thenis |G||b|? Are vector @ and j equal?
Solution : Here |a=v1?+22 =5 and | =22 +1% =5

Therefore | | b | But the given vectors are not equal becase their corresponding components

are not equal.

Example 4. Find the unit vector in the direction of the vector @ =2 +3 ]+ k.

‘ -

Solution : The unit vector along vector @ is d=—a .

now |a=~22+3%+1% =414

Ql

d—L(21’+3j’+I€)— 2 p 35y
therefore \/ﬁ \/ﬁ \/ﬁ \/ﬁ

Example 5. Find a vector in the direction of vector d =i —2 j which has magnitude 7 units.

L ;

. . N 1 - 1 ~ A 1 ~ 2 A
Solution : The unit vector along vector d is d=—ad =—(z —2]) =—Ii——F]
la| 5 5 45
1 o 2 ~ 7 ~ 14 A
therefore the vector along 4 having magnitude 7 unit 74=7| —=i——j |=—F—=I———J
5 5 5 5
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Example 6. Find the unit vector in the direction of the vector @ =27 +2 -5k, b=2{+ j+3k.

Solution : The sum of the given vectors

G+b=¢ (let) . ¢=47+3]-2k

and |G |= 42 +32 +(-2)" =29

Required unit vector

1 1 A A Al 4 ~ 3 45 2 =
—C=——=(41+3]-2k|= [+ J- k
€] @( ) 29 V297 V29
Example 7. Find the vector directed from point P to Q joining the points P(2, 3, 0) and Q(-1, -2, —4).
Solution: As P is the initial point and Q is the terminal point, therefore

c=

p—Q) =Position vector of Q—Position vector of P
PQ =—i—2j—4k—(2i+3))
PQ=(-1-2)i+(-2-3)j+(-4-0)k

= PQ=-3{-5]-4k

Example 8. Find the position vector of a point R which divides the line joining two points P and Q in

— .

ratio 2 : 1 whose position vectors are OP =3g—2b and OQ =a +b .

Solution : (i) the position vector of a point R which divides the line joining two points P and Q in the
ratio 2 : 1 internally is

i 2(a+5)+(3a—215) _si
3 3

(i1) the position vector of a point R whcih divides the line joining two points P and Q in the ratio 2 : 1

externally is

i 2(a+5)2—_(135—25) iz

Example 9. Show that the points A(Zf—f+/€), B(f—3j—5]€), C(3f—4}—4/€) are the vertices of a
right angled triangle.

Solution : We have Eé:(1—2)5+(—3+1)}+(—5—1)1€=—f—2j’—6l€

—

BC =(3-1)i +(~4+3)j+(-4+5)k=20-j+k

A

and CA=(2-3)i+(-1+4) j+(1+4) k=~ +3]+5k

Further, note that |A—B)|2:41=6+35 =|B—C)|2 +|C—A)|2

Here, the triangle is a right angled triangle.
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10.

11.
12.

13.

14.

Exercise 13.1

Compute the magnitude of the following vectors:

— o o) ~ - o ~ ~ — 1 o 1
a=i+j+k; b=21-7j-3k; c =

Write two different vectors having same magnitude.
Write two different vectors having same direction.

Find the vlaues of x and y so that the vectors 2{ +3 and Xi+y are equal.

Find the scalar and vector components of the vector with initial point (2, 1) and terminal point
(_59 7)

Find the sum of the vectors a = f—2}+l§; b= —2?+4]A'+512 and ¢=1—-6]—7k.
Find the unit vector in the direction of the vector ¢ =i + j + 2%k .

Find the unit vector in the direction of vector ﬁ where P and Q are the points (1, 2, 3) and
(4, 5, 6), respectively.

For given vectors, d=2i — j + 2k and b =—i + ]A—Ig , find the unit vector in the direction of the
vector d@+b .

Find a vector in the direction of vector 5i — j + 2k which has magnitude 8§ units.

Show that the vectors 2i —3 +4k and —47 + 67— 8k are collinear.
Find the position vector of a point R which divides the line joining two points P and Q whose
position vectors are P(f+ 2}—/2) and Q(—iAJr j+ 12) respectively, in the ratio 2 : 1

(1) internally (i) externally.

Find the position vector of the mid point of the vector joining the points P(2, 3, 4) and
Q4, 1, -2).

Show that the points A, B and C with position vectors, d :3f—4}'—4l€, b :25—}+I€ and

c=1-3]- 5k respectively form the vertices of a right angled triangle.

13.11 Product of Two Vectors

So far we have studied about addition and subtraction of vectors. An other algebraic operation

which we intend to discuss regarding vectors is their product. We may recall that product of two numbers
is a number, product of two matrices is again a matrix. But in case of functions, we may multiplication of
two vectors is also defined in two ways, namely, scalar (or dot) product where the result is a scalar, and
vector (or vectors is also defined in two ways, namely, scalar (or dot) product where the result is a
scalar, and vector (or cross) product where the result is a vector.

@

Scalar product: In this the product of two vectors is a Scalar.

(II) Vector product: In this the product of two vectors is a vector.
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13.12 Scalar or dot Product

Definition : If product of two vectors is a scalar quantity then it is called 'scalar or dot-product
of vector'.

The scalar product of two non zero vectors @ and , denoted by d b (read as d dot ) is defined
as:

a-b=|al||b|cosd=abcost
(|a|=a and |];|:b are the magnitudes of ad and l;)
Note: When both the vectors are Unit vectors, i.e. | |=1, |b|=1
ab = (D) cos@=cosb
13.13 Geometrical interpretation of Scalar Product

Let OA=d and OB=p are two vectors, inclined at an angle @, the scalar product is given by
d-b=abcosf

=|a||b|cos@ (1)

Now from point A and B drop perpendicualr AM and BN on
OB and OA then from AOMA and AONB

OM = OAcos@ i.e. projection of OM in the direction of OB

ON = OB cos@ i.e projection of OB in the direction of OA O

> A
From equation (1)
a-b=|a|(b]|cos®)=|al|(ON)
= (magnitude of ad ) (projection of b on d ) 2)
Similarly from equation (1)
a-b=|b|(ad|cos@)=|b|(OM)
= (magnitude of b ) (projection of @ on b ) 3)
Thus the scalar product of two vectors is the product of modulus of O A
either vector and the project of the other in its direction.
. . ab_a - , -
Note: from (2) Projection of 5 on a= a] ZE‘b =a-b
and from (3) Projection of @ on b= % =a lZTl —d-b
13.14 Some Important Deductions from Scalar Product of Vectros
We know that
d-b=abcosb ey
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Observeations:

o)

(ii)

(iii)

(iv)

When vectors G and b are parallel: In this condition the value of 8 =0°, thus from (1)
a-b=|al|b|cos0 =|a||b|=ab
When vectors d and b coincides: In this condition the angle between the two vectors is zero i.e.
0 =0°, thus from (1)
d-a=|d||d|cos0° =|a||d|=aa=d
When vectors ¢ and p are linear: In this condition the angle between the two vectors is 180°
i.e. 8=180" thus from (1)
a-b=|allb|cos180° = ab(~1)=—ab
When vectors ¢ and ) are mutually perpendicualr: In this condition the angle between the
two vectors is 90°i.e. @ =7 /2 thus from (1)
5-l;:|5||l;|cos%:|ﬁ||l;|0:o
thus if two vectors are perpendicualr then
ib=0
Converse: If the scalar product of two non-zero vectors @ and b is zero then the vectors are
perpendicular let

let i-b=0

= |@||b|cosO=0

= cos@=0 ['.'|é|¢0,|13|¢0]
= O=m/2 = alb

So a-b=0 & Glb

A A A

Note: In view of the observations, for mutually perpendicualr unit vectors i, j,k we have

Pj=jk=ki=0

and ii=j-j=k-k=1

The above result can be expressed in the form of a table also
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13.15. Properties of Scalar Product
(i) Commutativity: Thus scalar product of two vector sis commutative.
Proof : We know that

G-b=abcosf

=bacos6 (ab=ba,)
=b-a

(ii) Associativity: If G and b are two vectors then let m be any scalar
(mé)-b=a-(mb)=m(d-b)

(iii) Distributivity: If 5,1; and ¢ are three vectors then
a-(b+¢)=d-b+a-¢c

similarly (b+¢)-a=b-da+¢-a
13.16 Scalar Product of Two Vectors in terms of the Components

Let d=ai+a,j+ak and b=bi+b,j+bk, are two vectors

a-b :(alf+a2}+a312).(b1f+b2}+b312)
=ab (i -0)+ab,(i-])+aby(@-k)+ab,(j-)+ab,(j-))
+a,b,(]-k)+apb (k-1)+ab,(k-})+ab,(k-k) (from property (ii) and (iii))
= ab, + a,b, +asb, (Article 13.15)
d-b=apb +ab,+ab,
Note: Zl'a"=(aliA+a2]A'+a3l€)‘(alf+a2j+a3lg)
=aqa, +a,a, +a,a, =a,’ +a,” +a;’ =a’
@°’=a
13.17 Angle Between two Vectors:
We know by the definition of scalar product

G-b=abcosh
a-b (ay(b) .~ - . . o ; .
or cosf@=——-=|—| E =a-b, where a,b are the unit vectors in the direction of @ and p
a a

again if a =alf+a2f+a3lg and l;:blf+b2}+b3l€ then
a-b=(ai+a,]+ak)-(bi+b,]+bk)

=ab, +a,b, + ab, (Article 13.16)
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a
COSH: b - 2 2 2 2 2 2
a \/al +a,” +a, \/bl +b,” +b,

Note: if vectors @ and p are mutually perpendicualr then a,b, + a,b, + ab, =0

a,b, +a,b, +a.b,

13.18 Components of any Vector , along and perpendicular to a Vector a
Let OA=a,0B=b and BM 1 OA.
~. by triangle law of addition in AOBM b= OB =0OM +MB, where OM and MB are the
perpendicualr vectors of vector 5 along vector d

Now OM = (OM)é = (bcos0)d

=b Ei_l; a .
ab (Article 13.17)

i (a.]}]# Fig. 13.17

Thus components of vector p in the direction of vector g and perpendicular along g are (a b j a

2
and E—[a'zbja
a

a
Example 10. If a = [+2]+3k and b = 3{ +2j+k then find the value of d@-b .

Ilustrative Examples

Solution: G.p = (7 +2]+3k)- (3 +2] +k)
=B +(2)(2)+B)1)=3+4+3=10

Thus the value of d-b is 10.

Example 11. For what value of A are the vectors 2i + 4 + S5k and —i + ]+ k mutually perpendicular?
Solution: the vectors are perpendicular if their product is zero
i+ Aj+5k)-(—i+ j+k)=0
or @)ED+ DM +G)D) =0
or 2+A+5=0
or A=-3

Thus at A =-3 the vectors are perpendicular to each other.
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Example 12. Find the angle between the vectors 3i+ }'+ 3k and 2i+ 2}' —k.

Solution: Let a=3i+ }'+3l§ and b= 22+2}—/2 and let 6 be the angle between a and b.
d-b=abcos0

a-b_ (Gi+j+3k)-Q2i+2j-k)

ab VO+1+9V4+4+1

_B®Q)+MH2)+B)ED S

— cos0 =

19 N
(5%)
=  COs T
Example 13. Show that-
() (a+b)=a*+2a-b+b’
and (i) (a+b)-(@a—-b)=a-b
Solution: () (G+5)’ =(G+b)-(d@+b)
—d-d+d-b+b-d+b-b
=a>+d-b+ad-b+b [d-b=b-adl

Example 14. If 6 is the angle between the two vectors @ and b then prove that

sin(0/2)=~|a-b|

1
2
Solution:  |a—b[=(G-b)-(a—b)

A A A A A A AA

=aa—ab-b.a+bb
=|af —2ab+|b| [rab=bha)

A~

=1-2a-b+1 [
=2-2(1)1)cosB =2(1—cosO)

=2-(23in2 QJ
2
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N A

a-b

A~ A

a-b

. 6 . 6
=2sin— or Ssin—=—
2 2 2

=

Example 15. (i) If a, h,C are mutually perpendicualr vectors with equal magnitudes, then prove that vector
d+b+¢ makes equal angle with vectors d,b and €.
G a .b, are the vectors of magnitude 3, 4, 5 resp. If every vector is perpendicular on the sum of the
other two then find the magnitude of vector a+ b+¢.
Solution: (i) d ,b,C are mutually perpendicualr therefore ab=bc=ca=0
again the magnitude of vectors d,b,c are equal a=b=c
- - =\2 - - = - - =
and (a+b+c) :(a+b+c).(a+b+c)
=a-a+a-b+a-c+b-a+b-b+b-c+c-a+c-b+c-c
=a’+b*+c’=3a’ [-.-azbzcwa.ézéézé-&:omﬁc ]
= Ja+bed=vaa
(@+b+c¢)-a=a-a+b-a+c-a=a’
Let 6, be the angle between d+b+¢ and @
(G+b+¢)-d=|da+b+¢||ad|cosb,

— a* = (\3a)(a)cos 6,

cosf, =

N

N 6, =cos ™' (%}

Similarly if vector a+b+c makes angle 6, and 6, with b and ¢ then it can be proved that

1 1
6, =cos™ [—] and @, =cos™’ [—] :
? NE) ’ NE)

i.e. vector a+b+c makes equal angle with the vectors a,b and c
@ a(b+)=0, b-(a+)=0 and ¢-(a+5)=0
adding all the three 2(21-I;+l;'2+2~21)=0

and a-a=a*=9, b>*=16, ¢* =25
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10.

11.

(a+b+c)-(a+b+c)=a-a+h-b+e-c+2(abrbc+ea)

= |G+b+¢[P=9+16+25+0=50
= ‘5+E+E‘=@=5\5 units

Exercise 13.2

If the magnitude of two vectors is 4 and 5 units then find their scalar product if the angle between
the two vectors is
(i) 60° (i1) 90° (iii) 30°

Find the value of ab if a and b respectively are

() 2+5):3i-2] (i) 4 +36:7—j+k (i) 57+ j—2k; 20~ 3]

Prove that (q-b)* <|a|* |b [

If the coordinates of P and Q are (3, 4) and (12, 9) respectively. Find the value of Z/POQ where

O is the origin.

For what value of 4 are the vectors @ and b mutually perpendicular.

() a=2i+Aj+k; b=4i-2j-2k (i) a=2i+3j+4k; b=3i+2j—Ak

Find the projection of vector 4;— 2}' +k on the vector 3j + 6}' —2k.

If a=2i- 16}' +5k and b=3i+ }'+ 2k then find a vector ¢ where a,b, ¢ denote the sides of right
angle triangle.

If ‘ZI +l;‘ = ‘Zz —b|, then prove that a and b are mutually perpendicular to each other.

If the coordinates of the points A, B, C and D are (3, 2, 4), (4,5, 1), (6, 3,2) and (2,1, 0) respectively
Then prove that lines AB and CD are mutually perpendicular.

For any vector a prove that G = @-)i+@-j)j+@-kk

Using the vector method Prove that sum of the diagonals of the parallelogram is equal to the sum
of square of its sides.

13.19 Vector or Cross Product of two Vectors

as

Definition : The vector product of two non zero vectors a and b is denoted by axb and defined

axb=|a||b|sin6n . (1)

If the angle between a and b is 0(0 <6< n) and 7 is a unit vector perpendicular to both @ and

b such that G,b and 7 form a right handed screw system i.e., the right handed screw system rotated from

d to b moves in the direction of 7 .
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In terms of vector product, the angle between two vectors @ and , may be given as

I T : |axb |
axb|=|a||b|sin@ = sinf = —
|axb|=|al|b]| alg| )
from (1) jo—dxb _ _axb
|al||b|sin@ |daxb|
B, ixb
thus the unit vector perpendicualr to vector ¢ and p is = lfxgl 3)
ax

13.20 Geometrical Interpretation of Vector Product
Let OA=a,0B=b are two non parallel and non-zero vectors, the angle between them is @ and
n is the unit vector perpendicular to vectors a and § then,
‘Zl X l;‘ = ‘Zl‘ ‘l;‘ sin @
=(0A)(OB)sin 0 (1)
Area of OACB

Cosnidering OA and OB as the sides of the parallelogram OACB,
Area of OACB =2 (Area of AOAB)

:2(%OA-OBsinQJ:OA-OBsin9 (2)

from (1) and (2) the magnitude of axb =|ax] Fig. 13.18

13.21 Some Important Deductions from Vector Product
(i) The product of two parallel vectors is always zero:

Proof : If a and b are two parallel vectors and let @ be the angle between them then 6 = 0° or@ = °
thus in both the situations the value of the sin@ will be zero.
axb=absinOn =0y =0 [zero vector]
Converse : If the product of two vectors is zero then the vectors are parallel as
axb=0, = absinn=0 = sin0=0 [a#0,b#0]
i.e. @ and p are parallel vectors
Note: (i) axa=0, (i) ixi=jx j=kxk=0
(ii) The magnitude of product of two vectors is equal to the product of the two magnitude of the
two vectors.
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Proof : If ¢ and } are two perpendicualr vectors then 6=90".
axb= (absin90°);1
= (ab) n
= ‘Zl X l;‘ =ab
Magnitude of vectors axb= (magnitude of Zl) (magnitude of l;u)] Here n , 1S a unit vector along

a and b and obeys the left hand rule.
Special Condition :
ixj=01)sin90°k = k

A

similarly }‘ﬂ%:f and ]2><f=j

again }‘xf=_]2 (opposite to ; x }‘) Fig. 13.19
similarly ]2><}‘=_f and fx]2=_}'

This can be understood by the fig. 13.19.
13.22 Algebraic Properties of Vector Product

(i) Commutativity: Vector product is not commutative i.e.
axb #bxi
(i) Associativity: Vector product is associative with respect to any scalar m i.e.
m(@xb) = (md)xb =ax(mb)
(iii) Distributivity: Vector product obyes the distributive law:
ax(b+¢)=dxb+axé
13.23 Vector Product of two Vectors in Terms of Components
If a= ale'+ a2}+ a312 and b= blf+ b2}+ bSIQ are two vectors then
axb= (a1§+ a2}+a312)x(b1§+b2}'+b312)
=ab, (gxf) +a,b, (zA'x }') +a,b, (zA'x 12) + azbl(}' x;)
+a2b2(}' X }') + azbS(}' X 12) +ab, (12 x;) +a,b, (12 X }') +a3b3(l€ X lg)
= ab, (0) + a,b, (k) + ayb, (= ) + a,b, (=k) + a,b, (0) +a,b, (i) + ab, () + a,b, (=i) +asb, (0)
= (ayb, —ab,)i +(ash, —ab,) ]+ (ab, —a,b))k

ij ok
axb= a a, a,
bl b2 b3

which is a determinant form of a xb .
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13.24 Angle between two Vectors
If 6 is the angle between a and b

lel;zabsiné’;a

= |axb|=|absin®||n|=ab|sin0||n|
. _|Zi><l_?.|2
- (@®)(b?)

_ (a,b, —a;b,)’ + (ab, —ab,)’ + (a,b, —a,b)’
(@’ +a, +a,)b’+b’+b})

13.25 Vector area of a Triangle
i) If g and b are the sides of the triangle

then dxb =absinOn

S

let OA=&d and OB=

U B
Now area of (AOAB) = ab31n0n=§(a><b),

| =

here 7 is the unit vector
1= - L1y~ -
Note: Now area of AOBA = E(b X a) = —E(a X b)

(i) If the position vectors g, b and ¢ of triangle ABC are given
The sides of AABC, AB and AC

>
|-
>

AB=b-d and AC=c-a B

Area of triangle AABC = l(ﬁ% X R)

(B=a)x(c=a)] g

()
NS

| =

. ~ _ _ _ _ _ - a
bxc—bxa—axc+axa] Fig. 13.20

N | —

bxcraxbroxa]  [waxa=0]

| =

axb+bxc+cxa}

N | =
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13.26 Condition of Collinearity of Three points
If points A, B and C are collinear then the Area of triangle will be zero. (g )
Let the position vectors of AABC are d, b and ¢ , therefore area fo AABC =0

N %(*x5+5x5+axa)=o

= Gxb+bxé+éxd=0 @a — B ()
Ilustrative Examples Fig. 13.21

Example 16. Find the value of (2?—3}'+412)>< (3§+4}'—4]2).

ik
Solution : (2i—3j+4k)x(3i+4j—dk)=[2 -3 4
3 4 -4

=(12-16)i+(12+8) j+(8+9)k =—4i+20j+17k
thus required value i + 20}' +17k

Example 17. If a=3i+ } +2k and b= 2i— 2}' +2k then find the unit vector 7 perpendicular to vectors

g and b.
Solution : By the definition of vector product
. axb
n=———=
|axb |

G+ j+2k)x (20 —2)+2k)
(3i+ ] +2k)x (21 =2 +2k)

l
again  (3j+ j+2k)x(2i -2 +2k) =3
2

=(2+4)i+(4-6)j+(-6-2)k
=6i-2j-8k

5o 6-2j-8k
61 —2 - 8k|

_6i-2j-8k 6i—2j-8k
J36+4+64 V104
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3i-j—4k . |
:T, which is the required solution

Thus the required perpendicular unit vector is L(32 - } - 412) .

V26
Example 18. If Gxb=¢xd and @x¢=bxd, then Prove that d—d and b—¢ are parallel.
Solution : (G—d)x(b—¢)=(axb—adx¢)—(dxb—dx¢)
=axb-ax¢+bxd+(~¢)xd
= (Gxb—¢xd)+(bxd —ax?)
=0+0=0
. G—d and b—¢ are parallel vectors

Example 19. If Gxb=cxb then Prove that a—c = Ab , where A is a scalar

Solution: Gxb=¢xb

G—¢ and b are parallel therefore a—c¢ = M;, where A is a scalar
Note: (i) If @—¢ and p are in the same direction then A is positive
(i) If @—¢ and b are opposite then A is negative
Example 20. If A(1,2,2), B(2,-1,1) and C(—1,—2,3) are any three points in a plane then find a vector
perpendicualr to the plane ABC whose magnitude is 5 units.

Solution : AB = (position vector of B) — (position vector of A)
=(2§—}'+/§)—(f+2}+2/§)
=i-3j—k
and AC = (position vector of C) — (position vector of A)
=(—f—2}'+3l§)—(f+2}'+2]€)
=—2i-4j+k
AB and AC both are in plane ABC thus vectors ABx AC is perpendicualr to the plane

therefore EXR=(2—3}'—IE)><(—2§—4}'+/;)
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ik
=[1 -3 -1
2 -4 1

=—7i+ 10k
Unit vector perpendicualr to the plane ABC

s Tivj-10k _
J49+1+100 /150

magnitude of the vector with 5 in the direction perpendicualr to it is

-5| g (7= 3 4108)| - (77T

(7?—}'+1012)

l— —
Example 21. Prove that the Area of rectangle ABCD is EAC x BD where AC and BD are the diagonals.
Solution: Area of rectangle ABCD = Area of AACD + Area of AABC

:%R’XE+%E><R

_ 1 [ACxAD-ACxAB
Al ]

:%[RX(E—E)} :%R’xﬁ) Fig. 13.22

l— —

Thus Area of Rectangle = E‘AC x BD
Exercise 13.3
1.  Find the vector product of 3i + }—IQ and 2i+ 3}' +k.

2. Find the unit vector perpendicualr to the vectors i—2j+k and 2i+j—3k.

a.a

a
ab b.

S

3. For vectors @ and b Prove that (5 x];)z -

S

4. Prove that 5x(5+2)+5x(2+5)+2x(5+1§)=0,

5. If a,b, ¢ are the unit vectors such that a-b=a-c =0 and the angle between ) and c is 7/6 then

prove that a= J_rZ(I; X E) .
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10.

Find the value of ‘Zl X l;‘ if ‘ZI‘ =10,

B|=2 and a-b=12.
Find the vector with magnitude 9 units whcih is perpendicular to the vectors 4i— } +3k and —2i + } —2k.

Show that (& - l;) X (Zt + l;) = 2(21 X l;) . Also explain geometrically.

2 - A2 12
+‘a><k =2‘a‘ .

L
+‘a><]

For any vector d prove that ‘21 X i

If the two sides of the triangle are given by i+ 2}' +2k and 3i— 2}' +k then find the area of the triangle.

13.27 Product of Three Vectors

@

(i1)

(i)

(iv)

™)

(Vi)

The product of three vectors can have the following six conditions:

(@) a(b-c) (ii) a-(b-c) (iiiy ax(b-c)
(iv) Zz(ExE) (v) a-(bxc) (vi) sz(ExE)
By observation the following facts are to be considered

Zz(l; : 2) is meaningless, because b -¢ is a scalar quantity, thus here @ is a vector whose magnitude
is a product of (l; -C ) , but this condition does not specify the product of three vectors.

Zz(l; : 2) is meaningless, because b -¢ is a scalar whereas to find the scalar product with @ a vector

term is required.

ax (b . c) is meaningless, because b -¢ is a scalar and to get the vector product with @ , a vector

term is required.

a(b X c) is meaningless, because b x ¢ is a vector term and a is also a vector, but there is no sign
of () or (x) so nothing can be predicted about the result.

a- (bxc) is meaningful, because bxc isa vector and & is also a vector and the product of these
two vectors is possible and the result is a scalar. This is known as the scalar triple product.

ax(bxc) is meaningful, because bxc is a vector and G is also a vector, the vector product of

these terms is possible and the result is also a vector, this is called as vector triple product.
Thus from the above analysis only the product of two types of vectors is possible.

13.28 Scalar Triple Product

Definition: If the vector product of two vector quantities is again multipled with the scalar quantity

then this product is known as scalar triple product.

As both vector and scalar product are found in this triple products so it is also known as mixed product.
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If a, b, ¢ are any three vectors then a- (bXC) is known as scalar triple product of vectors a, b, ¢

and is also written as [a b ¢], also [a b ¢]=d-(bx¢) and [bacl=b-(Gx7) |
Note: It is also known as Box Product, it is to be noted that the terms inside the box should not
be seperated by comma.

13.29 Geometrical Interpretation of Scalar Triple Product
Let OA=a,0B=b and OC =¢ . Draw a rectangular parallelopiped with concurrent edges a,b,c
Now the vector area of parallelogram OBDC = bxc

é-(l;xé) =|d||bx¢|cosH, where 0 is the angle between @ and p x ¢

=|bxc|(|a|cosO)
= (area of parallelogram OBDC)

(height of rectangular parallelopiped)
= (area of base x height)

= G-(b x&)= volume of rectangular parallelopiped whose concurrent edges X Fig. 13.23

are g, p and ¢
similarly we can show l;(; X Zz) = E(Zl X l;) the concurrent edges of rectangular parallelopipped
a(Bxc)=bexa)=cfaxh)
or [a b cl=[bcal=[cab]
is equal to volume of rectangular parallelopiped whose concurrent edges are given.

13.30 Properties of Scalar Triple Product

6) a-(bxc)=b-(cxa)=c-(axb) (1)
again a-(bxc)=(bxc)-a )
similarly b-(cxa)=(cxa)-b 3)
and c-(axb)=(axb)-c 4)

from equation (1) and (4) Zl-(BxE) =E.(E¢><13) =(E¢><13)~E
e, a-(bx)=(axb) ¢

If the cyclic order remains unchanged then dot and cross signs can be changed.
(i) If the cyclic order changes then the sign of scalar triple product changes.

(bx&)=—(Cxb)
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G-(bx¢)=—a-(¢xb)
[ab c]=]a ¢ b]
(i) In scalar triple product if two vectors are parallel then the product is zero.
Let a,b,c are three vectors and b and ¢ are parallel then b = Ac, where A is a scalar,
[ab¢]=a-(Bxc)=a-(2exc)=2(a-0)=0 +[exc=0]
Note: If two vectors are same then also the result is zero.

13.31 Volume of a Tetrahedron

Let in tetrahedron OABC, O be the origin and A(Zl), B(l;) and C (2) are other vertices.

1
Volume of Tetrahedron (V) = § (area of base) x (height)

:l[l s ]*:l i
3 2( I 6[a ‘] T g 1324

Thus Volume fo Tetrahedron = (1 / 6) (Volume of rectangular parallelopipped whose three concurrent

edges are a,b,c )

Note: If the four vertices of a tetrahedron are A(Zl), B (l;), C (C) and D(E) then the volume is

1 - -
=—[d-b da-c¢ ad-d
6[ ]

13.32 Necessary and sufficient condition for the three non-parallel and non-zero

vector 4 b,c to be coplanar is [a b c]:o

Necessary Condition : Let @, b and ¢ are three non-zero non-parallel coplaner vectors then 5 x ¢

is a vector perpendicular to the plane i.e. Zl(l;xz) =0

(. a isina plane and bxcNis perpendicular to the plane and scalar product of two vectors is
always zero)

I e
Sufficient condition : Let
labecl=0 =  a(bxc)=0
= al (l;xz), But bxc, is perpendicular to vectors 5 and ¢ i.e. vector a lies in the plane of

vector b and ¢ therefore a,b and ¢ are coplaner.
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Ilustrative Examples
Example 22. Prove that [; } l;} + [} k ;} + [12 i ﬂ =3.

Solution : ;;k =§~(}'><I§)=§-§=1

-G

A A = A ~ A

1 -2 1
Solution : a -(bx C) =t b 1=0 (- first and third columns are same)
1 2 1
1 2 1
(a xb).c - c-(a Xb) I -2 1=0 (- first and third columns are same)
1 1 1

() =(axb) <

Example 24. Prove that [a +b b+c c +a} = Z[a b c}
Solution : since (l; + Z‘) X (E + Zl) = b x (Z‘ + ;;) +0x (E + 5) (distributive law)
:(bxc) (bxa) (cx )+(c><a) (distributive law)

=(bxc)+(bxa)+(cxa (0

)
)

[a+b b+c c+a]=(a+b){(b+c)x(c+a)
=(a+b).{(bxc)+(bxa)+(cxa)l (from (1))
:(a+b).(13x2)+(a+b).(bxa) ( )(cx&) (distributive law)
=5.(Ex2)+1§.(15x2)+21.(13xa) b(bxa)+acxa)+b(cxa)

+0+0+0+0+ [b c a} (-.- property of triple product)

I
—

QY

@‘l
Lo
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_ofabc]

Example 25. For what value of 4 are the vectors a= 22—}'+ /2, b= 2+2}'—3I€ and ¢ =3i+ l}'+5/€

coplaner.

Solution : Condition of three vectors Zz,]; and ¢ to be coplaner is [a b c] =0

2 -1 1 3 45
Le. 1 2 -3=0 or2 -1 1(=0
3 45 1 2 -3
= 3(3-2)+A(1+6)+5(4+1) =0 =3+71+25=0
= A1=-4

thus for A =—4 the three vectolrs a,b and ¢ are coplaner.

Example 26. Prove that the points A(4,8,12), B(2,4,6),C(3,5,4), D(5,8,5) are coplaner.

Solution : If the points BA, BC, BD are coplaner, again by the codnition [BA BC BD} =0
now ﬂ:(4§+8}+121§)—(2§+4}+61€) —2i+4)+6k
EJ:(3§+5}'+41€)—(2§+4}+612)=§+ G2k

ﬁ)=(52+8}+51€)—(2§+4}+6/€)=3§+4}'-/€

2 4 6
| BABCBD |=|1 1 -2[=2(7)+4(-5)+6(1)=0
34 -1

Thus the four points are coplaner.

Example 27. If four points A(Zl), B(l;), C(E) and D(E) are copaner, then prove that

[abe)=[pcd|+[cad]+[abd]
Solution : Four points are coplaner thus vectors AB, AC and AD are are coplaner.

= (4B A€ AD]-0

= (B-a)fexd-cxa—axd+axal=0
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:>b'(cxd)—l;'(cxa)—b(glxg)—a (Exﬁ):o
[abe)=[pcd|+[cad]+[abd]
Example 28. Find the volume of the rectangular parallelopipped whose concurrent edges are
2%i-3j+4k,i+2j—kPand 2i—j+2k .

Solution : Let a = 2;—3}' + 412, b=i+ 2}' —k and ¢=2i— } +2k , volume of parallelopipped = [ZI b c]

2 3 4
=1 2 —1=2(3)+3(—4)+4(-5)=6-12-20=-26 unit
2 -1 2

Since Volume is positive, hence the result is 26 units.

Example 29. Find the volume of tetrahedron if the vertices are 0(0,0,0), A(1,2,1),B(2,1,3) and
C(-1,12).
Solution : Here 0(0,0,0) is the origin and the position vector are a=i+2j+kb=2i+j+3k and

E=—f+}'+2]§.

1 2
Ir- -7 1
volume of tetrahedron =—[a b c]=— 2 1 3
6 6 1 1 2

- é[l(—1)+ 2(=7)+1(3)]=—2 unit
Since the volume is positive thus the result is 2 units.

Exercise 13.4

1. Prove that

() [ j 1+ k j1=0 (if) [2i j K1+[i k j1+0k j 2i1=—1
2. Ifa=2i-3j+4k.b=i+2j-k and ¢=3i-j+2k then find [abc].
3. Prove that the vectors —2;—2}'+4I€,—2§+4}'—2]2 and 4?—2}'—2]2 are coplaner.
For what value of A are the vectors copalner
() a=2i—j+k,b=i+2j—3k and ¢=3i+Aj+5k
() a=i—j+k,b=2i+j—k and ¢=Ai— j+Ak
5. Prove that the following four points are coplaner

()  A(-14,-3),B(3,2,-5),C(-3,8,-5), D(-3,2,1)
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() A(0,-1,0),B(2,1,-1),C(1,11),D(3,3,0)

6. Prove that a=2i— } + 12, b=i- 3}' ~5k and ¢ =3i- 4}' — 4k are the vector sides of a right angle
triangle.

7.  Find the volume of the rectangular parallelopipped whose three concurrent edges are given by the
vectors:

() a=4i-3j+k,b=3+2j—k and c=3i— j+2k
(i) a=2i-3j+kb=i—j+2k and E=22+}'_]2
13.33 Vector Triple Product

Definition : The product of vector with the vector product of two vectors is known as vector triple
product.

If @ b, ¢ are three vectors then their vector product will be ax (l; X 2) ) (l; X E) xa, (Zl X 1;) xC etc.

Geometrical Proof:

Here ZlX(l;XE), is perpendicular to vector a and vector (l;x 2)
le(l;xg) = M;+/,12 where 4 and p are scalar
Note: It is clear from the vector triple product ax (l; X 2) # (Zl X l;) x ¢, it is not associative.
13.34 For vectors a.b,c Prove that
ax(Bxé)=(a-¢)p—(a-B)c
Let a= a1§+ a2}+a3lz,l; = b1§+b2}'+b3l€ and ¢ = c1§+ c2}+c312
i j k

now le(l;xz):(alf+a2}+a3lz)xbl b, b,

€ G G

a1§+ a2}+ a312) X {(b2c3 —b3cz)lA' +(b3C1 —b1c3)}'+(b1c2 _bZCI)]z}

—

> {a, (be, ~byc,) - a, (bye, —bc, )i

> b (aye, +aye,) ¢ (ayb, + asb, )} i

= {(aic, + aye, + a,e,) b, — (ab, + b, + ab) .} i (adding and subtracting a, b, c)
Z{(&E)bl —(24~13)c1}§=(&~2)13—(&~5)2

ax(bxc)=(a-c)b~(a-b)c

[400]



miarty  (axB)xc =—cx(axB)=—{(¢-B)a=(c-a)b} = (c-a)b—(c-B)a
Ilustrative Examples
Example 30. If a=3i+ 2}'+l€,5=f—2?j+2/€ and ¢ = 22+}'—/2 then find the value of Gx (b x )

Solution : le(Z)xE):(Zz.E)I;—(Zz.l;)E

(i) =
=7(§—2}+2/§)—1(2§+}—1§)=5§—15}+151€

Example 31. Prove that (a Xl;) xc=a x(l; X 2), if and only if (cxa)xl; =0

Solution : Let (5 xl;) xc=a x(l; X 2)
o (a-d)b=(b-c)a=(a-c)p-(a-b)
S (5-&)a=—(a-5)¢

~  (p-Q)a-(b-a)e=0
(éxa)xb=0

Example 32. Prove that the vectors @ % (bx¢).bx(cxa) and ¢x(axb) are coplaner.
Solution : Let = ax(5xc),0=hx(¢xa) and R=cx(axh). then
P+ R=(-0)p—(a-B)7) +{(-a)(B-2)al +{(7-B)a—(-a)5] O
~ P=(-1)0+(-)R
— P,Q and R are in one plane

— P,0Q,R are coplaner
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Exercise 13.5
Find the value of le(l;xz) it
(1) Zz=32—}'+12,l3=f+3}—12 and E=—f+}'+3]§
(i) a=2i+j-3kb=i-2j+k and ¢ =—i+ j—4dk
Prove that sz(l;xz);&(axlg)xzit
()  a=2i+5j-Tk,b=-3i+4j+k,c=—i—2j-3k
() a=2i+3j-5k,b=—i+j+\2k c=4i-2j+3k
Verify the formula le(l;xz):(ag)l;—(al;)z where
G) a=i+j—2kb=2i—j+k,c=i+3j—k
() a=i-2j+k,b=2i+j—k,c=3i+5]+2k

For any vector g prove that

N

;x(ax§)+}'x(21x}')+l€x(;1xk):2gl

Prove that

le(l;xz)+l;x(zxa)+zx(glxl;)=0
Prove that Zz, B,E are coplaner if and only if ax l;, b x E, cxa are coplaner
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Prove that

(axb)x(cxd)=[abe]c-[acd]d

8.  If the magnitude of two vectors @ and p are /3 and 2 and d -b =6 then find the angle between
vector ¢ and b .
9.  Find the angle between the vectors i —2+3k and 3 - 2}' +k.
10. Find the projection of vector i+ } on ;—} .
11.  Fidn the projection of vector i+ 3}' +7k on 7i- } +8k .
12.  Find the valueof (3G —5b)-(2d +7b) -
13. Find the magnitude of the two vectors a¢ and b if there magnitude is same and the angle between
them is 60° and their scalar products is 5
14.  For a unit vector &, if (¥—a)-(X+d)=12 then find the valeu of | ¥|.
15. Ifa=2i+2j+3kb=—i+2j+k and ¢ =3} + 3] are such that a+ Ab is perpendicular to vector
¢ then find the valeu of A.
16. 1If a,b,c are unit vectors such that a+b+c¢ =0 then find the value of a-b+b-c+c-a.
17. If the vertices of triangle ABC are (1, 2,3)(-1,0, 0)(0,1,2) then find ZABC.
, { Important Points ] \
1. Zz-#zabcose, Zl-EzO@&LI;(Zl#O;tl;)
ik
.. it oo
cos@ = ab s 01 0
ab {
k{10 0 1
2. Ifa=qi+a,j+ak and b=hi+bh, j+bk then ab=ab +ab, +ab,
3. axb=(absin6)n

o X| i jk
axb v h 2 Ao
sin0=‘ and = ilez 0 ko
a ‘axb } —k 0 lA
ixj=k, jxk=ikxi=] klJj -0
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10

11.

12.

13.

14.

ik

a=a1§+a2}'+a312 and l;zb1§+b2}'+b312 and axb=la, a, a,
bl b2 b3

Area of Parallelogram of two vectors is = a xl;, where a and b are the adjacent sides of the

parallelogram.

Areaof AABC =Qy= % axb+bxc+cxal, where a,b, c, are position vectors of vertices of triangle.

The collinearity of three vectors a, b and ¢ is given by axb+bxc+cxa=0

- D N
Area of parallelogram whose diagonals are ¢ and p = E‘a xb‘

We represent the scalar or dot product of three vectors a,b,c is a (l;xz) and [Zl b E] .

A

. Ifa=aji+a,j+ak, E=blf+b2}+b312,
a a, a
E:clf+c2}'+c3lz, then [a b c]: b b, b
G 6 G

Volume of rectangular parallelopipped = [5 b E], (where a, b, c denoted its concurrent edges).

Volume of Tetrahedron = g[a b C} where a, b, ¢ are its concurrent edges.

The triangular product of three vectors a, b, c is ax (l;xz) = (Zl . E)l;— (gl . 13)2

In vectors, vector product does not follows associative property i.e. aXx (bx c) # (a X b) Xc
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Answers
Exericse 13.1

(1) |a|=3;|b |=/62;|¢ =1 (2) any two vectors (3) any two vectors (4) x=2, y=3
o Ao : T+ ]+2k . (f+}+l€)
(5) -7, 6 rFkk -7i, 6 (6) 4j—-k (7) \/g (8) \/g
9 ik 10 8(5i—j +2k) 11) ~47 +6] -8k =—2(2f =3 + 4k)
9) \/5 (10) @ ( —4l +0j —ok = 1=3)
. 1/_\ 4 A 1~ R A _7 4/\' ]2 N N
(12) Ozt 2 Jj, 3k (i) 3743k (13) 3i+2j+k (14 IR 50k
3 373 3
(15)(3, 2, 1)
Exercise 13.2
(1) () 105 i) 05 GiD) 1083 (2) (i) —4 5 (i) 7 ; (i) 7 4) 9=C0s1[%j
2 ~ A~ A
(5) () 3 ; (i) 3 (6) = (7) 5i—-15j+7k
Exercise 13.3
A A A i+ j+k A A A 5J5
(1) 4i-5j+7k @) 6) 16 () gie6joh (1) 22
Exercise 13.4
(2) -7 (5) (1) —4; a1 (8) (1) 30 ; (i) 14
Exercise 13.5
(1) (i) —2i -2 +4k ; (ii) 8i—19j—k
z o5 60 L
GOy (9) €08 {5 (10) 0 (11) 4 (12) 6|a| +11da-b—-35|b |
- 3 4 10
(13) a| =1 ]b =1 (14) V13 (15 -4 (16) =5 (17) s | 7=
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Three Dimensional Geometry

14.01 Introduction

The objects we come acrose around us are only three dimenstional. So, the study of such objects is of
utmost importance for our better understanding of this world. In the previous chapter, we have studied vectors
in the 3-dimensional space. Vectors are very useful tools to study the 3-dimensional analytic geometry, which is
also called the solid geometry. Most of the results are obtained in vector form, which look very simple, and
then translate these results to the cartesian form. In solving the problems, we may use either of these two forms.

14.02 Direction Cosines of a Line

Directions cosines of any line L are defined as direction cosines , ) -t
of any vector AB whose support is given line. Let OP || AB . If OP 1 "igx
makes angles ¢,  and y with positive directions of axes OX, OY and /&‘P(x,y,z)
OZ then cosa, cos B, cosy are direction cosines of OP . Direction A ¢
cosines of OP and AB are similar, because they are parallel and make 0 ; By \/‘Q >
same angles with axes. In general, direction cosines are represented by ard / Y
l, m,n respectively R
{=cosa,m=cosfB,n=cosy. X/
Note: Fig. 14.01
1. Direction cosines never be written in bracket.

2. BA makes angle n—o., 17— and n—y with co-ordinate axes OX, OY and OZ respectively. Therefore,

directions cosines of BA will be cos(w —a),cos(z — f),cos(wr —y) ie. =, —m,—n.

So, if ¢, m, n are direction cosines of any line, then —¢, —m, —n are also its direction cosines just

because AB and BA have a common support line L.
3. Direction cosines of X-axis : 1, 0, 0

Direction cosines of Y-axis : 0, 1, 0

Direction cosines fo Z-axis : 0, 0, 1
14.03 Relation among the Direction Cosines of a Line

Consider a vector AB with direction cosines /, m, n with base line L. Through the origin, draw a line
parallel to the given line and take a point P (x, y, z) on this line, such that OP [| AB . From P, draw a
perpendicular PQ on the Y-axis (Fig. 14.01)

If OP =r, then cos :%

— y=rcos S =mr . Similarly, z=nr and x=/(r
Again, OP=r
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(OP)2 =7’
e yz 472 =2

r2(€2+m2+n2)=r2

ud U

Cym’+n’ =1
14.04 Direction ratios of a line

Definition : The direction ratios of a line are proportional to the direction cosines of the vector whose
support is the line.

Let a, b, ¢ be direction ratios of a line and let ¢, m, n be the direction cosines of the vector whose
support is give line. Then

{ m n

a b c

S Direction ratios of any line be the direction ratio of that vector whose support is the given line.

Notes:

1. Ifa, b, ¢ are direction ratios of a line, then ka, kb, kc, where k =0 are also a set of direction ratios.
So, any two sets of direction ratios of a line are also proportional. Also, for any line there are infinitely
many sets of direction ratios.

2. For direction cosine ¢, m,n, we have ¢*+m”+n* =1 but for direction ratios a, b, ¢, we have

a’+b* +c* #1 tilla, b, ¢ become direction cosines.

3 i—ﬂ—z—k 1
. PR (let)

{=ak,m=bk,n=ck

but Cemi+nt=1
L K(a b )=
1
— k=t——mo«
Ja® +b* +¢?
/ a b . c

NJat +b* + ¢

\/c12+l72+c2 \/c12+192+c2

4. Let r=ai+bj+ck

. T a ) b i c
r=—= 1+ ]+ k
| 7| [\/a2+b2+c2j [\/a2+b2+c2j [\/a2+b2+c2j

=€f+m}+nl€

/ a m b " c
where = »m= » N=
Na*+b* +¢* Nat+b*+¢? Nat+b*+¢?
Thus in vector 7 , coefficient of 7, }', k are the direction ratios of that vector.
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14.05 Direction cosines of a line passing through Two Points

Let L be the line passing through the points P(xl, Yis Zl) and Q(xz, Vs zz) .
P—Q = (position vector of Q) — (position vector of P)
= (x2f+ y, ]+ zzlg) - (xlf+ yJ+ zllg)
:(x2 —)cl)i+(y2 — yl)j+(z2 —zl)k
d.r's (direction ratios) of PQ are x, — X, y, = ¥,, 2, — 2, and its d.c's (direction cosines) are

X=X Vo= L=

|PO| " |PO| " |PO|"

where, ‘P—Q‘ = \/(x2 - xl)Z + (y2 _ y1)2 + (12 - Z1)2

Ilustrative Examples
Example 1. A line makes an angle of 30° and 60° with the positive direction of X and Y-axis. Find the angle
formed by the line with the positive direction of Z—axis.
Solution : Let the line makes an angle y with the positive direction of Z-axis. Thus it makes angle 30°, 60° and
y with the three axes.

1
the d.c's of line are cos30°, cos60°, cosy i.e. 73,5 , COSy

We know that, Cemt+n’=1
(V372) +(1/2)" +(cosy) =1
or cos’y =1-1
= cos’y =0
= cosy =0
or, y =90°

Thus the line makes an angle of 90° with the Z-axis.
Example 2. If the vector makes an angle of ¢, fand y with OX, OY and OZ axes respectively, then Prove

that sin® o +sin” B +sin’ y =2
Solution : Let the d.c's of the given vector be ¢, m, n
then, cosa =/, cosf=m, Cosy=n
we know that C+m’+n’ =1
cos” a+cos” f+cos’ y =1
= (l—sinza)+(1—sin2/3)+(1—sin27/):1

= sin® o +sin” B +sin’y =2
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Example 3. Find the direction cosines of a line joining the points (1, 0, 0) and (O, 1, 1).
Solution : The direction ratios of the line joining (1, 0, 0) and (0, 1, 1) are
0-1,1-0,1-0=-1,1,1
Thus, the direction cosine will be

1 1 1
VRN RN
Example 4. Show that the points A(2, 3, 4), B(-1, 2, —3) and C(-4, 1, —10) are collinear.
Solution : The direction ratios of the line joining the points A and B thus it is clear that direction ratios of AB
and BC are proportional therefore
AB || BC

But in AB and BC B is common

. A, B and C are colinear.
Example 5. If a line makes an angle 90°, 135° and 45° with the X, Y and Z-axes respectively then find the
direction cosine of the line.

Solution : Direction angles are 90°, 135°, 45°

direction cosines are

£ =c0s90° =0, m =cos135° =—L, n=-cos45° =

NG

-

thus, the d.c's of the given line are

Y
NN

0,

Exercise 14.1

Find the direction cosines of a line whcih makes equal angles with the coordinate axes.
Find the direction cosines of the line passing through two points (4, 2, 3) and (4, 5, 7).
If the direction ratios of the line are 2, —1, —2, then find the direction cosines.

Ll e

A vector 7, makes angle of 45°, 60°, 120° with the X, Y and Z-axes respectively and the magnitude of
7 1is 2 units, then find 7 .

14.6 Equation of a line in Space
We shall now study the vector and cartesian equations of a line in space. A line is uniquely determined if

(1) it passes through a given point and has given direction, or

(i) it passes through two given points. 7 P(7) L

(i) Equation of a line through a given point A (4) and

parallel to a given vector m

Let the line be L whose equation is to be determined. Let
the line is parallel to the vector m and passes through the point

A whose position vector is @ . Let O be the origin, therefore

— Fig. 14.02
OA=a. )

[409]



Let P be any point on the line L whose position vector is 7 ,

then

clearly

ud Ul

U

for each value of the parameter A , this equation gives the position vector of a point P on the line. Hence,

OP=r
AP || m
AP = Am

(position vector P) — (position vector of A) = Am

OP—0A =i
r—a=Am
r=a+Am

the vector equation of the line is given by

F=a+Am

Cartesian Form

Let A(xl, Vs 4 ) be the given point and the direction ratios of the line be a, b, c. Consider the coordinates

of any point P be (x, y, z) then,

F=xi+y+zk

a=xi+yj+zk

Since, the direction ratios of the given line be a, b, c therefore, it is parallel to m

m=ai +bj+ck

Now, vector equation of the line is

r=d+Am
Xi+y)+zk = ( xXi+yj+z )+/1(a5+b}+d€)
xi + yj + 2k = (x, + Aa)i+(y, + Ab) j+(z, + Ac)

x=x+ia; y=y +Ab; z=z+Ac

a b c

(ii) Equation of a line passing through two given points

Vector form

Let a line L passes through the two points A and B whose position vectors are g, and a,. If O is the

origin, then OA =g, and OB =,
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AB = (position vector of B) — (position vector of A)
= ‘_iz - ‘_il

Let there be point P on the line L whose position vector is 7, then QP =7

since AP and AB are collinear vectors, then

N AP = (E), LeR
= F—aj:/’t(c?z—él)
o o 0]
- F=ad,+A(d,-ad,) Fig. 14.03
.. The vector equation of line L passing through the points A(d,) and B(a,) is
F=a,+A(d,—a,) 2)

Cartesian Form:
Let the line L, passes through the points A(xl, Vis zl) and B (xz, Vs zz) . Let the coordinates of any

point P on the line be (x,y,z).
Since AP and AB are collinear, then
= (e k)= (ni e ak) =2 {(nd + T k)= (574 ]+ 2k
= (x=x)i+(y=2)]+(z=2)k =A(x, = %)+ A(y, - %)+ A(z, -2 )k
= x=x=A(x-x);y-n=4(y,-n)iz-z=4(z,-z)

X=5 _ V70 _27%
X=X Y=V L4

=

which is the required equation of line.

Ilustrative Examples
Example 6. Find the vector and cartesian equation of the line passing through the point (5, 2, —4) and parallel

to the vector 3i +2 ] — 8k .

Solution :
Let a=5i+2j—4kand b =3 +2] -8k
The vector equation of the line is Fr=a+ A4 (m )
x?+y}+z1€=5§+2}—4k+/1(3?+2j—8/€)
of,  x+yjtzk=(5+31)iH2+2) J {481k

or, x—=5 = 3x, y-2=2x, z+4=—8x
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x=5_ y-2 z+4
3 2 -8

or, A

x=5 y-2 z+4
3 2 -8
Example 7. Find the vector equation of the line passign through the points (-1, 0, 2) and (3, 4, 6).

Thus, equation in cartesian form will be

Solution : Let the position vector of points A(-1, 0, 2) and B (3, 4, 6) be ¢ and b respectively.

then, G=—i+2k

and b=31+4]+6k
b-d=4i+4]+4k

Let the position vector of any point P be 7 , then the vector equation of the line is-
F=—i+2k+2(4+4]+4k)

Example 8. Find the vector equation of a line passing through point A (2, —1, 1) and parallel to the line joining

the points B (-1, 4, 1) and C (1, 2, 2). Also find its the cartesian equation.
Solution : For the vector equation

position vector of B=—{ +4 ]+ k

and  position vector of C=7 +2 ] + 2k
B_>C = position vector of C— position vector of B
:(f+2}+2l§)—(—f+4}+12):2f—2}+lg
position vector of A, 7. = 2% — } +k
Vector equation of the line
F =7 +A(BC)
- 7:(2?—}+1€)+/1(2f—2}+1€) )
Certesian equation of the line,
(xf+ y}+zl§)=(2f—f+l€)+ﬂ.(2f—2}+l€), when 7 = xf+y}+zl€

— (xf+y}+zl€)=(2+2A)f+(—1—2&)}+(1+i)l€

On comparing,

x=2 y+1 z-1
2 -2 1

=1

=

x=2 y+1 z-1
2 -2 1

Thus, the cartesian equation of line is
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Example 9. The cartesian equation of a line 6x—2=3y+1=2z-2 . Find
(a) direction ratios of the line.
(b) the vector and cartesian equation of a line passing through (2, —1, —1) and parallel to the given line.
Solution : Equation of a line
6x—2=3y+1=2z-2

x=(1/3) y+(1/3) z-1
/76  1/3  1/2

x=(1/3) _y+(1/3) _z-1

1 2 3

(a) Therefore, the d.r's of the given line are 1, 2, 3.
(b) Equation of a line passing through (2, —1, —1) and parallel to the given line.

=

x=2 y+1 z+1
1 2 3

New vector equation of a line passing through A (2, -1, 1) and i.e. G=2{— j—k parallel to

m=1+2]+3k is
=d+A
=(2f—}'—12)+1(f+2}'+312)

=)
N

~|

or,

Exercise 14.2

1. Find the equation of the line passing through the point (5, 7, 9) and parallel to the following given axis:
(i) X—axis (il) Y—axis (iii) Z—axis

2. Find the equation of the line in vector and in cartesian form that passes through the point with position
vector 27 — 37+ 4k and is parallel to the vector 37 + 4 j — 5k .

3. Find the equation of the line which passes through the point (5, -2, 4) and is parallel to the vector
2f - j+3k

4.  Find the eqation of the line whcih passes through the point (2, —1, 1) and is parallel to the line
x=3 y+1 z-2

2 7 3

5. Find the vector equation of the line whose cartesian equation is

x=5 y+4 z-6
3 7 2
6.  Find the cartesian equation of the line whcih passes through the point (1, 2, 3) and is parallel to the line
x—-2 y+3 2z-6
1 7 3
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7.  The coordinates of the three vertices of a parallelogram ABCD are A (4, 5, 10), B (2, 3, 4) and
C (1, 2, -1). Find the vector and cartesian equation of AB and BC. Also find the coordinates of D.

8.  The cartesian equation of alineis 3x+1=6y—-2=1-z . Find the point through which it passes and
also find the direction ratios and vector equation.

9.  Find the equation of the line whcih passes through the point (1, 2, 3) and is parallel to the vector
3i+2j-2k -

10. Find the vector and cartesian equation of a line passing through the point whose position vector is
2% —j+ 4k and in the direction of the vector 7 + 2] k.

11.  Find the cartesian equation of the line which passes through the point (-2, 4, —5) and is parallel to the

x+3 y-4 z+8

3 5 6

line

x-=5 y+4 z-6
3 7 2
13.  Find the vector and cartesian equation of a line passing through the origin and the point (5, -2, 3).

12.  The cartesian equation of a line is . Find its vector equation.

14.  Find the vector and cartesian equation of a line passing through the point (3, -2, —5) and (3, -2, 6).
14.07 Angle between Two Lines
Vector form:

Let the vector equation of two lines be
F=d +Am, AeR and 7 =d,+um,, ueRr

If the angle between them is 6, then it is clear from figure 14.04 that, the angle between vector m, and

- . m,-m
vector i, is also 6. Thus cosf = ——=—.
my || |
Cartesian form: -
Let the cartesian equation of two lines be /
X=X _ YN _27% X—x - -z
== and 2 _ YTV _ 2
a, | G a, b, c, 0 -
- 2 2 r - 2 A r — =
m, =ai+bj+ck and m, =a,i +b,j+c,k ,
o Fig. 14.04
but cos@ = y .nzz
|, ||, |
- cosd aa, +bb, +cc,

2 2 2 2 2 2
\/al +b" +c, \/a2 +b,” +c,

Note:
1. If the direction cosines of two lines are ¢,, m , n, and ¢,, m,, n, and the angle between them is 6, then

cos@ =/( L, +mm,+nn,.
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2. If the two lines are perpendicualr, then a,a, +bb, +c,c, =0 or (,{, +mm,+nn, =0.

b l
3. Ifthe two lines are parallel, then R g N R
a2 b2 C2 62 m2 n2

Ilustrative Examples

E le 10. Find the angle between the lines > =22 =27 g X 17y _2-6
xampie . 11 € angle bpetween the €S 3 = ) 0 an 1 ) 5 -

Solution : Given lines are
x=5_ y+3 z-7
-3 -4 0

()

y-1 z-6
IS @

i
1
Let the vectors parallel to line (1) and (2) be n, and m, respectively, then 7, = —3i—4j+0k and

i, =1 —2}'+21€ . Let the angle between m, and m, be 6, then

cosf = in‘.”?

| m, || m, |
- 056 = {(=3)x1+ (-4)x (-2) +0x 2} 1
{\/(—3)2 (4 Jroz}{\h2 (274 22} 3

= @ =cos'(1/3).
Example 11. Find the angle betwene the lines

?:3z°+2}—4l€+l(f+2}+212) and 7:55—2}+u(35+2}'+6l€).

Solution : Let the angle between the lines which are parallel to l;l =[+2]+ 2k and 172 =3 +2]+ 6k

respectively be 6, therefore

‘(f+2}+212).(3f+2}+6/€)‘

cos9=|~’f|=
‘|b1||b2|” JI+4+49+4+36 ‘
_3+4+12_Q
| 3x7 | 21

6 =cos'(19/21)
Example 12. Find the equation of line passing through (-1, 3, —2) and perpendicular to the line

=—=— and

xX_y_z x+2 y-1 z+1
1 2 3 -3 2 5
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Solution : Let < g, b, ¢ > be the d.r's of the required line. Since this required line is are perpendicular to the
given lines, then

a+2b+3c=0 ey
and  —34+42b+5¢=0 )
By cross-multiplication method in (1) and (2), we get

a_b _c

4 -14 8

ab ket
o 27 g dey

The line passes through (-1, 3, -2), with d.r's <2, -7, 4 > be given by

x+1 y=-3 z+2
2 =7 4

Exercise 14.3
1.  Find the angle between the lines-

F=2§—5}+l€+l(3i+2}+6/€) and F=7f—6}'+u(f+2}+2/€)
2. Find the angle between the lines-
X y z x=5 y-2 z-3

2, 7 ad = 1 8

3. Show that the line passing through the points (1, —1, 2) and (3, 4, —2) is perpendicular to the line passing
through the points (0, 3, 2) and (3, 5, 6).

x—1 y-2 z-3 dx—l_y—l_z—6
3 2k 2 ™My T TS

4.  Ifthe lines are mutually perpendicular, then find the value

of k.
5. Find the vector equation of the line passing through the point (1, 2, —4) and perpendicular to the lines
x-8 y+19 z-10 d x—15 y-29 z-5
3 16 7 M3 § -5
6.  Find the cartesian equation of the line passing through (-2, 4, —5) and parallel to the line

x+3 y—-4 z+8
35 6
14.08 Intersection of Two Lines
If two lines intersect in a plane, then there is one common point between them so that the distance between

them is zero. The following methods are used to find the point of intersection of two lines.
(1) Equation of lines in vector form:

Let two lines be F=(ai +a,)+ak)+ A(mi +m, ] +mk) (1)
and F=(a'i+a', j+a' k) +um' i+m', j+m',k) ©)
(1) - Lines intersect, therefore

(a1i+a2j+a3k)+i(mlf+m2}+m3lg)=F=(a'lf+a'2 }+a'3l€)+u(m'lf+m'2 j+m', k)
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(ii)

(iii)
()

@

(ii)

(iii)

On comparing, we get
a+Am =a'\+um'; a,+Am,=a',+um',;; a,+Aim,=a'y+um';
On solving the two equations, we get the value of A and p. If these values satisfy the third equation, then
the lines are intersecting otherwise not.
To get the position vector of intersecting point, put the value of A, p in (1) and (2).
Equation of lines in cartesian form

fines = =278 ok (et 1)
C,

and " b, o (e ©)

Point on line (1) and (2) are
(ar, +x,, br,+y,, ¢, +z) and (a,r, +x,, b,r, +y,, c,1, +2,)
Lines intersect, therefore
arn+x =a,n,+x,; br+y=br+y, and ¢, +z, =c,1,+2,
Find the value of r and r, by solving any two of the equations. If the values of 7, and r, satisfy the
third equation, then the lines intersect otherwise not.

Substituting the values of #, and r, in the general point, we get the point of intersection.

Ilustrative Examples

Example 13. Prove that the lines

Solution : Let the coordinates of any point on

x—4 y+3 z+1 d x—=1_ y+1 z+10
1 a7 M Ty T3

intersect each other. Find the coordinates of their intersecting points.

x—4 y+3 z+l
1 -4 7

=1 (let)

be (1 +4, —4r,—3, 7r,—1). Similarly,

x—=1_ y+1 z+10

2

=1, the coordinates of the point be (2r, +1, —=3r, —1, 8, —10) on the line.

-3 8
These lines will intersect each other, if they have a common point between them i.e.
r+4=2r+1 (1)
41 —3==3r,~1 @)
Tr,—1=28r,-10. 3)

Solving equation (1) and (2), we have 1, =1, r, =2, which satisfies equation (3) also. Thus, the two lines

intersect each other at the point (5, -7, 6).
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Example 14. Prove that the lines
F=(i+j—k)+A(3i—j) and 7 =(4i—k)+ u(2i+3k)
intersect each other and find the point of intrsection.

Solution : Let the position vector of the points of intersection be 7 .

(i+j—k)+A(3i—j)=(4i—k)+pu(2i+3k)

1+34=4+2u = 3A-2u=3 (1)
1-1=0 = A=1 2
—1=-14+3u = u=0 3)

(on comparing the coefficients of i, j, k)
From (2) and (3), A=1, u=0, which satisfie (1). Also putting A=1 1in the equation
F=(i+j—k)+A(3i—j), wehave
r=4i+0j—-k
thus, the coordinates of point of intersection are (4, 0, —1).
Example 15. Show that the lines,

x—=1_ y+1 z-1 d x=2 y-1 z+1
3 2 5 M T3 T

do not intersect each other.

Solution : Given lines are

x=1_y+1_z-1
3 2 5

=4 (D

x=2 y-1_ z+1
4 3 2 @
Let PBA+1,24—-1,54+1) beany pointon (1) and Q(4pu+2,3u+1, —2u—1) be any
point on (2). If the lines (1) and (2) intersect, then

3A+1=4pu+2 ; 2A-1=3u+1 ; SA+1==2u-1

= 3A-4u=1 3)
2A-3u=2 4)
SA+2u=-2 )

Solving (3) and (4), we have A =-5 and u=-4.

But the value of A and u , do not satisfy (5) Therefore, these two lines do not intersect each other.
14.09 Perpendicular distance of a point from a line
Vector form:

Let the foot of perpendicular drawn from point P(¢&) on the line be L

7 is any arbitrary point on the line. Therefore, the position vector of point L will be g + 1h

[418]



[ = Position vector of L— position vector of P

- P ()
=d+Ab—-a
=(d—-a)+Ab
vector PJ, is perpendicular to the line parallel to 5 therefore
PL-b=0
{(@-a)+2b}-b=0 R D 5
(@-d)-b+A|b[=0 r=a+ b
L _(Zz—o?)-l; Fig. 14.05
b
Now position vector of L —Ga+Ab
G (a—ﬁa)-b E
o[
_ M (@@ |
Equation of p[, r=a+pjia- |5|2 br—a

Magnitude of PL is length of PL
Cartesian Form : To find the length of perpendicular drawn from P(«, B, y) on the line

X=4 _Y=h _27%

a b c
Let the foot of perpendicular drawn from point P(«a, S, ) to the line al ;xl =2 ; h_IT4
c
. P (o, B,
Let the coordinates of L be (x, +aA, y, +bA, z,+cA) @B
direction ratios of PLbe x,+al—oa, y,+bA—p and z,+cA—y
d.r's of line AB be a, b, ¢
PL and AB are mutually perpendicular. Therefore,
(x, +arl—-a)a+(y, +bA-P)b+(z,+cA—y)c=0
H
ale—x)+b(B-y)+c(r-2z) A L .

= A= 2 42, 2 .

a +b +c Fig. 14.06

By putting the value of A in the coordinates of L, we get the actual coordinates of L. We can find the
distance of PL by using distance formula.
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Ilustrative Examples

x—6 =7 z-1
Example 16. Find the length of perpendicular drawn from point the (1, 2, 3) on the line 3 =2 > = >
Solution : Let the foot of perpendicular from point P (1, 2, 3) on the line be L.
Coordinates of L are (3i+6, 24+, —2ﬂ.+7) (1)

- dr's of PL
3A+6-1,24+7-2,-24+7-3
1e. 3A+5,24+5, -2A+4
d.r's of line are 3, 2, —2. Since PL is perpendicular to the given line. Therefore,
3(34+45)+2(24+5)+(-2)(-24+4) =0
= A=-1
Putting the value of A =—1 in (1), the coordiantes of L are (3, 5, 9)

PL=\(3-1) +(5-2)' =(9-3)

=7 units
Required length of perpendicular is 7 units.
Exercise 14.4

x=1_y-2 z-3 dx—4_y—1
2 3 4 75 2

1. Show that the lines = 2 are mutually intersecting. Find the point

of intersection.
2. Examine that the lines 7 = (7 — j)+ A(2{ +k) and 7 = (2{ — })+ u(i + j—k) are intersecting or not.

4—x y 1-z
> 6 3 . Also find the

3. Find the foot of perpendicular from the point (2, 3, 4) to the line

perpendicular distance of the line from the point.
4.  Find the vector equation of the line passing through the point (2, 3, 2) and parallel to the line

7= (—2f + 3}) + u(2f - 3} + 612) . Also find the distance between them.

14.10 Skew Lines and Shortest Distance between Two Skew Lines

If two lines in space intersect at a point, then the shortest distance between them is zero. Also, if two
lines in space are parallel, then the shortest distance between them will be the perpendicular distance, 1.e. the
length of the perpendicular drawn from a point on one line onto the other line. Further, in a space, there are
lines whcih are neither intersecting nor parallel. In fact, such pair of lines are non coplanar and are called skew
lines.

By the shortest distance between two lines, we mean the join of a point in one line with one point on the
other line so that the length of the segment so obtained is the smallest. For skew lines, the line of the shortest
distance will be perpendicular to both the lines.

Note: If two lines intersect at a point, then the shortest distance between them is zero.
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14.11 To find the Shortest Distance between Two Skew Lines

Vector form

We now determine the shortest distance between two skew lines in the following way:

Let L, and L, be two skew lines with equations
L :F=ad+b

L, :F=d,+Ab,

Take any point A on L with position vector A(q,) and B on L,, with position

vector B(a,). Then, the magnitude of the shortest distance vector will be equal

to that of the projection of AB along the direction of the line of shortest distance.

If PQ is the shortest distance vector between L and L, , then it is being

perpendicular to both 51 and 52. Thus, unit vector A along PQ will be

b <,
b x|

b xb,

n=

PO = (PQ)ii =di, where PQ =d (Shortest Distance)

Let O be the angle between AB and PQ, then

PQ =ABcos6
But, Cosﬁzﬂ
[4B][PQ
_(&2—51)-(dﬁ) _— . .
cos O = (B)(d) ’ AB=a,—aq,
_(ﬁz—&l)ﬁ
~ (4B)
(&2—&1)-13
From (1), PQ:(AB)W
= (d,-d,)-
:(az_#l)’(#lxﬁz)
|l;1><52|
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1e. == ‘:0

= (Ziz_‘_il)’( 1 X0,

)
= [(ZiZ_Zil) _1 _.2]:0

Cartesian Form:

x R
The shortest distance between lines L : = b = and L, : = =
a 1 G b2

a, b, (&)

\/(blc2 b, )2 + (c1a2 —c,q, )2 + (alb2 — azbl)

d=

2

14.12 Distance between two parallel lines

If two lines L, and L, are parallel, then they are coplanar. Let the lines be given by
F=a,+Ab and F=ad,+ub
where, 4, is the position vector of a point Ato L, and 4, is the position vector of a point B to L, .
As L ,L, are coplanar. Therefore, according to fig. 14.08 the foot of the perpendicualr from B on the
line L, is C, then the distance between the lines L, and L, = BC

Let @ be the angle between AB and b
bxAB= (‘Z)HE‘ sin 0) n

where 7, is the unit vector perpendicular to the plane of the lines Z, and L,

- . — L,
= bx(d,—a,)=|b|(BC)#A, where BC =(AB)sin6
— ‘Ex(ﬁz—ﬁl) =|5|(BC),where |A|=1 -
0 [ }i L
@A C o
Fig. 14.08
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‘Bx(ﬁz—ﬁl)
= BC:*
5]

Thus, the distance between the two given parallel lines,
bx (Eiz —aq, )

d=BC=

Ilustrative Examples

Example 17. Find the shortest distance between the lines whose vector equations are
F=(+2j+3k)+A(G 3] +2k) and 7= (4 +5]+6k)+ p(2i +3j+k)

Solution : F=d +2b and F=ad,+ ub,

G, =1+2]+3k, d, =4 +5] +6k

We see that
b=i{-3]+2k and b, =2{ +3]+k
(4,—ad,)= 45+5}+61€)—(f+2}+3/€)=(3£+3}'+3/€)
ik
and (b xb,)=[1 -3 2
2 3 1

=1(-3-6)+j(4—1)+k(3+6)=-9+3]+9%

|b,xb, |=\81+9+81=+/171

— |(a2_a1)'(51x52)|

S.D. «EAN
| by %, |

<D | BF+3]+3k)- (=97 +3]+9k) |

e V171

| 27+9+27] 9 9 3

N TN TN TENT]
Example 18. Find the shortest distance between two lines whose equations are

x—=1_ y-3 z-1

x=3 y-4 z+1 4
W T T

2 1 -3
Solution : The given equations are
x=3 y-4 z+1
2 1 -3
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x—=1_ y-3 z-1
-1 3 2 @
From (1) line passes through (3, 4, —1) and its d.r's are 2, 1, -3.

Its the vector equation is 7 =a, + M;l , Where g, = 3i+4]— k, l;l =2 + }—312
Similarly from line (2),

,=i+3]+k, b, =~ +3]+2k

Now, G~ =i +3]+k)~ (30 +4] k) =20 - j+2k
ij ok

and pxb,=12 1 =3|=11i-j+7k
-1 3 2

|b,xb, |=| 11 = j+ 7k |=N121+1+49 =171 =319

@@, -a,)- (b xb,)|

Shortest distance = | 51 9 52 | ‘
_|(20-j+20)- (1 j+7k)| |-22+1+14] 7
319 || 39 | 3o

Example 19. Find the shortest distance between the lines L, and L, whose vector equations are
7:?+2}—41€+/1(2f+3j+61€) and 7=3f+3}—51€+u(2f+3j+61€)

Solution : The given lines are parallel. Comparing with 7 =g, + Ab and 7 = a, + /,tl; , we have
G, =i+2j—4k, a,=3+3]-5k

and b =2{+3j+6k

Hence, the distance between the lines

AN =

o o —-
—_ W

-1 ‘_95+14}‘—4l€‘ 293 293

6] | [V4+9+36 J49 Ja9 7
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Exercise 14.5
1. Find the shortest distance between the lines whose vector equations are 7 = ({ +2 + ]2) +AG -+ k )
and 7 =2 — j—k+ u(2i + ] +2k)-

x+1  y+1  z+1
7 —6 1

2.  Find the shortest distance between the lines whose equation are and

x=3 y-5 z-7
1 -2 1 -
3. Find the shortest distance between the lines whose vector equations are

F=(+2j+3k)+A(G -3j+2k) and 7F=47+5]+6k+ u2i+3j+k)

4.  Find the shortest distance between the lines whose vector equations are

F=(-0i+(t-2)j+B=20)k and 7= (s+1)i +(2s—-1)]j—(2s+Dk
5. Find the shortest distance between the lines

x—1 y+1 x+1 y-2
—_— =7 _—= ,Z:2
> 3 cAad T

Also find the equations of line of shortest distance.
14.13 Plane

Definition : A plane is a surface such that if any two points are taken on it, the line segment joining
them, lies completely on the surface.

A plane is determined uniquely if any one of the following be known:

@ the normal to the plane and its distance from the origin be given, i.e., equation of a plane in
normal form.

(i1) it passes through a point and it is perpendicualr to a given direction.

@) it passes through three given non collinear points.
Now we shall find vector and Cartesian equations of the planes.

14.14 General Equation of a Plane

To prove that, every first degree equation in x, y and z represents a plane.

Let the equation be
ax+by+cz+d =0, (1)
where a, b, c and d are the constants and a, b, ¢ are non-zero.
Let P(x,,y,, z;) and Q(x,,y,, z,) satisfy the equation (1)
ax, +by, +cz,+d =0 2)
and ax, +by, +cz, +d =0 3)
multiplying (2) with m, and (3) with m, (where m, +m, # 0) and adding
a(m,x, +mx,)+b(m,y, +my,) +c(myz, + mz,)+d(m +m,)=0

or a[m2x1+m1x2j+b£mz)’1+m1y2j+c[mzzl+mlzzj+d —0

m, + m, m, + nm, m, + m,
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The point dividing the points P and Q in the ratio m, : m, is given by

R mx, tmx, myy +my, n,z+mz,
m, +m, m, +m, m, +m,

for every value of m,, m, (except m, =—m, ), point R satisfies equation (1)

Here, we have shown that P(x,, y,, z;) and Q(x,, y,, z,) lie on (1) and the point R joining the point

P and Q also lies on (1) i.e. line lies in the plane given by (1).

Thus, equation (1) denotes a plane in General form. Therefore, alinear equation with variablesx, y, z
always denotes an equation of plane.
Corollary : One Point Form:

To prove that, the equation of a plane passing through the point (x,, y,, z,) is

a(x—x)+b(y—y)+c(z-z)=0,

Let equation of plane be
ax+by+cz+d =0, ey
since, it passes through (x,, y,, z,)
ax, +by, +cz,+d =0. 2
subtracting (2) from (1),
a(x—x)+b(y—y,)+c(z-2z)=0, ©)

whcih is the required equation of plane.

Special cases: In the general equation of plane ax+by+cz+d =0 ,

If Form of Plane Conclusion
1. d=0 = ax+by+cz=0 = Plane passes through the origin
2. @) a=0 = by+cz+d =0 = Plane parallel to X - axis
@@ b=0 = ax+cz+d =0 = Plane parallel to Y - axis
@ c=0 = ax+by+d =0 = Plane parallel to Z - axis
3. @ a=0,d=0 = by+cz=0 = Plane passes through X - axis
@ »=0,d=0 = ax+cz=0 = Plane passes through Y - axis
@ c=0,d=0 = ax+by=0 = Plane passes through Z - axis
4. 1) b=0,c=0 = ax+d =0 = Plane perpendicular to X - aixs
@ a=0,c=0 = by+d =0 = Plane perpendicular to Y - axis
@ a=0,b=0 = cz+d =0 = Plane perpendicular to Z - axis
5- O a=b=d=0 = cz=0 = Plane coincides to with XY - plane
) b=c=d=0 = ax=0 = Plane coincides to with YZ - plane
) g=c=d=0 = by =0 = Plane coincides to with ZX - plane

Note: Since there are three independent constants in the equation of plane, hence to get the complete equation
of plane, we must find the vlaues of the three constants.
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Ilustrative Examples
Example 20. Find the ratio in which the line joining the points P(x,, y,, z,) and Q(x,, ¥,, z,) 1s divided by
the plane ax+by+cz+d =0 .
Solution : Let the line joining the points P and Q is divided by the plane ax+by+cz+d =0 1in the ratio
Al
Let the intersecting point of the line and Plane be R. Thus, R lies on PQ whcih divides PQ in the ratio

Ax, + Ay, + Az, +
2 : 1. Therefore, the coordinates of R will be LIL AR TH 2L TL
A+1 A+1 A+1

Since the point R lies on the plane, therefore it will satisfy the equation of the plane

a A ¥ n +b Aty +c Aty +d=0
A+1 A+1 A+1

or, a(Ax, +x)+b(Ay, +y)+c(Az, +2)+d(A+1)=0
or, A(ax, +by, +cz, +d)=—(ax, +by, +cz, +d)

Ao (ax, +by, +cz,+d)
or, =

(ax, + by, +cz, +d)
This is the required ratio.
Example 21. Find the ratio in whcih the line joining the points P (-2, 4, 7) and Q (3, -5, 8) is cut by the
co-ordinate planes.
Solution : The coordinates of point R on the line joining the points P (-2, 4, 7) and Q (3, -5, 8) and

34-2 —5)+4 8,1+7j

dividing in the ratio A : 1 be(}wl’ 1 A+l

31-2 2
(1 IfR, lies on YZ plane i.e. at x = 0, then Tl =0 or A= 3 i..e the required ratio is 2 : 3.
. . . —S5A+4 4 . .
@@ If R, lies on ZX plane i.e. at y = 0, then P =0 or A= 5 1.e. the required ratio is 4 : 5.
. . 8A+7 ) . .
(i) If R, lies on XY plane i.e. at z =0, then Tl 0or A= —g i the required ratio is —7 : 5.

14.15 Intercept Form of a Plane
In this section, we shall deduce the equation of a plane in terms of the intercepts a, b and made by the
plane on the coordinate axes. i.e. on X, Y and Z-axes resectively as -

f + Z + E =1
a b c
Let the equation of the plane be

Ax+By+Cz+D =0 (1)
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Let the plane makes intercepts a, b, c on X Y and Z axes respectively, such that
OP=a,0Q =band OR = ¢ z

A
Thus, the coordinates P, Q and R be (a, 0, 0), (0, b, 0) and (0, O, ¢).
Since, point P (a, 0, 0) lies on plane (1),
R(0, 0, ¢)
D
A-a+B-0+C-0+D=0 = AZ—;
Similarly, plane (1) passes through point Q and R. Therefore,
B=-D/band C=-D/c O _
Substituting the vlaues of A, B, C in (1), we have 0(0, b, 0)
P
—Bx—gy—21+D:O or R | (@ 0.0
a b c a b c X Fig. 14.09

This is the required equation of plane in intercept form.

Note: By converting general equation of plane in intercept from, we obtain the intercepts made by plane on
axes.

Ilustrative Examples

Example 22. Convert the equation of plane 3x—4y+2z =12 in the intercept form and find the intercepts
made on the coordinate axes.

Solution : Given equationis 3x—4y+2z =12,

3x 4y 2z
———t—==1
= 12 12 12
X y z
= 4=
= 4 (-3) 6
On comparing with the intercept form R % +2=1 , we have the intercepts made on X, Y and Z axes
a c

are 4, —3 and 6 respectively.
Example 23. A plane meets the coordinate axes at points A, B and C such that the coordinates of the centroid

of the triangle ABC so formed is K (p, ¢, r). Show that the required equation of the plane is ELAIR AR .

p q r
X Z
Solution : Let the equation of plane be g+%+z =1. Thus, the coordinates of A, B and C are (a, 0, 0),

(0, b, 0) and (0, 0, c). Therefore, the coordinates of the centroid willbe K (a /3, b/ 3, ¢/ 3). But it is given
that the centroid is K (p, g, r),

a_ b_ .
3P 37 3
= a=3p, b =3q, c=3r.

Substituting the values of a, b and c in, we get the required equation
i+l+i=1’ ie 1.{.2.{_&:3’
3p 3q 3r T p q r
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Example 24. A variable plane moves in a space in such a way that the sum of reciprocals of the intercepts
made by it on the coordinate axes is a constant. Prove that the plane passes through the fixed point.

X b4
Solution : Let the equation of the plane be 2 + % + - =1, (1)

The intercpets made by the plane on the coordinate axes are a, b and c respectively.

1 1 1 1
According to the question, —+—+— =constant = — (let)

a b c A
A A A
A @

Equation (2) shows that, (4, 4, A) satisfies equation (1). Thats means, plane (1) passes through the fixed
point (4, A, A)
14.16 Equation of a Plane in Normal Form

Vector form : Consider a plane whose perpendicualr distance from the origin is p and 7 is the unit
normal vector. Now, we have to find the equation of this plane.
Let O be the origin.

Let ON = ), length of perpendicular from the origin to the plane

Let 7 is the unit normal vector along ON whose direction from O to N is positive

ON = pi M z
Let the position vector of any point P be 7 then NP L ON.
NP-ON =0 @ ¢
but NP =7 - pi 3) P
From (1), (2) and (3), 'p h
(F = pi)- pi=0 0 5 Y
or (F—pn)-n=0 [+ p#0] A
or P pi-A=0 X Fig. 14.10
or Feit=p [oia-n=1]

Cartesian Form : Let ABC is any plane and ON is perpendicular from the origin, where N is the foot
of perpendicular. If the length of perpendicular from the origin to ON is p and direction cosines are /, m, n, then
equation of plane will be in terms of /, m, n and p.

Clearly the coordinates of point N are (Ip, mp, np). Let P (x, y, z) be any point on the line lying in a

’ x=Ip y—-mp z-np
plane. Then, the d.c's of PN are N PN PN

it is perpendicular to every line lying in the plane. Therefore, ON and PN are mutually perpendicular.

(et
PN PN PN
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. Now since ON is perpendicualr on the plane, thus




= lx+my+nz:b(lz+m2+n2)

= Ix+my+nz=p [ lz+m2+n2:1]
This is the required eqation of a plane in Normal form.

Note: Let 7 be any vector in the direction of n, then 7 = nn.

From (4), F(iln)=p =  F-ii=np
or, r-n=q, where o)
q=np (©)
This is the vector equation of the plane.
2. When origin lies on the plane, then p = 0, therefore, equation of plane passing through the origin and
perpendicular to the vector 7 is 7-n =0 .
3. In the normal form of a plane, the direction of vector 7 is from origine to the plane and p is positive.
4. If the intercepts made by the plane 7 -7 = g are x,, y,, z; , respectively such that OA=x,, OB=y, and

OC=z, then the position vector of these points are x,i, y,j and z,k . Since the point lies on the plane,

therefore.
xi-n=q X j-n=gq, yk-n=gq
q __4 q
X == h=-= 3 =—.
= Yo Lo Yok
5. Vector equation of a plane is an equation which have the position vector of any arbitrary point lying in
the plane.

Ilustrative Examples
Example 25. Find the equation of plane whcih is at a distance of 4 units from the origin and perpendicular to

the vector i —2j+ 2k .

Solution : Vector form : Here p =4 and n=i—-2j+2k

|| Ja+4+4) 3 37 3

thus, the required equation of plane is 7 - (% | — % + %k} =4

or, Fo(i—2j+2k)=12

This is the required equation of plane.

Cartesian form : Substituting 7 = xi + yj + zk in the above equation, we have
equation (xi+yj+zk)-(i-2j+2k)=12
Le. x-2y+2z=12,
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Example 26. Reduce the equation of plane r -(i—2 j+2k) =12 into the Normal form and find the

perpendicular distance from the origin.
Solution : Vector form : Given equation of plane is 7-(i—2j+2k)=12
1e. r-n=12,

where, n=i-2j+2k. - |nlz1+4+4)=3=1

Thus, the given equation is not in the nromal form.
. Dividing both the sides by |7 |=3

> - 7- ll_g +%k =4
(r-n)/3=12/3 = 3 3] 3

This equation represents the equation of plane in normal form and the distance from the origin is 4 units.

Cartesian form: Cartesian form of the equation is
x—2y+2z=12

Here R.H.S. is positive, now dividing the equation by (/(1+4+4) =3#1 we have

1 2 2
—x——y+—2z=4,
3 37 3

2 2

- ==, —

The given equation represents the normal form, with d.r's 3733
Example 27. Find the equation of plane whose distance from the origin is 2 units and the d.r's of its normal be

12, -3, 4.
Solution : Given p =2 and the d.r's of its normal be 12, —3, 4

Thus, the direction cosines of the normal be 12/13, —=3/13,4/13  {-- \/(12)2 +(3) +(4)’ =13} }

.. Thus, the equation of plane is,

—X——y+—z=2, [From (x+my+nz=p]

or, 12x-3y+4z7=26,

which is the required equation of the plane.
Vector form : Let 7 be the vector perpendicular to the plane and the d.r's of 77 are 12, -3, 4

ii=12i-3)+4k - |ﬁ|:\/{(12)2+(—3)2+(4)2}=13¢1

12, 3 4y

7] 13 137 13

n=
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-+ The required plane is at a distance of 2 units from the origin. Therefore, the equation will be

Foi=2
2.3 4
B E=r A )
or, r(ml 137 13}

This is the required equation of the plane in vector form.
Example 28. Find the direction cosines of the perpendicular dropped from the origin to the plane

F-(6i+2j-3k)+7=0.
Solution : Cartesian form : The given equation of the plane can be written as

(xi+ yj+zk)-(6i+2j-3k)+7=0

or, 6x+2y-3z+7=0
or, —6x—2y+3z=17 (D
On dividing by 7, we have
—gx—zy+gzzl, 2)
7 71 17

Comparing the equation (2) with /x+my+ nz = p, we get the required direction cosines as
—6/7,-2/17,317

Vector form : To find the direction cosines of the perpendicular we need to convert the given plane into
normal form

Equation of plane F-(6i+2j-3k)+7=0,

ie. Fo(6i+2j-3k)=-7

= Fo(—6i—-2j+3k)=17

= r-n=17, where 71 = (—6i —2j+3k)
now il {67 + (-2 +(3)*} =7 #1.

On dividing by |7 |=7 in (1), we have

rn_7
7 7
6. 2. 3
re|——i+=j+=k|=1
or ( 7175 J 7 j
. . 6 2 3
Therefore the d.c's of the perpendicular dropped from origin to the plaen are T T
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Exercise 14.6

1.  Find the equation of plane passing through the point (2, —1, 3) and perpendicular to the X-axis.

2.  Find the equation of plane passing through the point (3, 2, 4) and X-axis.

3. A variable plane passes through the point (p, ¢, r) and meets the coordinate axes in point A, B and C
respectively. Show that the locus of the common points of the planes parallel to the coordinate axes and
passing through A, B and C is

E + 1 + L — 1
X 'y z
4.  Find the vector equation of the plane which is at a distance of 7 units from the origin and ; is the unit

normal vector to it.
5. Find the vector equation of the plane whcih is at a distance of 7 units from the origin and normal to the

vector 6i+3j—2k .

6.  Write the equation of plane 7 - (3i —4j+ 12k) =5 in normal form and find the perpendicular distance
from the origin, Also find the d.c's of the normal so obtained.
or
Write the equation of plane 3x—4y+12z =5 in normal form and find the perpendicular distance from

the origin. Also find the d.c's of the normal so obtained.
7.  Find the vector equation of the plane whcih is at a distance fo 4 units from the origin and the direction
ratios of the normal are 2, -1, 2.

8.  Find the normal form of the equation of the plane 2x—-3y+6z+14=0 .

Find the equation of plane, if the length of perpendicular drawn from origin is 13 units and the direction
ratios of the perpendicular are 4, -3, 12.

10.  Find the unit normal vector of the plane x+ y+z—-3=0 .
14.17 Angle Between Two Planes

The angle between two planes is defined as the angle between their normals
Vector form: Let the equation of the plane be

ren =d, and 7-n,=d,

where 7, and 7, are the perpendicular vectors. Observe that if 6 is an angle between the two planes,
then angle between their normals is also 6
1, -1,

Cosgzlﬁ ”fi | or 9=C051[ _’/.Lll/iz j
L2 |7, || 7, |

Note: (i) Two planes are perpendicular if 7, -7, =0.

(ii) Two planes are parallel if 7, = An,, where A is a constant.
Cartesian form: Let the angle between the two planes ax+by+cz+d =0 and

a,x+b,y+c,z+d, =0 be 6 . Let n, and 7, are normal vectors to the plane.
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n=ai+bj+ck

and n,=a,i+b,j+c,k

a,a, +bb, +cc,

cosf =
|”1 ||”z| \/(a1 +b +c; )\/(a2 +b; +cl)

Note: (1) Two planes are mutually perpendicular, if a,a, +bb, +c,c, =0.
11 . al bl cl
(i1) Two planes are parallel, if —=-—=—-.
a, b, ¢,

14.18 Angle Between a Plane and a Line

The angle between a plane and a line is the complement of the angle between the line and normal to the
plane

Vector form: Let the equation of the line is 7 =a + Ab and the equation of the plane is 7-7i =d,

where 7 is normal vector of plane. If 6 is angle between plane and lien, then angle between line and normal

T
to the plane will be (5—9)

cos(z—é’j: éri or sinf = b-n
2 |b |7

Note: (i) line is perpendicualr to the plane, if bxii=0 or b = i

(ii) line is parallel to the plane, if b -7i =0.

Cartesian form: Let the equation of the plane be

ax+by+cz+d =0 (1)
and equation of line be Plane

X—X y—y Z—Z /
Fe = ) Fig. 14.11

The d.c's of (1) are a, b, ¢ and the d.r's of the line (2) are [/, m, n. If the angle between the line and the

plane is 6 , then the angle between the normal and the line will be (% - 0} .

(7[ j al+bm+cn
os| ——0 |=
2 J@ +5 + )P +m* +n)

al+bm+cn

\/(a2 +b° +c2)\/(l2 +m’+n’)

or sin@ =
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b
Note: (i) line is perpendicualr to the plane, if % =2=°
m n

(i) line is parallel to the plane, if al +bm+cn=0.
Ilustrative Examples
Example 29. Find the angle between the planes 7-(2i —3j+4k)=1 and 7-(—i+ j)=4.

Solution : We know that the angle between the planes 7 -7, =d, and 7 -7, =d, is

S
S

.
|7 |l

Here, n,=2i-3j+4k and n, =—i+ j+0k

2

cosf =

B
ST

) |

cosd -2-3+0 _ -5

\/4+9+16x/1+1 @\/5

6 =cos™’ [_—Sj
= 758

Example 30. Prove that the planes 2x+6y+6z=7 and 3x+4y—5z=8 are mutually perpendicular.

Solution : We know that the planes

2x+6y+6z=17
and 3x+4y-57=8
are mutually perpendicular, if their normals are mutually perpendicular
ie., 2(3)+6(4)+6(-5)=0
or, 6+24—-30 =0, which is true.

Hence, the planes are mutually perpendicular.

Example 31. If the planes 7-(i+2j+3k)=7 and 7-(Ai+2j—7k) =26 are mutually perpendicular then
find the vlaue of 4 .
Solution : The planes 7 -7, =d, and ¥ -1, = d, are mutually perpendicualr if
n-n,=0
Here, 1, =(i+2j+3k) and n, = (Ai+2j—7k), therefore
(i+2j+3k)-(Ai+2j-Tk)=0

= A+4-21=0 or A=17

Example 32. Find the angle between the line 7 = (2i +2j+9k) + A(2i +3j +4k) and plane 7-(i+ j+k)=5.

Solution : If the angle between the line 7 =G+ A5 and plane 7-7i=d is 0 , then

Sy
S

sin@ =

S

Sy
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On comparing with the standard equation, we have
b=2i+3j+4k and  A=i+j+k

. Qi+3j+4k)-(i+j+k) 9
sin@ = =
J4+9+1641+1+1 87

. o= (2] o o-an %}

x—=1_ y=-2 z+1
1 -1 1

Example 33. Find the angle between the line and the plane 2x+y—z=4.

Solution : The perpendicular vector to the plane 2x+y—z=4 (1)

x-1_ y-2 z+1 .
SRS isb=i—j+k

is 71 =2i+ j—k and the parallel vector to the line

If the angle between the line adn the plane is 6 then
(i—j+k)-Q2i+j-k)y 2-1-1 _0
J+l+1a+1+1 - 36 = 0=0
Example 34. If the line 7 = (i —2j+k)+ A(2i + j+ 2k), is parallel to the plane 7 -(3i—2j+mk) =4, then

find the vlaue of m.

sinf =

Solution : Given line is parallel to the vector b =2+ j+2k and normal vector to the plane is
n=3i—2j+mk . Since the given line is parallel to the plane,
blii.
= b-ii=0
= i+ j+2k)-Bi-2j+mk)=0
= 6-2+2m=0 = m=-2
14.19 Distance of a Point From a Plane
Consider a point P with position vector @ and a plane whose equation is 7 -77 =g We have to find the
length of perpendicular from a point to the given plane.
Let 7 be the given plane and the position vector of point P is a . Let the length of perpendicualr drawn
from point P on plane 7 be PM.

" line PM, passes through P(El) and the unit normal vector 7 is parallel to the plane 7

-, the vector equation of the line PM is ¥ =a + An , where A is a sacalr. (1)

Again point M, is the intersecting point of line PM and plane 7, therefore point M will satisty the equation
of plane

(d+Ai)-fi=gq
q



=2

A+A|il=q

U
Q

qg—a-n
A="
= [

substituting the value of 2 in (1), the position vector of M will be

q—a-n

F=d+-——>—1 P@)
|7
PM = (position vector M) — (position vector of P) m
—G-i —Ga-i\i .
_a.d flznﬁ_a:(q ~2) Fig, 14.12
|7 |7 |
PM =|W|=|(q_#2")”|=|(‘1_“#"Z)||”|_|(‘1—fl )|
|7 |7 |7
. _lg-a-n| |a-ni-q|
Thus, the required length is 17| or 17|
S . |la-n—q| .
Note: () PM = (PM ) =! = |
_la-i-q| n _|a-n-q|n
|n] |#] |7 [

Cartesian form: To find the length of perpendicualr drawn from point P(x,, y,, z,;) to the plane
ax+by+cz+d=0.

Let the foot of perpendicualr drawn from point P(x,, y,, z,) to the plane ax+by+cz+d =0 is M.

Therefore, the equation of the line PM is

(.- The direction ratios a, b, ¢ of normal to the plane will also be the direction ratios of the line PM)
Now, the coordinates of any point on the line are (x, +ar, y, +br, z, +cr), where r is real number. If
these are the coordinates of point M, then they will satisfy the equation of plane

a(x, +ar)+b(y, +br)+c(z,+cr)+d =0

r__axl+byl+czl+d 5
Or, - 2 2 2 ()
a +b +c
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Now, PM = \/{(xl +ar—x)" +(y, +br—y) +(z +cr—z1)2}

=|r|\(a’ +b* +c7)
(ax1+by1+czl+d)| (2 422
PM =|- a +b +c i
Now, ‘ (a2+b2+C2) | ( ) [using (2)]

|ax1+by1+czl+d|
Therefore, th ired length i
erefore, the required leng 1s‘ \/m ‘
Ilustrative Examples

Example 35. Find the perpendicualr distance of the point with position vector 2i — j—4k from the plane
r-3i—-4j+12k)-9=0.

Solution : We know that the perpendicular distance of the point, whose position vector is a , from the plane

S|

a-

F-n=gq 1s

|7l |
Here a =2i—j—4k, n=3i—-4j+12k and ¢=9 .

. . |(2i—j—4k)-(B3i—4j+12k)-9| 47
Required distance = =
JO+16+144) 13

Example 36. Show that the points A(1,—-1,3) and B(3,3,3) are at equal distance from the plane
r-(5i+2j-7k)+9=0.
Solution : Position vector of point Ais i— j+3k .

perpendicular distance of point A from the plane is

G j+3k)(5i+2j-Tk)+9| _ 9 "
J25+4+49) J78

Position vector of point B is 3i+3j+3k .

Perpendicular distance of point B from the plane is
| @i+3j+3k)-(5i+2j-Tk)+9| 9
J25+4+49) V78

Therefore, from (1) and (2), we conclude that the point is at equal distance from the given plane.
Exercise 14.7

)

1.  Find the angle between the planes:
@ 7-QRi-j+2k)=6and ¥-3i+6j-2k)=9
@ 7-(2i+3j-6k)=5and 7-(i—-2j+2k)=9
@) 7-(i+j+2k)y=5and 7-(2i—j+2k)=6

[438]



10.

Find the angle between the planes:

() x+y+2z=9 and 2x—y+z=15

@@ 2x—y+z=4 and x+y+2z=3

@) x+y—-2z=3and 2x-2y+z=5

Prove that the following planes are mutually perpendicular:

1 x—-2y+4z=10 and 18x+17y+4z7=49

i 7F-QRi-j+k)y=4and F-(-i—j+k)=3

If the following planes are mutually perpendicualr, then find the vlaue of A:
@ 7F-QRi—-j+ik)=5and 7-Gi+2j+2k)=4

@@ 2x—4y+3z=5and x+2y+Az=5

x+1 y-1 z-2
3 2 4

Find the angle between the line and plane 2x+y—-3z+4=0 .

x-2 y+1 z-3
3 -1 2

Find the angle between the line and plane 3x+4y+z+5=0.

Find the angle between the line 7 = (f+2}'—l€)+l(f—}+l€) and plane ?-(2?—}'+I€) =4 .

Find the angle between the line 7 = (2i+3j+k)+ A(i+2j—k) and plane 7-(2i— j+k)=4.

Ifthe line 7= ({ —2j+k)+ A(2 + j+2k) is parallel to the plane 7-(3 —2j+mk) =3, then find the
vlaue of m.

Ifthe line ¥ =i+ A(2i — mj —3k) is parallel to the plane 7 -(mi+3j+ k) =4 , then find the vlaue of m.

Miscellaneous Exercise 14

Whcih of the following group is not the direction cosines of a line:
A1, 1,1 B) 0,0, -1 ©)-1,0,0 (D)0,-1,0

Point P is such that OP = 6 and vector () p makes an angle 45° and 60° with OX-axis and OY-axis
respectively, then the position vector of P will be

(A) 3i+3j+3v2k  (B) 6i+6v2j£6k  (C) 342i+3j+3k (D) 3i+3v2j+3k
The angle between the two diagonals of the cube will be

(A) 30° (B) 45° (C) cos' (1/:/3) (D) cos™(1/3)
The direction cosines of vector 3i are:
(A) 37 05 0 (B) 1? 07 O (C) _17 Oa 0 (D) _37 05 0

x-3 y—-4 x+7 .

The vector form of the line

-2 -5 13
(A) Bi+4j—Tk)+A(-2i—5j+13k) B) (-2i-5j+13k)+ABi+4j-Tk)
(©C) (-3i—-4j+T7k)+A(-2i-5j+13k) (D) none of these
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10.

11.

12.

13.

14.

15.

x+1 y+2 z-1 x—=1 y+1 z+1
S Tl Y R, S

(A) 0 B)1 © -1 (d)2

The shortest distance between the lines 7F=(5i+7j+3k)+A(5i—-16j+7k) and

F=0i+13j+15k)+ u3i+8j—5k) is

(A) 10 units (B) 12 units (C) 14 units (D) 7 units

The angle between the line 7 = (2i — j+k)+ A(—i+ j+k) and the plane 7-(3i+2j—k)=4 is

(A) sin”'(-2/+/42)  (B) sin”'(2/4/42) (©) cos™(—2/442) (D) cos™'(2//42)

If the equation Ix+my+nz = p is the normal form of the plane then which of the following is true or
false

(A) I, m, n are the d.c's of the normal to the plane

(B) p is the perpendicualr distance from the origin to the plane

(C) for every vlaue of p, the plane passes through the origin

(D) > +m’ +n’ =1

A plane meets the coordinate axes at the points A, B and C respectively such that the centroid of the
triangle ABC is (1, 2, 3), then the equation of the plane is

Y

If lines are mutually perpendicular, then the value of A is

z 1 x—1+y—2 z-3

©) 2o

(A)£+—+£:l (B)£+l+—:— + :I(D)£+—+—:
1 2 3 1 2 3 6 1 2 3 3 6 9

If two points are P(2i+ j+3k) and Q(—4i—2j+k) , then the equation of the plane passing through

point Q and perpendicualr to PQ is

(A) 7-(6i+3j+2k)=28 B) 7-(6i+3j+2k)=32

(C) 7-(6i+3j+2k)+28=0 (D) 7-(6i+3j+2k)+32=0

The direction cosines of two lines are expressed with the following given relations, find them

[-5m+3n=0 and 71* +5m*-3n* =0

The projection of the line segment on the axes are —3, 4, —12 respectively. Find the length and direction
cosines of the line segment.
Prove that the line joining the points (a, b, ¢) and (a’, b', ¢') passes through the origin, If

aa'+bb'+cc'= pp', pand p’ are the distances from the origin.

Find the equation of plane passing through P(-2, 1, 2) and parallel to the vectors a =—i+2j—3k
and 15:5i—j+k .
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[ IMPORTANT POINTS |

Any line OP (Vector 0P ) makes angle «, 3,y with positive direction of co-ordinate axes, then

cosa, cos 3, cosy are direction cosines of line OP (Vector OP ), whcih are generally denoted by

l,m,n .Hence, 0<a,B,y <.

(1  Vector PO makes angle 7 —a, 7 — 5, 7 —y with axes OX, OY, OZ respectively, then direction
cosines of PO are cos(m —OC),COS(ﬂ —,B), cos(r—y) ie. —l,—m,—n.

Therefore, if I, m, n are direction cosines of any line, then —/, —m, —n are also direction cosines of

the same line.
@) Direction cosines of X, Y and Z axes are respectively 1, 0, 0; 0, 1, 0 and 0O, O, 1.

Projection of any vector on co-ordinate axes : If 7 is given position vector and [, m, n are its
direction cosines, then its projection on X, Y, Z axes are Ir, mr, nr respectively.

Co-ordinates of a point in the form of direction cosines: If P(x, y, z) is a point, then its co-ordinates

will be (Ir, mr, nr), where [, m, n are direction cosines of OP andOP=r.

To represent a unit vector 7 in the form of direction cosines:
7 (unit vector in direction of 7)=1Ii +mj + nk,

where [, m, n are direction cosines of 7 .

1 + m* + n* =1, where [, m, n are direction cosines.

Direction ratios of a line : A set of three numbers for 7 , which are proportional to the direction
cosines [, m, n are called direction ratios.
Conversion of direction ratios into direction cosines : Let 7 = ai + bj + ck is a vector having direction

ratios a, b, c, then its direction cosines /, m, n are given as follows:

= a m= b n= ¢

1/(a2+b2+c2), 4/(a2+b2+c2), (a2+b2+c2)

Direction ratio and direction cosines of a line joining two points: Let two points P(x,, y,, z,)

and Q(x,, y,, z,), then x, —x,, y, —y, and z, — z, are direction ratio of line PQ and direction cosines

Xo=X M=V %%
are ’ ’ ,

PO’ PO PQ

where PQ:\/{(xz_xl)z'i'()’z_)’l)z"'(zz_Zl)z}

Equation of a line whcih passes through point P(x,, y,, z,) and parallel to line having direction cosines

X=X Y 2T
[, m, nis = = .
l m n
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10. Co-ordinates of a point lying on line, which is at a distance r from a point P(x,, y,, z,) on same line
are (Ir +x,mr+Yy,, nr+z), where r is a parameter.
11. If direction ratios a, b, ¢ are given then the equation of line is
X—X, 3 y=y B -7z
a/\/a2 +b*+c’ B b/\/a2 +b+c’ B c/\/a2 +b+c’
X=X, Y=y _Z- k

F4
or, = = =R | where R=———
a b ¢ Na’ +b* +c’

12. A point has co-ordinates (ar + x,, br +y,, cr+z,), then at this position, it is not at a distance r from

=k(let)

pomt P(-xp Vi Z])'

13. Equation of line passes through a point having position vector ¢ and parallel to a vector p is 7 = g + Ab

b

where A is a real number.
14. If above line passes through origin, then 7 = 1p.

15. Non coplanar lines (skew lines) : Non parallel and non-intersecting lines which doesn't lie on same
plane are called 'Non coplanar or Skew lines'.

16. Shortest distance : Distance between two skew lines, which is perpendicular to both, is called "Shortest
Distance".

17. Shortest distance : Shortest distance between two skew lines

X=X Vo=V 7%

= m, n, +\/{Z(mln2 —m,n, )2}

l m, n,

18. If shortest distance becomes zero, then lines are coplanar with the following condition.

Xo =X Yo=YV L%

19. Shortet Distance : Shortest distance between two skew lines

F=d,+Ab, and F=Z¢2+}tl;2
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20.

21.

22.

23.

24.

If 6 is an angle between two planes 7 -1, =d, and 7 -7, =d,, Then

n -n,

cosf = — or Hzcosl[ _.l.riz j
|7, 1| 7, | |7, 1| 7, |

(1  If planes are mutually perpendicular, then 7, -7, = 0.

() If planes are parallel, then 7, = An,, where A is constant
If @ is an angle between two planes
ax+by+cz+d =0 and a,x+b,y+c,z+d, =0, then

a,a,+bb,+cc,

COSQ: 2 2 2 2 2 2
\/a1 +b +¢ \/a2 +b, +c;

(1)  Planes are mutually perpendicular, if a,a, +bb, +c,c, =0.

b

.. L4 D
(i)  Planes are parallel, if o, b o

If 6 is an angle between two lines 7 =d, + /‘Ll;l and ¥ =a, + /”Ll;z, then

|

cosf = — 2 or 0=cosl[ bby ]
15,11, | .11, |

(i)  Lines are perpendicular, if l;l -52 =0.

|

(i) Lines are parallel, if l;l = /‘tl;z, where A is cosntant.

If 6 is an angle between two lines

a,a,+bb,+cc,

JaZ +b7 +c2 a2 +b} +¢

cosf =

(@  Lines are perpendicualr, if a,a, +bb, +c,c, =0.

a _b _¢

.. . I ‘
@)  Lines are parallel, if @, b c
Angle between a line and a plane is complement of angle between normal of plane and given line. Let

equation of plane is 7 -7 = d and equation of line is 7 =g + 1b and 6 is angle between them, then

Sy
S

sin@ =

Sy

S
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25.

26.

27.

28.

29.

() Line is perpendicular to plane, if bx7i=0, or p = A7.

@) Line is parallel to plane, if b-ii=0.
General equation of plane :
ax+by+cz+d=0,
where a, b, c, d are scalar quantity or constant and all a, b, ¢ are not zero.
(a) Every first degree equation in x, y, z represetns a plane.
(b) There is only three independent constant in plane.

Equation of plane passing through a point (x,, y,, z,)

a(x_x1)+b(y - y1)+C(Z -z)= 0,
where a, b, ¢ are constant.
Equation of plane in intercpet form:

£+Z+£:1
a b c

where a, b, ¢ are respectively intercepts on X, Y, Z axes respectively.
Equation of plane in normal form:
Foii= b,
Here ) is perpendicualr distance from origin to the plane and 7 is unti vector of normal of plane.
Note : Equation of plane in normal form may also be written as
r-n=q
Here g =7 p.
Distance of a point from plane :
g=lai-al
| 7]

where a is position vector of point and 7 -7 = ¢ is equation of plane.
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Answers
Exercise 14.1

1' T— i_9 T— 2' O’ T 3' s T s T 4' \/5;"‘}_]2

3B 3 5

1 1 1 1 4 2 1 2
5

Exercise 14.2

x=5_ y-7 z-9 x=5_y=7_z-9 x=5_y-7_z-9

LO ===~ 1 o =577 1
2. 7 =(20 -3 +4k)+ 2 (30 +4]-5k); x;2= y1-3:z_—54 3. 7 =51 —2j+4k+2 (2 - j+3k)
4. 7:(2f—j+1€)+1(2z’+7}—3l€) 5. F:(Sf—4}+6l§)+i(35+7}+212)

x-1_ y-2 z-3
-2 14 3

x—4 z-5 z-10
1 3

7. (i) Equation of AB : F = (4?+5}+101€)+u(f+j+3l€);

x=2 y-3 z-4

(ii) Equation of BC : 72(25+3j+4l€)+l(f+j+5]€);

(iii) Co-ordinates of D are (3, 4, 5) 1 T
8. (—%,%,lj; 2,1, -6; F:—%5+§j+l€+l(2°+}—6l€)
9. F = (21 +2]+3k)+ A(37 +2]-2k); ol y;2:z_—23
1(),?:(Zf—}+4l€)+l(f+2}—l€); xlz - y;—l - Z__14 11. x-;Z = y;4 = ng
12. 7= (50 -4]+6k)+ (30 +7]+2£) 13. %Z_lfg’ F=a(57-2]j+3k)
14, 7=(31-2j-5k)+2(11£); x(—)3:z-52:z1+15
Exercise 14.3
1. @=cos™ (19/21) 2. 0 =cos'(2/3) 4. k=-10/7
5. F=i+2j-4k+A(20+3]+6k); ’H:y;Z:Zg“ 6. %zy?_ét:Z—;rS
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Exercise 14.4

o (10781003

49 7 49° 49

—

.(-1,-1,-1) 2. No

V580

4. 7= (20 +3]+2k)+2(2f 3]+ 6k);

Exercise 14.5

| 342 5 ; i A 8 3 59x-253 59y-232 592-97
STy . 2@ . \/E . \/2_9 S \/57 1 -3 7
Exercise 14.6
I. x-2=0 2. 2y—-z=0 4. 7-i=17
6. 3 2
5. F|—i+=>j—Zk|=7 k 7-(6i+3j-2k)=49
; (71 32 j F(6i+3)—2K)
_ (3. 4 . 12 5 5 3 4 12 3 4 12 5. 3 4 12
6. 7| —i——j+—k|=— — — ——,— SXT SVt IE s T
13 13 13 13 13 137 13 13 13 13 13 13 13 13 13 13
2.1 2 2 3 6 4 3 12 1 ,. .
T. 7| Zi——i+=k | = L= x+—y——z= —x——y+—2z=13 —(i+i+k
r(3’ 3j+3kj d o 8ogrtgymge=2 St e 10. =(i+j+k)
Exercise 14.7
1. (i) cos™ i : (i) cos™'| — (iii) cos™ | —=
' 21)° : J6
2.() =" ;i) 6==; (i) cos 1(——2 j
' B 3 3J6
4.G) A=-2;31) 1=2 5 sinl[_—4j 6. sin™' /l
' ’ J406 ' 52
. [2\2 (1
7. sin” | —— 8. sin” | —— 9. m=-2 10. m=-3
3 6
Miscellaneous Exercise 14
1. (A) 2. (0) 3. (D) 4. (B) 5. (0) 6. (B) 7. (A)
8. (A) 9. (O) 10. (D) 11. (O)
1 1 2 1 2 3 3 4 12
12. = T T s s 13. 13; T A 1A 1A
6 V6 J6 o 14 14 14 137 13" 13
14 l —l _E x—2y+z=0 15. x+14vy+97=30
. 2’ 27 2 ’ y . X y =
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Linear Programming

15.01 Introduction

A large number of decision problems faced by a business manager involve allocations to various activities,
with the objective of increasing profits or decreasing costs, or both. The manager has to take a decision as to
how best to allocate the resources among the various activities. The decision problems can be formulated, and
solved, as mathematical programming problems. Mathematical programming involves optimisation of a certain
function, called objective function, subject to certain constraints.

Definition : Linear programming deal with the optimization of a linear function of a number of variables
subject to a number of conditions on the variables in the form of linear inequation or equations in variables
involved.

15.02 Linear programming problem and its mathematical formulation

Let us understand the linear programming and its mathematical formulation with the help of following
example:

Example : A developer produced two product P, and P, with the help of two machines M| and M. To
make a unit of P, M| takes one hour and M, takes 3 hours and to make a unit of P,, each take two hours.
Profit on per unit of P, and P, be ¥ 60 and I 50 respectively and M, and M, can work for 40 hrs. and 60 hrs.
respectively in a week, then how much unit it can produce for maximum proft. It is clear from this example that,
(i)  Developer can produce only P, or P, or both. Thus he gains maximum profit from different additive

incorporate.

(i)  There are certain over riding conditions or constraints like M, and M, can work only 40 and 60 hrs
respectively in a week.

Let developer only wants to produce P, then only 10 unit can produce and net profit =60 x 20 = ¥ 1200

Let developer only wants to produce P,, then only 20 unit can produce and net profit =50 x 20 = ¥ 1000

There are too many possibilities. So, we have to know that how developer gain maximum profit from
different method. Now, there is a problem, how developer can gain maximum profit from different method of
Production. To find the answer, we have to formulate it mathematically.

15.03 Mathematical formulation of the problem

Let, x and y is number of desirable units of product P and P, for favourable solution. Now, represent

the problem in form of following table :

Machine Product Availability
P, P, (per week)
M, 1 hr. 2 hrs. 40 hrs
M, 3 hrs. 2 hrs. 60 hrs.
Profit (per unit) T 60 T 50
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Per unit profit on product P, and P, are ¥ 60 and ¥ 50 respectively. So, total profit on x unit of P and

y unit of P,.
Z =60x+50y
So, we can relate the total profit with variable x and y linearly. Developer try to maximize that profit.
Z =60x+50y

Constraint for machines M, and M, : We know that, for production of P, and P,, M occupy for 1
and 2 hours.

So, occupation of M, for production of x unit of P, and y unit of P, will be x+ 2y but availability of M,
is 40 hrs. per week then

x+2y<40
Similarly for M, 3x+2y<60
Non-negative constraint : Since x and y is number of developing unit whcih never be negative.
So, x>0, y=0
Maximize : Z =60x+50y
Constraint : x+2y<40
3x+2y <60
and x>20,y>0

Now, we have define some terms whcih is used in linear programming problems.
Objective Function :

If ¢,Cy,...,c, are constants and x,x,,..,x, are variables then linear functions

Z =c¢,x, +¢,x, +...+¢,x, which has to be maximize or minimise, is called objective function.

Constraints : Restriction on the variables of a linear programming problem are called constraints. These
are represented in form of linear equation or inequalities.

In above example x+2y <40 and 3x+2y<60 are constraints x>0 and y >0 are non-negative
constraints.

Solution : The set of all values which satisfy the constraints of linear programming problems is called
‘Solution'.

Feasible solution : Set of values of variables which satisfy the all constraints with non-negative con-
straints also, called feasible solution.

Optimal solution : Optimal solutions of linear programming problem is a feasible solution for which
objective fucntion has maximum or minimum value.

Note : Optimal solution is actual solution of linear programming problem.
15.04 Graphical method to solve linear programming problems :

Graphical method is easiest method to solve linear programming problem. Graphical method is possible
only if there is only two variable in linear programming problem.
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Corner point method :
This method is based on 'Fundamental Extreme point Theorem', which states that, "If any linear pro-

gramming problems attains an optimal solution, then one of the corner points (vertices) of the convex polygon
at all feasible solution gives the optimal solution",.

Following algorithm can be used to solve a linear programming problem in two variables graphically by

using corner-point method:

1.

Formulate the given linear programming problem in mathematical form if it is not given in mathematical
form.

Convert all inequalities (constraints) into equations and drawn their graphs. To draw graph of a linear
equation, but y = 0 in it and obtain a point on x-axis similarly by putting x = 0. Obtain a point on y-axis.
Join these points to obtaine graph of the equation.

Determine the region represented by each inequation. To determine the region represented by an inequation
replace x and y both by zero, if the inequation reduces to as valid statement, then the region containing
the origin is the region represented by the given inequation. Otherwise, the region not containing the ori-
gin is the region represented by the given inequation.

Obtain the region in xy-plane containing all points that simultaneously satisfy all constraints including non-
negativity restrictions. The polygonal region so obtained is the feasible region and is known as the con-
vex polygon of the set of all feasible solutions of linear programming problem.

Determine the co-ordinates of vertices (corner points) of the convex polygon obtained in setp 2.
Obtain the values of the objective function at each vertices of convex polygon. The point where objec-
tive function attains its optimum (maximum or minimum) value is the optimal solution of the given linear
programming problem.

Now we have to solve the example of 15.03 by graphical method when problem is given following:

Maximize Z =60x+50y

Constraints x+2y<40
3x+2y <60

and x>20,y>0

Firstly we have to convert the constraints into equations;
X + 2y =40 (1)
3x+2y =60 )

So, there are two points A (40, 0) and B (0, 20). Just like that putting x = 0 in equation (2) then y =30

and for y =0, x = 20, then we have two point C (0, 30) and D (20, 0). After joining A, B, C and D we have
obtained the graph of line (1) and (2).

x+2y=40 3x+2y =60

x |40 (0 x|0 |20

y|0 |20 y[30(0
A(40, 0); B(0,20) C(0, 30); D(20,0)
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To determine the region of enequality x+ 2y <40, we have

to put value of x and y equal to zero, inequality (0) + 2(0) < 40 sat-
isfied. So, feasible region of inequality is toward origin. Just like
that we have investigate the inequality 3x+2y <60 by putting x
=0, y =0 which satisfied the inequality. So, feasible region of given
inequality is also towards the origin.

Shaded region ODEB is set of all possible values which sat-
isfy the all constraints including non-negative constraints. There is
no any solution beyond this region. next step is to find a solution
from feasible solution of region ODEB by which we can obtain the Y’
optimal solution.

After inspecting the feasible solutions we have find that optimal solution will be on border line of ODEP.

3x +2y<60 x+2y<40
v kNfr 15-01

Now we have to tabulate the objective function on corner points O, D, E, B of feasible region ODEB.

Corner points x-coordinate y-coordinate Objective function Z = 60x +50)
O 0 0 Z,=0
D 20 0 Z, = 1200
E 10 15 Z, = 1350
B 0 20 Z, = 1000

From the above table, it is clear that objective function has its maximum value at E(10, 15), so, solution
given by E is optional solution.

Note :

(1)  If feasible solution of any linear programming problem gives a convex polygon then any corner point of
polygon attain maximum value of objective fucntion and any other corner point attain minimum value of
objective function.

(2)  Sometimes the feasible region of linear programming problem is not a bounded convex polygon. That is,
it extends indefenetely in any direction. In such case, we say that the feasible region is unbounded. Above
algorithm is applicable when the feasible region is bounded. If the feasible region is unbounded, then we
find the values of the objective function Z = ax+by = M by at each corner point of the feasible region.
Let M and m respectively denote the largest and smallest values of Z at there points. In order to check
whether Z has maximum and minimum values at M and m respectively, we proceed as follows:

(i)  Draw the line ax+by > M and find the open half plane ax+by > M . If the open half plane

represented by ax+by > M has no point common with the unbounded feasible region, then M is
the maximum value of Z otherwise Z has no maximum value.
@) Draw the line Z = ax+ by =m and find the half plane ax + by < m . If the half plane ax+by <m

has no point common with the unbounded feasible region, then m is the minimum value of z.
Otherwise, Z has no minimum value.
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Ilustrative Examples
Example 1. Solve the following LPP graphically

Maximize Z =5x+3y
Constraints 3x+5y<15
Sx+2y<10
and x>20,y>0
Solution : Converting the given inequalities into equations, we obtain the following equation :
3x+5y=15 (D
5x+2y=10 )

Region represented by 3x+5y <15: The line 3x+5y =15 meets the coordinate axes at A (5, 0) and B (0,
3). Join these points to obtain the line 3x +5y =15. Clearly (0, 0) satisfies the inequality 3x+5y <15. So the

region containing the origin represents the solution set of inequation 3x+5y <15.

3x+5y =15
5 0
0 3

A(5,0), B(@,3)

Region represented by 5x+2y <10. The line 5x+ 2y =10 meets the coordinate axes at C (2,0) and

D (0,5) respectively.
Sx+2y=10
X 2
y 0 5

Join these points to obtain line 5x+2y <10. Clearly
(0, 0) satisfies the inequation 5 (0) +2 (0) =0 < 10. So, the
region containing the origin represents the solution set of this
inequation.

The shaded region OCEB in figure represents the
common region of the inequations. This region is feasible
region of given LPP.

. : : B (0,3)
The coordinates of the vertices (conrer points) of the E (20719, 45/19)

shaded feasible region are 0(0, 0), C(2, 0),
E(20/19, 45/19) and B(0, 3). These points have been

y=>0
obtained by solving the equations at the corresponding inter- A 0
. . < > X
secting lines, simultaneously. X oro, 0) :‘Si 2.0) “’?\

Fig. 15.02
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The values of objective function at these points are given in the following table.

Points x-co-ordiante y-co-ordinate Objective function Z = 5x + 3y
O 0 0 Z,=50)+30)=0
C 2 0 Z.=52)+3(0)=10
E 20/ 19 45/ 19 Z,=5(20/19)+3(45/19) =235/19
B 0 3 Z,=5(0)+33)=9

Clearly Z is maximum at £(20/19, 45/19) . Hence x =20/19,y =45/19 is the optimal solution of the

given LPP. The optimal value of Z is 235/ 19.
Example 2. Solve the following linear programming problem graphically.

Minimize Z =200x+500y
Subject to the constraints x+2y>10
3x+4y<24
and x20,y>0
Solution : The inequalities in the form of equations are
x+2y=10 (1)
3x+4y=24 )

Area shown by the inequality x + 2y > 10
Line x + 2y = 10 meets the coordinate axes at points A (10, 0) and B (0,5).

x+2y=10
X 10 0
y 0 5

A (10,0) ;B (0, 5)
Area shown by the inequality 3x + 4y < 24
Line 3x+4y =24 meets the coordinate axes at points C(8, 0) and D (0, 6).

3x + 4y =2y
X 8 0 30
y 0 6

C(8,0):;D(0,6)

The shaded region in figure is the feasible

region determined by the system of constraints.

We observe that the feasible region BED is

bounded. So, we now use corner points method
to determine the maximum value of Z.

X'« » X
0 % NN
(8,0) (10, 0)

Fig. 15.03
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Now we evaluate Z at each corner point.

Points x-co-ordinate y co-ordinate | Objective function Z = 200x + 500y
B 0 5 Z, =200(0) + 500 (5) = 2500
E 4 3 Z.=200 (4) + 500 (3) = 2300
D 0 6 Z. =200 (0) + 500 (6) = 3000

Hence the minimum value at point E (4, 3) is 2300.

Example 3. Solve the following linear programming problem graphically.

Maximize

subject to the constraints

and

Area shown by the inequality x—y >0

3
Z=y+—x
Ty

x—=y>0

-x/2+y<1

x>20,y=20

Solution : The inequalities in the form of equations are

x—-y=0

—x/2+y=1

)
@

Line x—y=0 = x=Y meets at points O (0, 0) ; A (1, 1).

X=y

X

y

olol

Area shown by the inequality —x/2+y <1

Line —x/2+ y =1 meets the coordinate axes at points B(-2,0) and C(0,1).

We draw the graph of the equations. The shaded
region in fig 15.04 is the feasible region determined by the
system of constraints. We observe that the feasible region
is unbounded. So, We can see that there is no point
satisfying all the constraints simultaneosuly. Thus the
problem is having no feasible region and hence no feasible

solution.

—x/2+y=1
X 2
y 0

B(-2, 0); C(, 1)
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Example 4. Solve the following linear programming problem graphically:

Maximize Z =3x+4y
Subject to constraint x+y<3
2x+2y<12
and x20,y>0
Solution : The inequalities in the form of equations are
x+y=3 ey
2x+2y=12 2)

Area shown by the inequality x +y <3 :
Line x+ y =3 meets the coordinate axes at points A (3, 0) and B (0, 3).

x+y=3
X 3 0
y 0 3

A(3,0);B(0,3)
Area shown by the inequality 2x + 2y > 12 :
Line 2x+2y =12 meets the coordinate axes at points C(6, 0) and D(0, 6)

2x +2y=12
X 6 0
y 0 6

C (6,0);D (0, 6)

We draw the graph of the equations. The shaded region in fig.
15.05 is the feasible region determined by the system of constraints. We
observe that the feasible region is unbounded. So, we can see that there
is no point satisfying all the constraints simultanesouly. Thus, the problem
is having no feasible region and hence no feasible solution.

Example 5. Solve the following linear programming problem graphically:

Maximize Z=2x+3y
Subject to constraints 4x+6y <60
2x+y<20
and x>0, y20 )
Solution : The inequalities in the form of equations arey Fig. 15.05
4x+6y =60 )
2x+y=20 Q)
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Area shown by the inequality 4x + 6y < 60 :
Line 4x+6y =60 meets the coordinate axes at points A (15, 0) and B(0,10).

4x + 6y =60
X 15 0
y 0 10

A(15, 0) ; B (0, 10)

Area shown by the inequality 2x +y <20 :
Line 2x+ y =20 meets the coordiante axes at points C(10, 0) and D(0, 20).

%

2x+y=20
X 10 0
y 0 20

C (10, 0) ; D (0, 20)

P> <
i
\2
o

D (0, 20)

»

<\\

<z
B (0, 10) ()

C
(10, 0)

= <

Fig. 15.06

[455]



The shaded region in Fig. 15.06 is the feasible region determined by the system of constraints. We observe
that the feasible region OCEB is bounded. So, we now use corner point method to determine the maximum value

of Z. The coordinates of the corner points O, C, E and B are O(0, 0), C (10, 0), E(15/2, 5) and B (0, 10).
Now we evaluate Z at each corner point.

Points x-coordinate y-coordiante Objective function Z = 2x + 3y
O 0 0 Z,=20)+30)=0
C 10 0 Z.=2(10) + 3(0) = 20
E 1572 5 Z,=2(15/2)+3(5)=30
B 0 10 Z,=2(0)+3(10) =30

Hence the maximum value at point E(15/2, 5) and B(0, 10) is the maximum value is obtained at points
E and B.
Note: The reason for the inifinte solution is the objective function Z =2x+ 3y which is parallel to the line
4x+6y=060.

Exercise 15.1
Solve the following linear Programming problems graphically:-

1.  Minimize Z=-3x+4y
Subject to the constraints x+2y <8
3x+2y<12
and x>0, y>20
2. Maximize Z =3x+4y
Subject to the constraints x+ y <4
and x>0, y>20
3. Minimize Z =-50x+20y
Subject to the constraints 2x—y > -5
3x+y=>3
2x-3y<12
and x>0, y>20
4.  Minimize Z =3x+5y
Subject to the constraints x+3y >3
xX+y=>2
and x20, y>0
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5. Find the maximum and minimum value of Z =3x+9y

Subject to the constraints x+3y<60
x+y=>10
and x>0, y>20
6.  Minimize Z=x+2y
Subject to the constraints 2x+y=>3
x+2y>6
and x20, y>0
7. Find the maximum and minimum value of Z =5x+10y
Subject to the constraints x+2y<120
x+y=>60
x—=2y20
and x>0, y>20
8.  Maximize Z=x+y
Subject to the constraints x—y<-1
-x+y<0
and x20, y>0
9.  Maximize Z=3x+2y
Subject to the constraints x+y=>8
3x+5y<15
and x20, y>0
10. Maximize Z=—x+2y
Subject to the constraints x>3
x+y=>5
x+2y>6
and x20, y>0

15.05 Different types of linear programming problems

In this section, we will discuss about some important linear programming problem like diet related problem,
manufacturing related problem and transportation related problem.
Diet related problem:

In these problems, we determine the amount of different kind of constituents / nutrients which should be
included in a diet so as to minimize the cost of the desired diet such that it contains a certain minimum amount
of each constituent / nutrients.
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Ilustrative Examples
Example 6. A human requires definite amount of two type of vitamin (Vitamin A and Vitamin B) for balanced
food. These vitamins find in two different food product (F, and F)). Vitamin contained in one unit of each food
product, minimum requirement for balanced food and prices of per unit food product is given in table.

Vitamin Food product Daily requirement
1::l 2
A 2 40
B 3 2 50
Price per unit (in ¥) 3 2.5

How much unit of both produce its used os that the minimum requirement for balanced food is fullfilled?
Solution : Let x unit of 7| and y unit of F, is required for minimum necesstiy. Then price of x unit of ¥ will

be 3x and y unit of F, will be 2.54. Total price will be 3x + 2.5 y, we have to calculate minimum value.

Objective function is Z =3x+2.5y

Subject to constraint for vitamin A :

2x+4y =40
Subject to constraint for vitamin B :
3x+2y=>50
Since units of required food product may not be negative, so, non-negative constraint
x>0, y20
So, mathematical formulation of given LPP
Minimize Z =3x+25y
Constraint 2x+4y>40
3x+2y=>50
and x20, y>0

Region represented by indequation 2x+4y >40:
Line 2x+4y =40 meets the coordiante axes at A(20, 0) and B(0, 10) respectively.

2x + 4y =40
X 20 0
y 0 10

Join these points to obtain line 2x 4y =40, But (0, 0) doesn't satisfy the inequation 2(0)+4(0)=02>40,
So, the region opposite to the origin represents the solution set of this inequation.

Region represented by 3x+2y > 50
Line 3x+ 2y > 50 meets the coordiante axes at point C(50/3, 0) and D (0, 25).

3x + 2y =50
X 50/3 0
y 0 25
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Join these points to obtain line 3x + 2y = 50. But (0, 0) doesn't satisfy the in equation 3x + 2y > 50, so,
the region opposite the origin represents the solution set of inequations.

Region represented by x>0 and y>0.
Since every point in first quadrant satisfies, the both inequation. So, the region represented by inequations

x20 and y >0 in first quadrant.

Y
A77>
ki
D (0, 25)
B (0, 10)
"/// 20
KOS,
X'« i //T=X
o C(50/3,(T)\i, 4
v
Y’

Fig. 15.07
The coordinates of vertices (corner points) of shaded region are A (20, 0) ; E(15, 5/2) and D (0, 25).
Where E is intersection point of line 2x+4y =40 and 3x+2y =50.

The values of objective function at these points are given in following table:

Points x co-ordinate y co-ordinate Objective function Z = 3x + 2.5y
A 20 0 Z,=3(20) +2.5(0) = 60
E 15 5/2 Z.=3(15) +2.5 (5/2) = 51.25
D 0 25 Z,=3(0) +2.5 (25) =62.5

Clearly Z is minimum at point £ (15, 5/ 2) . Since feasible region is unbounded. So, we have to draw

graph of 3x+ 2.5y <51.25. Resultant open half plane represented by in equation 3x+ 2.5y <51.25 doesn't
have any common point with feasible region. So, minimum value of LPP is 51.25, Rs. 50, for optimal solution
we have 15 unit of F, and 5/2 unit of F,.
Manufacturing problems:

In these prloblems, we determine the number of units of different products which should be produced
and sold by a firm when each product requires a fixed manpower, maching hours, labour hour per unit of product,
warehouse space per unit of output etc., in order to make maximum profit.
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Ilustrative Examples

Example 7. A firm manufacturing two types of electric items, A and B. Can make a profit of ¥ 20 per unit of
A and ¥ 30 per unit of B. Each unit of A requires 3 motors and 2 transformers and each unit of B requires 12
motors and 4 transformers. The total supply of these per month is restricted to 210 motors and 300 transformers.
Type B is an expert model requiring a voltage stabilzer which has a supply restricted to 65 units per month.
Formulate the LPP for maximum profit and solve it graphically.

Solution : Left firm manufactures x and y unit respectively of A and B to get maximum profit. Profit per unit of
A and B is ¥ 20 and ¥ 30 respectively. So, profit from x and y unit of A and B is,

Z is objective function. Z =20x+30y

Constraint for motor
For manufacturing x unit of A and y unit of B we have need of 3x and 2y motors and total supply of
motor per month is 210 only. So,
3x+2y<210
Constraint for transformer.
For manufacturing of x unit of A and y unit of B we have need of 2x and 4y transformers and total
supply at transformer per month is 300 only, So,

2x+4y <300
Voltage stabilizer is used in only B and its supply per month is only 65, 50
y <65
Manufactured unit may not be negative. So,
x>0, y20
So, mathematical formulation of LPP is given below,
Maximize Z =20x+30y
constraint 3x+2y<210
2x+4y <300
y <65
and x20, y>0
Convert all the inequations into equation,
3x+2y=210 (1)
2x+4y =300 2)
y =065 ©)

Region represented by 3x + 2y < 210 :
Line 3x + 2y = 210 meets the coordinate axes at point A(70, 0) and B(0, 105).

3x +2y=210
X 70 0
y 0 105

Join A and B to obtain the line 3(0)+2(0)=0<210. (0, 0) satisifes the inequation, So the region

containing the origin represents the solution set of inequation.

[460]



Region represented by 2x + 4y < 300:
Line 2x+4y =300 meets the co-ordinate axes at C(150, 0) and D(0, 75) respectively.

2x + 4y =300
X 150 0
y 0 75

Join C and D to obtain the line 2(0)+4(0) =0 <300. (0, 0) satisifes the inequation, so, region containing
the origin represents the solution set of inequation.
Region represented y < 65 :

Line Ox+ y =65 meets at point E (5, 65) an F(10, 65).

0x + y=65
X 5 10
y 65 65

Join E and F to obtain line Ox + y = 65. (0, 0) satisifes the inequation, so, region containing the origin

represent the solution set of inequation.

Y
4

I\

‘_>)C 0

B (0, 105)

D (0, 75)9\ 20, 65)

l i G (30, 60) l
00, 65)
y<65
y=>0
C (150, 0) T
v
YV
Fig. 15.08

Region represented by x >0and y > 0 :
Since points on first quadrant satisfy the both inequation. So, region represented by x > O and y > 0 is
first quadrant.

Shaded region OAGHI represents the common region of above inequations. This region is feasible region
of given LPP. Vertices of shaded feasible region are O(0,0), A (70,0), G(30, 60), H (20, 65) and I(0, 65).

Where G and H are intersection points of 2x+4y =300 and 3x+2y =210 and y = 65. Values of objective

function is given in following table at these points.
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Points x-co-ordinate y-co-ordinate Objective function Z = 20x + 30y
0] 0 0 Z.,=120(0) +30(0) =0
A 70 0 Z,=20(70) + 30(0) = 1400
G 30 60 Z.=20(30) + 30(60) = 2400
H 20 65 Z.,=20(20) + 30(65) = 2350
I 0 65 Z,=20(0) + 30(65) = 1950

Clearly, it is clear from table that objective function has its maximum value at point G(30, 60). So, for
maximum profit, firm will manufacture 30 unit of A and 60 unit of B from which it gain maximum profit of 2400.
Transportation problems :

In this type of problems, we have transport diffrent objects from diefferent factories and different-different
places according to demands on market. This type of transport according to supply from factories to the market
so that cost of transportation is minimum.

Ilustrative Examples

Example 8. There are two factories located one at place P and the other at place Q. From these locations, a
certain commodity is to be delivered to each of the three depots situated at A, B and C. The weekly requirements
of the depots are respectively 5, 5 and 4 units of the commodity while the production capacity of the factories
at P and Q are respectively 8 and 6 units. The cost of transportation per unit is given below:

From| Cost (In %)
To A B C
P 16 10 15
Q 10 12 10

How many units should be transported from each factory to each depot in order that the transportation
cost is minimum. What will be the minimum transportation cost?
Solution : The problem can be explained diagrammatically as follows : Let x units and y units of the commodity
be transported from the factory at P to the depots at A and B respectively. Then (8 — x — y) units will be

transported to depot at C.
Depot A
5 units
Depot B
5 units
Depot C
4 units

[462]

Fig. 15.09



Hence, we have x>0, y>0and 8-x—-y2>0
= x>0, y>0and x+y<8
Now, the weekly requirement of the depot at A is 5 units of the commodity. Since x units are transported
from the factory at P, the remaining (5 — x) units need to be transported from the factory at Q. Obviously x <5
Similarly, y<Sandx+y>4
Total transportation cost Z is given by
Z=16x+10y+15@-x—y)+10(5-x)+12(5—-y)+10(x+ y—4)

Z=x-Ty+190
Therefore, the problem reduces to
Minimize Z=(x-T7y+190)
subject to the constraints x>0,y>0
y<5
x<5
x+y=>4
AYL_)‘ >0 X %5_

J(@3.,5) \E (5,5) HUO, S)C\

i v

1(5,3) y=<5

y=>0
N\ >

Fig. 15.10

The shaded region CLIJKD represented by the constraints above
Observe that the feasible region is bounded. The coordinates of the corner points of the feasible region are (0,
4), (0, 5), (3, 5), (5, 3), (5, 0) and (4, 0). Let us evaluate Z at these points.

Corner Point Z =10 (x -7y + 190)
4, 0) 162
5, 0) 155
5, 3) 158
3, 5 174
0, 5) 195
O, 4) 194

From the table, we see that the minimum vlaue of Z is 155 at the point (5, 0)
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Hence, the optimal transportation strategy will be to deliver 0, 5 and 3 units from the factory at P and 5, 0 and
1 units from the factory at Q to the depots at A, B and C respectively. Corresponding to this strategy, the
transportation cost would be minimum, i.e., ¥ 155.

Exercise 15.2

1. Adietician wishes to mix two type sof foods in such a way that the vitamin content of the mixture contains
atleast 8 units of vitamin A and 10 units of vitamin C. Food 1 contains 2 units / kg of vitamin A and 1 unit
/ kg of vitamin C. Food II contains 1 unit / kg of vitamin A and 2 units / kg of vitamin C. It costs Rs. 50
/ kg to purchase Food I and Rs. 70 / kg to purchase Food II. Formulate a linear programming problem
to minimise the cost of the mixture.

2. Adietician wishes to mix together two kinds of food X and Y in such a way that the mixture cotnains
atleast 10 uns if vitamin A, 12 units of vitamin B and 8 units of vitamin C the vitmain contents of one kg
food is given below:

Vitamin A Vitamin B Vitamin C
Food X 1 2 3
Food Y 2 2 1

One kg of food X costs ¥ 16 and one kg of food Y costs ¥ 20. Find the least cost of the mixture which
will produce the required diet?

3. One kind of cake requires 300 grams of flour and 15 grams of fat and another kind of cake requires 150
grams of flour and 30 grams of fat. Find the maximum number of cake which can be made from 7.5 kg
of flour and 600 grams of fat assuming that their is no shortage of other ingredients in making the cake.

4. Amanufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine
B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a
package of bolts. He earns a profit of ¥ 17.50 per package nuts and ¥ 7 pr package on bolts. How
many packages of each should be produced each day so as to maximize his profit, if he operates his
machines for at the most 12 hours a day?

5. A furniture dealer deals in tables and chairs. He has ¥ 5760 to invest and has a storage space of atmost
20 pieces. A table cost ¥ 360 and a chair cost ¥ 240. He estimates that from the sale of one table he
can make a profit of ¥ 22 and by selling one chair. He makes a profit of ¥ 18. He wants to know how
many tables and chairs he should buy from the available money, so as to maximize his profit, assuming
that he can sell all the items which he buys. Solve the following optimising problem graphically.

6.  Afactory manufactures two types of screws A and B. Each type of screw requires the use of two machines
automatic and a hand operated. It takes 4 minutes on automatic and 6 minutes on hand operated machines
to manufacture a package of screws A while it takes 6 minutes on automatic and 3 minutes on hand
operated machine to manufacture a package of screws B. Each machine is available for at the most 4
hours on any day. The manufactuer can sell a package of screws A at a profit to 70 paise and screw B at
a profit of ¥ 1. Assuming that he sells all the screws he manufactures, how many packages of each type
should the factory owner produce in a day in order to maximize his profit? Determine the maximum profit.

7.  Acompany manufactures two types of novelty sourvenirs made of plywood. Sourvenirs of type A require
5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes
each for cutting and 8 minutes for assembling. There are 3 hours and 20 minutes available for cuttign and
4 hours for assembling. The profit is Rs 5 each for type A and ¥ 6 each for type B sourvenirs. How
many sourvenirs of each type should the company manufacture in order to maximize the profit?
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8. There are two types of fertilisers F, and F,. F, consists of 10% nitrogen and 6% phosphoric acid and F,
consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that he
needs atleast 14 kg of nitrogen and 14 kg of phosphoric acid for his corporation. If F, costs ¥ 6 / kg
and F, costs ¥ 5/ kg, determine how much of each type of fertiliser should be used so that nutrient
requirements are met at a minimum cost. What is the minimum cost?

9. A merchant plans to sell two types of personal computers - desktop model and a portable model that
will cost ¥ 25,000 and ¥ 40,000 respectively he estimates that total monthly demand of computer will
not exceed 250 units. Determine the number of units of each type of computers which the merchant should
stock to get maximum profit if he does not want to invest more than ¥ 70 lakhs.

10. Two godowns A and B have grain capacity of 100 quintals and 50 quintals resp. They supply to three
ration shops D, E and F whose requirements are 60, 50 and 40 quintals respectively. The cost of
transportantion per quintal from the godwon to the shops are given in the following table:-

Transportation cost per quintal (in ¥)

From / To A B
D 6 4
E 3 2
F 2.50 3
How should the supplies be transported in order that the transportation cost is minimum? What is the
minimum cost?

Miscellaneous Examples

Example 9. A company produces two types of leather belts, say type A and B. Belt A is a superior quality and
belt B is of lower quality. Profits on each type of belt are ¥ 2 and ¥ 1.50 per belt respectively. Each belt of
type A requires twice as much time as required by a blet of type B. If all belts were of type B, the company
could produce 1000 belts per day,. But the supply of leather is sufficient only for 800 belts per day (Both A
and B comined). Belt A requires a fancy buckle and only 400 fancy buckles are available for this per day. For
belt B, only 700 buckles are available per day.

Solution : Let company produces x unit of A and y unit of B. Profit from A and B are ¥2 and ¥ 1.50 respec-
tively. So, objective function is.

Maximize Z =2x+1.50y
If all belts be of type B then company produces 1000 belts per day. Time taken to produce y unit of B
_ Y
type belt 1000

Since, time taken to produce A-type belt is twice with respect to B. So, time taken to produce A type

X
belt = 500
X
300 + ﬁ <1
= 2x+ y <1000
Supply of leather is limited produce only 800 belt. So,
x+y <800
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Since 400 buckles are available for A-type belt and 700 buckle for B-type belt.
x <400, y <700
No. of belt never be negative. So,
x>0, y=0
Mathematical formulation of given LPP is
Maximize Z=2x+1.50y
Constraint 2x+ y <1000
x+y <800
x <400
y <700
and x,y=0
Convert the inequations in equations,
2x+ y =1000 ey
x+y=800 2)
x =400 3)
y =700 4)
Region represented by 2x +y < 1000:
Line 2x+ y =1000 meets the co-ordinate axes at A (500, 0) and B(0, 1000).

2x + y= 1000
X 500 0
y 0 1000

Join A and B to obtain line 2(0)+ (0) =0<1000. (0, 0) satisfies the inequation. So, region containing
the origin represents the solution set of inequation.
Region represented by x + y < 800

Line x + y = 800 meets the coordinate axes at point C(800, 0) and D (0, 800).

x +y= 800
X 800 0
y 0 800

Join C and D to obtain line x + y = 800 _ (0, 0) satisfies the inequlaity. So, region containg the origin
represents the solution set of inequation.
Region represented by x < 400:

Line x+ 0y =400 meets at the point E(400, 10) and F(400, 20).

x + 0y =400
X 400 400
y 10 20
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Join E and F to obtain the line x+0y =400 . (0, 0) satisfies the inequation x <400 . So, region contain-

ing the origin represents the solution set of inequation.

x <1400
<—

B (0, 1000)

D

AN

Yr

Fig. 15.11
Region represented by x > 0 and y > 0

Since, every point in first quadrant satisfy the both inequalities, So, region represented by x > 0, y > O is
in first quadrant.

Shaded region of IKLM is common region of all inequation. That is feasible region of given LPP. Verti-
ces of this region are O (0, 0), I (400, 0) J (400, 200), K (200, 600), L (100, 700), M (0, 700). Where J, K,

L are intersection points of lines x =400 and 2x+ y =1000; 2x+ y =1000 and x+ y =800; y =700 and
x+y=2800.

Values of objective function at these points are—

Points x Co-ordinate y Co-ordinate | Objective functions Z = 2x + 1.50y
0) 0 0 Z,=(2) (0) + (1.50) (0) =0
I 400 0 Z,=(2) (400) + (1.50) (0) = 800
J 400 200 Z,= (2) (400) + (1.50) (200) = 1100
K 200 600 Z.=(2) (200) + (1.50) (600) = 1300
L 100 700 Z, = 2(100) + (1.50) (700) = 1250
M 0 700 Z,,=(2) (0) + (1.50) (700) = 1050

It is clear from table, objective function is maximum at K(200, 600). So, company produces 200 unit of
A and 600 unit of B for maximum profit.
Example 10. The old hen can be purchased at ¥ 2 per hen whereas the price of new hen is 5 Rs. per hen.
Old hense give 3 eggs and new hens give 5 eggs per week. Price of one egg is 30 paise. Investment on food
of a hen per week is ¥ 1. How many hens of both type a man buy if he has only ¥ 80 and he earned profit
more than ¥ 6. If than person can not keep more than 20 hens the solve the LPP by graphical method.
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Solution: Let he purchases x new hens and y old hens. Since, a new hen gives 5 eggs per week, So, he earns
¥ 1.50 earn per week. After deducting food investment, gross profit is 50 paise.
Similarly, profit from old hen = ¥ (0.30 x 3 — 1) = ¥ (-0.10). So, objective function is

Z =(.50)x—(.10)y . Price of old hen is ¥ 2 per hen and price of new hen is ¥ 5 per hen. Also, the
person has only ¥ 80. So, Sx+2y<80.

Again, that person can not keep more 20 hens in his house.

So, x+ y <20. Person wants to get profit more than ¥ 6, 0.5x-0.1y>6.

Purchased hens never be negative.

So, x>0, y>20
Mathematical formulation of given LPP is,
Maximize Z=(50)x-(-10)y
Constraints Sx+2y<80
x+y<20
0-5x-0-1y>6
and x>0,y>0

Since the person wants to get profit more than ¥6. Therefore, it is not necessary to consider
0.5x-0.1y>6.
The LPP is maximize Z =(-50)x—(-10)y

Such that Sx+2y<80, x+y<20and x>0, y=>0

On converting the inequation into the equation, we get
5x+2y=80 (D
x+y=20 2)

Region represented by S5x + 2y < 80:
Line 5x+ 2y =80 meets the coordinate axes at A (16, 0) and B (0, 40).

5x +2y=280
X 16 0
y 0 40

Join A and B to obtain line 5(0)+2(0) =0<80. (0, 0). Satisfy the
inequation. So, region containing the origin gives the solution set of inequation.
Region represented by x +y < 20:

Line x+ y =20 meets the coordinate axes at C(20, 0) and D(0, 20).

x+y=20
X 20 0
y 0 20

Join C and D to obtain line x+ y =20, (0, 0) satisfy the inequation.
So, region containing the origin represent the solution set of inequation.
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Region represented by x > 0 and y > 0:

Since every point of first quadrant satisfy both the inequation. So, region represented by x > 0 and y >
0 1s in first quadrant.

Shaded region OAED represents the common region of inequations. That is the feasible region. Vertices

(corner points) of this region are 0(0, 0), A (16, 0), E(40/3, 20/3) and D (0, 20) and E is intersection point
of x+y=20 and 5x+2y=280.

So, value of objective function on these point given in table.

Points x-co-ordinate y-co-ordinate Objective function Z = (.50) x — (.10) y
0 0 0 Z,=(50) (0) - ('10) (0)=0
A 16 0 Z,('50) (16) — ('10) (0) =8
E 40/ 3 20/3 Z.=(50)(40/3)-(10)(20/3)=6
D 0 20 Z,=('50) (0) = ('10) (20) = -2

It is clear from above table that objective function is maximum at corner point (16, 0). So, for maximum
profit the purchase 16 new hens to get profit of ¥ 8.

Miscellaneous Exercise — 15
Solve the following Linear Programming Problems graphically:

1.  Maximize Z=4x+y
constraints x+y<50
3x+y<90
and x>0,y>0
2. Maximize Z =3x+2y
constraints x+y=>8
3x+5y<15
and x>0, y<15
3. Maximize and Minimize Z =x+2y
constraints x+2y>100
2x-y<0
2x+y <200
and x20,y2>0
4.  Maximize Z =3x+2y
constraints x+2y<10
3x+y<15

and x>0,y>0

5. Food for pateint must include a mixture of atleast 4000 units of vitamin 50 units mineral and 1400 units
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10.

calories. Two food products A and B are available at the cost of # 3 and ¥ 4 per unit. Food product A
constains 200 units of vitmain, 1 unit of mineral and 40 calories and food B contains 100 units of vitamin,
2 units mineral and 40 calories. What should be the mixture of food so that the cost is minimum.

A diet is to contain atleast 80 units of vitamin A and 100 units of minerals. Two foods F, and F, are
available. Food F, costs ¥ 4 per unit food and F, costs ¥ 6 per unit. One unit of food F, contains 3
units of minerals. Formulate this as a linear programming problem. Find the minimum cost for diet that
consist of mixture of these two foods and also meets the minimal nutritional requriements.

A furniture manufacturer makes table and chairs. These are made on two machines A and B. Machine A
takes 2 hours and machine B takes 6 hours to make a chair, whereas machine A taskes 4 hours and
machine B takes 2 hours to make a table. Machine A and B are used for 16 hours and 30 hours
respectively. The manufacturer earns a profit of ¥ 3 and ¥ 5 on selling one chair and one table. Find the
number of chairs and tables to be manufactured per day so as to get the maximum profit.

A firm manufactures two types of pills for headache size A and size B. Size A pill contains 2 grams aspirin,
5 grams bicorbonate and 1 gram sulphur whereas size B pill contains 1 gram aspirin, 8 grams bicorbonate
and 66 grams sulphur. It is been found that for quick relief atleast 12 grams aspirin, 7.4 grams bicorbonate
and 24 grams sulphur is required. For quick relief from pain what should be the minimum number of pill
a patient should take.

A brick manufacturer has tow depots A and B with a storage capacity of 30,000 and 20,000 bricks. He
takes the order from three builder P, Q and R of 15,000, 20,000 and 15,000 number of bricks. The
cost of transportation to deliver 1000 bricks is given below in the table.

From/To P Q R
A 40 20 30
B 20 60 40

keeping the transportation cost minimum how would the manufacturer send the bricks.

Constraints x+y<3
y<6

and x, y<0

The area bounded by the above inequalities

(A) unbounded in first quadrant (B) unbounded in first and second quadrant
(C) bounded in first quadrant (D) None of these

| IMPORTANT POINTS | ~

Linear programming is mathematical method which is used to distribute the limited resources in optimized
manner in competitive activities, while all used variables have linear relationship.

Set of values of variable which satisfied the all constraint of LPP is called a solution LPP.

Solution of LPP which satisifed the non-negative constraint is feasible solution and set of all feasible solution
is called feasible region.

A feasible solution which gives optimal solution of LPP is called optimal solution.

Graphical method is applicable in LPP when there is only two variable in problem.

Graphical method maninly depends upont he extreme point theorem which states that 'An optimal solution

J
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We proced as follows:

\

of a LPP, if it exists, occurs at one of the extrem (corner) points of the convex polygon of the set of all

feasible solutions'.

Following algorithm can be used to solve a LPP in two variables graphically by using corner point method:

(1  Formulate the given LPP in mathematical form it is not given in mathematical form.

@)  Convert all inequations into equations and draw their graphs. To draw the graph of a linear equation,
puty y =0 and obtain the point on x-axis. Simiarly by putting x = 0 obtain a point on y-axis. Join
these points to obtain the graph of the equation.

@) Determine the region represented by each inequation. To determine the region represented by an
inequation replace x and y both by zero, if the inequation reduces to a valid statement, then the
region containing the origin is the region represented by the given inequation. Otherwise, the region
not containing the origin is the region represented by the given inequation.

(iv)  Obtain the region in xy- plane containing all points that simultaneosuly satisfy all constraint including
non-negative restrictions. The polygonal region is so obtained is the feasible region and is known
as the convex polygon of the set of all feasible solutions of LPP.

(v)  Determine the coordinates of the vertices (corner points) of the convex polygon obtained in step
II. There vertices are known as extreme points of the set of all feasible solutions of LPP.

(vi)  Obtain the values of the objective functions to each of vertices of the convex polygon. The point
where the objective function attains its optimum (maximum or minimum) value is the optimal solutions
of given LPP.

If the feasible region of LPP is bounded, i.e., it is a convex polygon. Then, the objective function
Z = ax + by has both maximum value M and minimum value m and each of these values is the optimal
solution of given LPP.
Sometimes the feasible region of a LPP is not a bounded convex polygon. That is, it extends indefinitely
in any direction. In such cases, we say that the feasible region is unbounded. The above algorithm is
applicable when the feasible region is bounded. If the feasible region is unbounded, then we find values
of objective function Z = ax + by at each corner points of feasible region. Let M and m respectively
largest and smallest values of Z at these points. In order to check whether Z has maximum and minimum
values at M and m respectively.

(1)  Draw the line ax+by > M and find the open half plane ax+by > M . if the open half plane represented
by ax+by > M has no point common with the unbounded feasible region, then M is maximum value of
Z has no maximum value.

@) Draw the line ax+ by <m and find the open half plane represented by ax+by < m . If the half-plane
ax+by <m has no point common with the unbounded feasible region, then m is the minimum value of

{ Z, otherwise Z has no minimum value. )

Answers
Exericse 15.1

1. point (4, 0), minimum Z = —12 2. point (0, 4), maximum Z =16

3. For the given constraints no minimum value exists. 4. point (3/2, 1/2), minimum Z =7

5. point (5, 5) minimum Z = 60 and points (15, 15) and (0, 20), maximum z = 120

6. points (6, 0) and (0, 3), minimum Z =6

7. point (60, 0), minimum Z = 300 points (120, 0) and (60, 30) maximum Z = 600
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10.

For the given constraints no maximum valeu exists.

For the given constraints no feasible solution exists.

For the given constraints no maximum value of objective function exists.
Exercise 15.2

Minimum Z=5x+Ty
constraints 2x+y=8
x+2y2>10
x20,y20
For food I, 2 kg and for food II. 4 kg mixture is requried whose minimum value is ¥ 38
Minimum Z=6x+10y
constraints x+2y>10
2x+2y 212
3x+y=>8
x>0,y>0

For food I, 2 kg and for food II, 4 kg mixture is requried whose minimum valeu is ¥ 52.
20, 10

Maximize Z=250x+y
constraints x+3y<12
3x+y<12
x20,y20
3 and 4 packets of nuts and bolts everday with a profit of ¥ 10.50
Maximize Z=22x+18y
constraints x+y<20
360x+240y <5760
x20,y20
the dealer would buy 8 fans and 12 sweing macnine sto get the profit of ¥ 392
Maximize Z=07x+y
constraints 4x+6y <240
6x+3y <240
and x20,y>0
the dealer would make 30 packets of bolts A and 20 packets of bolt B to get the maximum profit of F 41.
Maximize Z=5x+6y
constraints Sx+8y <200
10x+8y <240
and x20,y>0

Firm should make 8 mementos of type A and s 20 memntos of type B to get the maximum profit of ¥ 160
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8. Minimize Z =(.60)x+(40)y
10x Sy
i —+—<14
constraints 100 100
Ox lOy
100 100
and x20,y>0
1000 kg of fertiliser F, and 80 kg of fertiliser F, should be used
minimum vlaue =392
9. Maximize Z =4500x+5000y
Constraints 25000x + 40000y < 7000000
x+y<250
and x20,y>0
The dealer will store 200 desktop and 50 portable computers so that to get the maximum profit of ¥
1150000
10. Let depot A, provide x and y quintals of food to D and E
Minimize Z=6x+3y+5/2(100—x—y)+4(60—x)+2(50—-y)+3(x+ y—60)
Constraints x+y<100
x<60
y<50
x+y=60
and x20,y>0
10, 50 and 40 Quintals for depot A to D, E and F
50, 0 and 0 Quintals for depot B to D, E and F
Miscellaneous Exercise - 15
1. At point (30, 0) Maximum is Z = 120 2. There is no feasible solution
3. At points (0, 50) and (20, 40) Minimum Z = 100 at (0, 200) and maximum Z = 400
4. At point (4, 3), Maximum Z = 18
5. 5 units of food material A and 30 units of food material B
6. Let x and y denotes the units of food material F, and F,
Minimize Z=4x+6y
constraints 3x+6y2>80
4x+3y>100
and x>20,y>0
Minimum value =3 104
7. 22 /5 Chairs and 9 / 5 tables, maximum profit = ¥ 22.2
8. 2 tablest of size A and 8 tablets of size B
9. From depot A, the builders P, Q and R should be supplied 0, 20000, 10000 number of bricks and

from depot B, the builders P, Q and R should be supplied, 15000, 0, 5000 number of bricks

10-

©
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Probability and Probability Distribution

16.01 Introduction

We often make statements about probability. For example, a weather forecaster may predict that there
is an 80% chance of rain tomorrow. A health news reporter may state that a smoker has a much greater chance
of getting cancer than a non smoker does.

In earlier classes, we have studied the probability as a measure of uncertainty of an event in a random
experiment. We have also established a relationship between the exiomatic theory and the classical theory of
probability in case of equally likely outcomes. On the basis of this relationship, we obtain probabilities of events
associated with discrete sample space. In this chapter, we shall discuss the important concept of conditional
probability, multiplication rule of probalility and independence of events, the Baye's theorem, random variable
and its probability distribution, the mean and variance of a probability distribution.

16.02 Conditional Probability

If we have two events form the same sample space, Does the information about the occurance of one
of the events affect the probability of the other event ? Let us try to answer this question by taking up a random
experiment in which the outcomes are equally likely to occur. Consider the experiment of tossing two fair coins.
The sample space of the experiment is

S={HH, HT,TH, TT}, H = Head, T = Tail

Since the coins are fair, we can assign the probability 1/4 to each sample point. Let A be the event at
least one head appears and B be the event "first coin shows tail". Then

A={HT,TH, HH}, B={TH,TT}

P(4)=P({HT))+ P({TH))+ P({FH))

=(1/4)+(1/4)+(1/4)=3/4
and P(B)=P({TH})+ P({TT})
=(1/4)+(1/4)=1/2
also ANB={TH}

P(AnB)=P({TH})=1/4

Now, we have to find the probability of A, when event B has already occured with the information of
occurence of B, we are sure that the case in which first coin does not result into a tail, should not be considered
while finding the probability of A. This information reduces our sample space form the set S to its subset B for
the event A

Thus sample point of event A which is favourable to event B is {TH}

Thus, Probability of A considering B as the sample space = 1/2

or, Probability of A given that the event B has occured = 1/2
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This probability of the event A is called the conditional probability of A given that B has already
occured, and is denoted by P(A/B)

Le. P A :l
B 2

Thus, we can also write the conditional probability of A given that B has occured as P(A/ B)

A} Number of elementary events favourable to (A N B)
B) Number of elementary events which are favourable to B
n (A e B)
(B

Dividing the numerator and the denominator by total number of elementary events of the sample space,
we see that

P(A/ B)can also be written as

n(AmB)
P(éJ _ns P(ANB)
B n(B) P(B)
n(S)

note that it is valid only when P(B)#0

Definition : If A and B are two events associated with the same sample space of a random experiment,
the conditional probability of the event A given that B has occured is given by

p(é} :M; P(B) £0
B P(B)
Similarly the conditional probability of the event B given that A has occured is given by
p(ﬁ} :M; p(A) £0
A P(A)

16.03 Properties of conditional probability
Let A and B be events of a sample space S of an experiment, then we have

G

S P(SnB) P(B)

We know that, P(EJ = P(B) = P(B) =1
P(BNB) P(B)

again P(g} P(8) P(B)



.- A
S0

S
using property (i) P (Ej =1
AUA 1
_ P(szl [~S=AUA]
A A T
N P(Ej + P[Ej =1 [+~ Aand A are disjoint events]

(ii) If A and B are any two events of a sample space S and F is an event of S such that

P(F)#O0then

(552 F) o))

In particular, if A and B are disjoint events, then

P[22 7)ol 2)

‘We have

P(ANF)+P(BNF)-P(ANBNF)
P(F)

_P(AnF) P(BNF) P[(ANB)NF]

P(F) | P(F) P(F)

AL A2 12)
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o ANB
Special Condition : When A and B are disjoint events, then P T =0

P(252)-#(2)#(2)
F F F

Ilustrative Examples
Example 1. If P(A)=6/11, P(B)=5/11 and P(AUB) =7/11then find

(i) P(ANB) (iiy P(A/B) (iiiy P(B/A)
Solution : (i) We know that P(AUB)=P(A)+P(B)-P(ANB)
= P(AnB)=P(A)+P(B)-P(AUB)

_ 6,3 7. 4
IRTRRTERTRRT!
) AY_P(ANB) 4/11_4
u P(BJ_ P(B) “5m1 s
(EJ:M 4/11_2
) A) P(A) e/l 3

Example 2. An instructor has a question bank consisting of 300 easy true / false questions, 200 difficult true/
false questions, 500 easy multiple choice questions. If a question is selected at random from the question bank,
what is the probabiliy that it will be an easy question given that it is a multiple choice question ?

Solution : Let event A 'it is an easy question' and event B "It is a multiple choice question' and we have to find

P(A/B)
n(A)=300+500=800, n(B)=500+400 =900
Here set A N B denotes 'it is an easy multiple choice question'
n(ANB)=500

:P(AJ: P(ANB)

required probability B P(B)

_n(AnB) 500 _5
n(B) 900 9

Example 3. Determine P (A / B) in each case when a coin is tossed three times, where

() A : head on third toss B : heads on first two tosses
(i) A : at least two heads, B : at most two heads
(i) A : at most two tails, B : at least one tail
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Solution : The sample space when a coin is tossed three times is as follows

S ={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

(i) A={HHH, HTH,THH, TTH}, B={HHH, HHT |

then ANB={HHH}
= n(A)=4, n(B)=2, n(AnB)=1
A n(AnB) 1
f{g}*ﬁxa—zz

(i) A={HHH, HHT, HTH,THH |, B={HHT, HTH, THH, HTT, THT, TTH, TTT }

ANB={HHT, HTH, THH }

= n(A)=4, n(B)=17, n(AnB)=3
A n(AmB) 3
]{E}“7Z5_27

(i) ~ A={HHH, HHT, HTH, THH, HTT, THT, TTH)},
B={HHT, HTH, THH, HTT, THT, TTH, TTT}
ANB={HHT, HTH,THH, HTT, THT,TTH)

= n(A):7, n(B):7, n(AmB):6
A n(AnB) 6
()

Example 4. A black and a red die are thrwon, then

(a) Find the conditional probability of obtaining a sum greater than 9, giving that the black die resulted
inas.

(b) Find the conditional probabilility of obtaining the sum 8, given that the red die resulted in a number
less than 4.
Solution : (i) Let event A denotes 'sum greater then 9' and event B denotes 'black dice resulted in a 5' now we

have to find P(A/B)

A={(5.5).(6.4).(4.6).(6.5).(5.6).(6.6)}, B={(5.1).(5.2).(5.3). (5 4).(5.5). (5. 6)}

AnB={(5.5). (5.6))
= n(A)=6, n(B)=6, n(AnB)=2
A n(AnB) 2 1
thus required probability =P 2 :TB) =e=3
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(i1) Let event A denotes 'sum greater than 9' and event B denotes' red die resulted in a number less than 4'

now we have to find P(A/ B)
then A={(2,6).(3,5).(4 4).(53).(62)}
={(6.1). (6. 2).(6.3). (5.1).

5,2),(53),(4,1),(42),(4,3),

31),(3.2). (3.3), (2.1). (2.2). (2.3). (11). (1.2). (1.3)

AnB={(6,2),(5,3)}

(
(

= n(A)=5, n(B)=18, n(AnB)=2

thus required probability = P(éj M 2.1
B n(B) 18 9
Example 5. A die is thrown three times, then event A and B defined as follows :
A : 4 appears on the third throw,

B : 6 and 5 appears respectively on first two tosses

determine P(A/B).

Solution : When a coin is tossed three times the sample space S contains =6x6x6 =216 equally likely
outcomes.

then A={(1, 1,4),(124),(1,3,4),(,4,4),(1,54),(164)
(2,1,4),(2,2,4),(2.3,4),(2.4,4), (2,5, 4). (2,6, 4)
(3.1,4),(3,2,4),(3,3,4),(3,4,4),(3,5,4), (3. 6. 4)
(4,1,4),(4,2,4),(4,3,4),(4,4,4),(4,5,4), (4,6, 4)
(5.1,4),(5,2.4),(5.3,4),(54,4),(55,4),(56,4)
(6.1,4),(6.2.4),(6.3.4).(6.4,4). (6,5 4), (6. 6, 4)}
5.2).(6.5.3),(6.5.4),(6.5.5), (6.5, 6)}

= n(A)=36, n(B)=6, n(AnB)=1
Thus required probability = P (éj = M = l
B n(B) 6

Example 6. Consider the experiment of throwing a die, if a multiple of 3 or 3 comes up, throw the die again
and if any other number comes, toss a coin. Find the conditional probability of the event' the coin shows a tail,
given that' at least one die shows a 3'.

Solution : The results of the experiments can be shown as
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The sample space is as follows
S ={(3, 1),(3,2).(3.3).(3.4).(3.5). (3. 6),(6,1), (6, 2), (6. 3), (6, 4)

(6,5),(6,6). (L H), (1.T), (2 H), (2. 7). (4 H), (4.T). (5. H), (5 T)}

Let event A denotes ' tail on the coin' and event B denotes 'at least one die show a 3'.

then A={(LT),(27).(47).(57)}: B={(3.1).(3.2).(3.3).(3.4).(3.5).(3.6). (6. 3)}

ANB=¢
- n(A)=4, n(B)=7, n(AnB)=¢
ANB
Required probability = P(AJ = n( N ) _0. 0
B n(B) 7

Exercise 16.1
1. If P(A)=7/13, P(B)=9/13 and P(ANB)=4/13 then find P(A/B).

2. If P(B)=0.5 and P(AnB)=0.32 then find P(A/B).

3. If2P(A)=P(B)=5/13 and P(%j:% then find P(AUB).
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10.

11.

12.

13.

14.

If P(A)=0.6, P(B)=0.3 and P(ANB)=0.2 then ﬁndp(%j andp(gj.

B
If P(A)=0.8, P(B)=0.5 and P(Xj=0-4 then find that

(i) P(ANB) (ii) P(%j iy P(AUB)

Assune that each born child equally likely to be a boy or a girl. If a family has two children, it is given
that if atleast one of them is a boy than find the probability that both the children to be a boy.

Two coins are tossed once then find P(A/B)

(1 A : tail appear on one coin, B : one coin shows head

(@ A : no tail appears, B : no head appears
Mother, father and son line up at random for a family picture. If A and B are two event as follows then
find P(A/B)

A : son on one end
B : father in middle

A fair die is rolled. Consider events A ={1, 3, 5} ] B={2, 3} and C ={2, 3, 4, 5} then find

) P(éj and P(EJ (i) P(éj and P(EJ (i) P(MJ and P(mJ
B A C A C c

Given that the two numbers apperaring on throwing two dice are different. Find the probability of the
event 'the sum of numbers on the dice is 4.

Ten cards numbered 1 to 10 are placed in box, mixed up throughly and then one card is drawn randomly.
If it is known that the number on the drawn card is more than 3, what is the probability that it is an even
number ?

In a school, there are 1000 students, out ot which 430 are girls. It is known that 10% girls out of 430
study in class XII. What is the probability that a student chosen randomly studies in class XII if given that
the chosen student is a girl ?

A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional
probability that the number 4 has appeared at least once ?

Consider the experiment of tossing a coin. If the coin shows head, toss it again but if it shows tail, then
throw a die. Find the conditional probability of the event that 'the die shows a number greater than 4' if
given that 'there is at least one tail'.

16.04 Multiplication theorem on probability

Let A and B be two events associated with a sample space S. Clearly, the set A denotes the event that

both A and B have occured. In other words A N B denotes the simultaneous occurence of the events A and B.

The event A N B is also written as AB

We know that the conditional probability of event A given that B has occurred is
P(ANB
P(AJ = g; P(B)=0
B P(B)
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again A)" P(a)

or 2)- P(PA(Z)B) [+ BAA=ANB]
P(AmB):P(A)P(gj i

from (i) and (i) P(A“B):P(A)P(gj:P(B)P(%j,whereP(A);tO and P(B)#0

The above result is known as the multiplication rule of probability.
Note : Let A, B and C be any events of sample space then

P(AmBmC):P(A)PEPL
A ANB

:P(A)P(EJP(%J

Thus the above expression denotes the multiplication rule of probability for more than two events

Ilustrative Examples

Example 7. An urn contains 10 white and 15 black balls. Two balls are drawn from the urn one after the other
without replacement. What is the probability that first ball is white and second is black.
Solution : Let A and B denote respectively the events that ball drawn is white and second ball drawn is black

then we have to find (Am B)

10
. . _ Cl _ 10
Now P(A)= P (white ball in first draw) = 25_C1 =25
Also given that the first ball drawn is white, i.e. event A has occured, now there are 9 white balls and fifteen
black balls left in the urn. Therefore, the probability that the second ball drawn is black, given that the ball in

the first draw is white, is nothing but the conditional probability of B given that A has occured. i.e.

PEZISCIZE
A) ¥C 24

By multiplication rule of probability, we have
P(ANB)= P(A)P(Ej SN Y
A) 25 24 4
Example 8. Three cards are drawn successively, without replacement form a pack of 52 well shuffled cards.
What is the probability that first two cards are kings and the third card drawn is a queen ?
Solution : Let K denotes the event that the card drawn is king and Q be the event that the card drawn is a
queen.

Clearly, we have to find P (KKQ)
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Now P(K )= P (card drawn is a king) = 4/52
Now there are three kings in (52-1) = 51 cards.

P(%j = P (the probability of second king with the condition that one king has already been

3
drawn) = 51

Now there are four queens left in 50 cards.
kK ) (the probability of third drawn card to be a queen, with the condition that two kings have

4

already been drawn = 50

By multiplication rule of probability, we have

p(KKQ):p(K)p(gjp(%J

4 3 4 2

T52°51 50 5525
16.05 Independent Events

If A and B are two events such that the probability of occurence of one of them is not affected by
occurence of the other. Such events are called independent events
Two events A and B are said to be independent, if

P(%j:P(A) when P(B)#0
and P(%JzP(B) when P(A)#0

Now, by the multiplication rule of probability, we have

P(AmB):P(A)P(gj

If A and B are independent, then
P(ANnB)=P(A)P(B)
Note : Three events A, B and C are said to be mutually independent, if
P(ANnB)=P(A)P(B)
P(BNC)=P(B)P(C)

P(ANC)=P(A)P(C)
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and P(ANBNC)=P(A)P(B)P(C)

If at least one of the above is not true for three given events, we say that the events are not independent
Example : An unbaised die is thrown twice. Let the event A be 'odd number on the first throw' and B the
event' odd number on the second throw'. Check the independence of the events A and B.

The sample space in tossing two coins is

(11, (1,2). (1.3). (1.4). (1.5). (1.6)
(2,1),(2,2),(2,3),(2,4).(2.5),(2,6)
BD.(3:2.(3:3).(3:4).(.5). (3 6)
] (4.1).(4.2). (4.3). (4. 4). (4.5). (4. 6)
(5,1),(5.2),(5.3), (5. 4), (5.5). (5, 6)
(6.1).(6.2). (6.3). (6. 4). (6. 5). (6. 6)
= n(S)=36
Also getting an odd number on the first throw we have
n(A)=18
_18_1
( )_36 2
18 1
similarly P(B)=3c=7
and P (A NB ) = P (getting odd number on both the throws) = 39_6 = i

{aQ, 1, 4, 3), (1, 5, 3, 1, 3, 3), 3, 5), 5, 1), (5 3), (5,5)} [be the sample points w.r. to
event A and event B.]

clearly P(AnB)=1/4=1/2x1/2=P(A)P(B)
Thus A and B are independent events.
Ilustrative Examples
Example 9. Events A and B are such that P(A)=1/2, P(B)=7/12 and P(A—not or B—not)=1/4 then

are A and B independent events ?

Solution:  Given P(4)=3. P(B)=Z. P(AUB) =
P(AUB) =5
- P(AnB)= [ P(AUB)=P(ARB)]
N 1—P(AmB):i | P(ANB)=1-P(AnB)]



= P(ANB)=1-1/4=3/4
also P(A)P(B)=1/2x7/12=17/24

P(AnB)=P(A)P(B)
therefore A and B are not independent events.
Example 10. A fair coin and an unbaised die are tossed. Let A be the event 'head appears on the coin' and B

be the event '3 on the die'. Check whether A and B are independent events or not.
Solution : The sample space related to the experiment is -

S={(#.1), (H,2), (H,3), (H, 4). (H,5), (H,6). (T 1), (T, 2), (T, 3), (T, 4). (T 5). (. 6)}

and A={(H,1),(H,2),(H.3),(H.4).(H,5),(H,6)}, B={(H.3),(T.3)}

AnB={(11.3)
6 1 2 1
P(A)=—=—, P(B)=—=—, P(ANnB)=—
I 1 1
clearly P(AmB):P(A)P(B):Exg:E

Therefore A and B are independent events.
Example 11. A die marked 1, 2, 3 inred and 4, 5, 6 in green is tossed. Let A be the event, 'the numeber is
even,' and B be the event,'the number is red'. Are A and B independent ?

Solution : The sample space in rolling a die once is = {1, 2,3,4,5, 6}

then A={2,4,6}, B={1,23} also AnB={2}
1
27
1
clearly P(AmB):g;tP(A).P(B).

Therefore A and B are not independent events.
Example 12. A die is thrown. If A is the event 'the number apperaring is a multiple of 3' and B be the event
' the number appearing is even' then find whether A and B are independent ?

Solution : The sample space in rolling a die once is = {1, 2,3,4,5, 6}

then A={3,6}, B={2,4,6} and AnB={6}

2 1 3 1 1
P(A)====, P(B)===—, P(AnB)=—
(4)=2=3. P(B)=2=2. P(AnB)=_
1 1.1
clearly P(AmB):g:ExE:P(A)P(B)

Thus events A and B are independent events.
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Example 13. Events A and B are such that P(A)=1/2, P(AUB)=3/5 and P(B)=r then find rif,

@ the events are mutually exculsively
(i) the events are independent
Solution : (i) If events A and B are mutually exclusively then

P(AUB)=P(A)+P(B)
3/5=1/2+r = r=1/10
(i1) If events A and B are independent events

P(AnB)=P(A)P(B)=(1/2)r

Given P(AUB)=3/5

N P(A)+P(B)-P(AnB)=3/5

= 1/2+r-P(AnB)=3/5

= 1/2+r-(1/2)r=3/5

= 1/2+(1/2)r=3/5

= r/2=3/5-1/2
= r=1/5

Example 14. Three coins are tossed simultaneously. Consider the event A 'three heads or three tails', B' at
least two heads' and C' at most two heads'. Of the pairs (A,B), (A,C) and (B,C), which are independent ?
which are dependent ?

Solution : The sample space of tossing three coins is

S ={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT }

then A={HHH,TIT}, B={HHT, HTH,THH, HHH }
and C ={TTT,TTH, THT, HTT, THH, HTH, HHT }
Also

ANB={HHH}, ANC={TTT} and BNC={HHT, HTH,THH }
P(A)=2/8=1/4, P(B)=4/8=1/2, P(C)=17/8
P(AnB)=1/8, P(ANC)=1/8, P(BNC)=3/8
Clearly P(ANB)=P(A)P(B)=1/4x1/2=1/8
similarly P(ANC)=P(A)P(C)

and P(BNC)=P(B)P(C)
Thus A and B are independent events and A and C, and B and C are dependent.
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Example 15. If in a random experiment A and B are independent events then prove that

(@) A and B are dependent events.
(i) A and B are independent events
(i) A and B are also independent events

Solution : Given A and B are independent events

P(ANnB)=P(A)P(B)

Fig.16.02
It is clear form the venn diagram that AN B and A ~ B are mutually exclusive such that

(AnB)U(ANB)=B
By addition theroem of Probability
P(B)=(AnB)+P(ANB)

Therefore A and B are independent events.
(i) It is clear form the venn diagram that A~ B and AN B are mutually exclusive events such that
(AnB)U(ANB)=A
By addition theroem of probability
P(A)=P(AnB)+P(ANB)
= P(AnB)=P(A)-P(ANB)
=P(A)-P(A)P(B)
=P(A)[1-P(B)]
=P(A)P(B)
Therefore A and B are independent events
(i) P(AnB)=P(AUB)

=1-P(AUB)
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P(AnB)=1-[P(A)+P(B)-P(ANB)]
=1-[ P(A)+P(B)-P(A)P(B)]
=1-P(A)-P(B)+P(A)P(B)
=[1-P(4)]-P(B)[1-P(4)]
=[1-P(4)][1-P(B)]

=P(4)P(B)

Therefoere A and B are independent events

Example 16. If A and B are two independent events, then find the probability of occurence of at least one of
A and B.

Solution : P (at least one of A and B) = P(A U B)
=P(A)+P(B)-P(ANB)
=P(A)+P(B)-P(A)P(B)[--Events A and B are

indepndent] :P(A)+P(B)[1—P(A)]

= P(A)+P(B)P(A) - P(A)+P(A)=1]

Exercise 16.2
1. If A and B are two events such that P(A)=1/4, P(B)=1/2 and P(ANB)=1/8, then find

P(Zmﬁ)
2. If P(A)=04, P(B)=p and P(AUB)=0.6 and A and B are independent events then find the value

of p.
3. IfAand B are independent events and P(A)=0.3 and P(B)=0.4then find

(i) P(ANB) (ii) P(AUB) (iii) P(%j @iv) P(gj
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11.

12.

13.

16.06 Partition of a Sample Space

@
(ii)
(iii)

If A and B are independent events and P(A)=0.3, P(B)=0.6then find

(i) P(ANB) (i) P(ANB) (i) P(AUB) (iv) P(ANB)

A bag contains 5 white, 7 Red and 8 black balls. If four balls are drawn without replacement then find
the probability that all are white.

If a coin is tossed thrice then find the probability of getting an odd number atleast once.

Two cards are drawn without replacement form a well shuffled pack of 52 cards Find the probability
that both are black.

Two coins are tossed. Find the probability of getting two heads when it is known that one Head has
already occured.

In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20% read
both Hindi and English newspapers. A student is selected at random.

(1  Find the probability that she reads neither Hindi nor English newspapers.

@)  If she reads Hindi newspaper, find the probability that she reads English newspaper.

@) If she reads English newspaper, find the probability that she reads Hindi newspaper.

A, solves 90% of the problems of the book and B, solves 70 % of the problems of the same book. If
a question is taken at random then find the probability that at least one of them solve the question.
Three students are given the mathematical question to solve. Probability of solving the problem by the
three are 1/2, 1/3 and 1/4. What is the probability that the question will solved ?

A bag contains 5 white and 3 black balls. Four balls are drawn one by one without replacements. Find
the probability that the balls are of different colors.

1
Probability of solving specific problem independently by A and B are % and 3 respectively. If both try

to solve the problem independently, find the probability that
(1)  the problem is solved
(i)  exacty one of them solves the problem

Asetofevents E, E,,...,E_ 1is said to represent a partition st

of the sample space S if
ENE =¢, i=j.i,j=1,23..n

E, E,
EVE,OUE,U..UE =5 and )

P(E)>0, forall i=1,2,..,n Fig.16.03

In other words , the events E,, E, ..., E

n

represent a partition of the sample space S if they are pairwise

disjoint, exhaustive and have non zero probabilities.
Example : As an example, we see that any non empty event E and its complement E form a partition of the
sample space S since they satisfy

ENE'=¢ and EUE' =S.
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16.07 Theorem on Total Probability
Statement : Let {E,E,,...,E, }be a partition of the sample space S, and suppose that each of the

events E, E,,..., E, has non zero probability of occurence. Let A be any event associated with S, then

A A A
P(A)= P(EI)P[EJ + P(EZ)P[EJ +..+ P(E")P[Ej

1 2

- A
s repe2)

n

J

Statement : Given that E,E,,...,E is a partition of the sample space S. Therefore

S=EUE,U..UE, (1)
and ENE =¢ Vi#j,i, j=12,..n
for any event A

A=ANS

=AN(E,VE,U..UE)
=(ANE)U(ANE,)U..u(ANE,)
ANE, and ANE, are the subsets of set E, and E, which are also disjoin fori #
for i # j,i, j=1,2,...n,ANE, and AN E, are also disjoint.
P(A):P[(AmEl)u(AmEz)u...u(AmEn)]
=P(ANE)+P(ANE,)+..+P(ANE,)
now P(AﬁEi)=P(Ei)P[£} [+ P(E)#0 ¥ i=1,2,...n]

E.

1

Now, by multiplication rule of probability, we have

P(A)= P(EI)P[§j+P(E2)P£Eij+...+ P(EH)P[ij

1

Ilustrative Examples

Example 17. In a class two- third of the students are boys and remainig are girls. Probability of a girl securing
first division is 0.25 whereas probability of a boy securing first division is 0.28. A student is selected at random,
find the probability that he or she gets first division.
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Solution : Let event E, denotes 'a boy is selected' and event E, deontes ' a girl is selected' and let event A

represent ' a student gets first divisions .

then P(E)=2/3,P(E,)=1/3

A A
P| = ]=028, P|—|=025
and [Elj [EZJ

using theroem of total probability

P(A):P(EI)P[ij+P(E2)P[ij=§x0.28+%x0.25=0.27

1 2

16.08 Baye's Theorem

Famous mathematician, John Baye's solved the problem of finding inverse probability by using condi-
tional probability. The formula developed by him is known as 'Baye's theroem' which was published posthu-
mously in 1763

Statement : If E ,E,,...,E are nnon empty events which constitute a partition of sample space S, ie.,
E.E,,...E , are pairwise disjoint and E, U E,,...,UE =S and A is any event of non zero probability,

then

A
P(E,)P [j
P (Ej - P ( ANE, ) = E; (by multiplication rule of probability)
A P(A) P(A)
A
P(E)P| —
g
u A (by the result of theorem of total probability)
$riey| 2]
J= J

Ilustrative Examples

Example 18. In a factory which manufactures bolts, machines A, B and C maufacture respectively 25%,
35%, and 40% of the bolts. Of their outputs 5, 4, and 2 percent are respectively defective bolts. A bolt is
drawn at random form the product and is found to be defective. What is the probability that it is manufactured
by the machine B ?
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Solution : Let events B,, B, and B, be the following :
B, : the bolt is manufactured by machine A
B, : the bolt is manufactured by machine B
B, : the bolt is manufactured by machine C

Clearly B,, B, , B, are mutually exclusive and exhaustive events and hence, they represent a partition of the sample
space. Let the event E be 'the bolt is defective'.

The event E occurs with B, or with B, or with B, . Given that

P(B,)=25% - _p.25
100
P(B,)=35% =P 035
100
40
P(B,)=4%=——=0-40
and (B,)=4% =150
E
Again P B = Probability that the bolt drawn is defective given that it is manufactured by machine A
1
=5% = 0.05
Similarly,

Pl E 2004 P| £ ]=0.02
B2 B3

Hence, by Baye's Theorem, we have

~ 0-35%0-04
0-25x0-05+0-35x0-04+0-40x0-02

~0-0140 28

00345 69
Example 19. Given three identical boxex I, 11, and III each containing two coins. In box I, both coins are gold
coins, in box II, both are silver coins and in the box III, there is one gold and one silver coin. A person chooses
a box at random and takes out a coin. If the coin is of gold, what is the probability that the other coin in the
box is also of gold.
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Solution : Let E, E,, E, be the events that boxes I, 1I, and III are chosen, respectively

1
Then P(El):13(}52):10(}53):g
Also, let A be the event that ' the coin drawn is of gold'
Al 2
P (a gold coin form bag I) = P = =5=1
1

A
P (a gold coin form bag II) P [_j =0

EZ
Al 1
P(a gold coin from bag I1T) P =173
3

Now, the probability that the other coin in the box is of gold = the probability that gold coin is drawn
form the box L.
pl B
A

By Bayes' theroem, we know that

B 1/3x1
1/3x1+1/3%x1/2

1/3 113 _13_1.6_2

= = = X
1/3+1/6 2+1/6 3/6 3 3 3

Example 20. A man is know to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find
the probability that it is actually a six.

Solution : Let E be the event that the man reports that six occurs in the throwing of the die and let S, be the

event that six occurs and S, be the event that six does not occur Then
s : 1
Probability that six occurs =P (S 1) = 3

5
Probability that six does not occur = P (S 2) = g
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Probability that the man reports that six occurs when six has actually occured on the die = Probability
that the man speaks the truth =
S, 4

Probability that the man reports that six occurs when six has not actually occured on the die = Probability
that the man does not speak the truth
_p|E_3.1
S, 4 4

Thus, by Baye's theroem, we get
Probability that the report of the man that six has occured is actually a six

:p(ﬂj: P(SI)PGJ

£ p(sl)p[gjm(sz)p[fj

1 2

_ 1/6x3/4  3/24  3/24
1/6x3/4+5/6x1/4  3/24+5/24  8/24
3 24 3

= X — = —

24" 8 8

Hence, the required probability is 3/8
Example 21. Suppose that the reliability of a HIV test is specified as follows: Of perople having HIV, 90 %
of the test detect the disease but 10% go undetected. Of people free of HIV, 99% of the test are judged HIV
-ive but 1% are diagnosed as showing HIV +ive. From a large population of which only 0.1% have HIV, one

person is selected at random, given the HIV test, and the pathologist reports him/her as HIV +ive. What is the
probability that the person actually has HIV ?

Solution : Let E denotes the event that the person selected is actually having HI'V and A the event that the

E
person's HIV test is diagnosed as +ive. We need to find £ (Xj

Also E' denotes the event that the person selected is actually not having HIV. Clearly , {E,E"} is a partition
of the sample space of all people in the population. We are given that

P(E)=0-1% =94 _6.001
100
P(E')=1-P(E)=1-0-001=0-999
P(Person tested as HIV +ive given that he/she is actually having HIV)

P 4 =9O%=2=0-9
E 10
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P(Person tested as HIV+ive given that he/she is actually not having HIV)

P 4 :1%:L=O-Ol
E' 100

Now, by Baye's theorem

P(gj: A A
P(E)P| = |+ P(E)P| %,
(5)e( 2 )+ PE)P( 2]
(Ej_ 0-001x0-9
A) 0-001x0-9+0-999x0-01
90

= =0-083
1039 approx.

Thus, the probability that a person selected at random is actually having HIV given that he/she is tested
HIV +ive is 0.083.

Exercise 16.3

1. BagIcontain 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is
drawn at random form one of the bags and it is found to be red. Find the probability that it was drawn
form Bag II.

2. Adoctor is to visit a patient. From the past experience, it is known that the probabilites that he will come
by train, bus, scooter or by other means of transport are respectively 103 % and 5 The probabili-

11 1
ties that he will be late are 13 and o if he comes by train, bus and scooter respectively, but if he
comes by he comes by train ?

3. Bag I contains 3 Red and 4 black balls while Bag II contains 4 Red and 5 black balls. One ball is
transfered from Bag I to Bag II and then a ball is drawn form Bag II and it was found to be Red. Find
the probability that the transfered ball is black.

4. A bag contains 3 Red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two
bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probabil-
ity that the ball is drawn from the first bag.

5. There are three coins. One is a two headed coin (having head on both faces), another is a baised coin
that comes up heads 75% of the time and third is an unbaised coin. One of the three coins is chosen at
random and tossed, it shows heads, what is the probability that it was the two headed coin ?

6. A laboratory blood test is 99% effective in detecting a certain disease when it is in fact, present. How-
ever, the test also yields a false positive result for 0.5% of the healthy person tested (i.e. if a healthy
person is tested, then, with probability 0.005, the test will imply he has the disease). If 0.1 percent of the
population actually has the disease, what is the probability that a person has the disease given that his
test result is positive ?
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7. Students in a college, it is known that 60% reside in hostel and 40% are day scholar (not residing in
hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and
20% if day scholar attain A grade in their annual examination. At the end of the year, one student is cho-
sen at random from the college and he has an A grade, what is the probabilioty that the student is a
hostlier ?

8. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The
probabilioty of accidents are 0.01, 0.03 and 0.15 respectively. One of the insured persons meet with an
accident, What is the probability that he is a scooter driver ?

9.  Inanswering a question on a multiple choice test, a student either knows the answer or gusses. Let 3/4
be the probability that he knows the answer and 1/4 be the probability that he gusses. Assuming that a
student who guesses at the answer will be correct with probability 1/4 What is the probability that the
student know the answer given that he answered it correctly ?

10.  Suppose that 5% of men and 0.25% of women have grey hair. A grey haired person is selected at ran-
dom. What is the probability of this person being male ? Assume that there are equal number of males
and females.

11.  Two groups are competing for the position on the Board of directors of corporation. The probabilities
that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins,
the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the second
group wins . Find the probability that the new product introduced was by the second group.

12.  Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and notes the number of
heads. If she gets 1, 2, 3 or 4, she tosses a coin three times and notes whether a head or tail is obtained.
If she obtained exactly one head, what is the probability that she threw 1, 2, 3, or 4 with the die ?

13. A card form a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and
are found to be both diamonds. Find the probability of the lost card being a diamond.

14.  Abag contains 3 Red and 7 Black balls. Two balls are selected at random without replacement. If the
second drawn ball is Red then what is the probability that the first ball drawn is also Red ?

16.09 Random variable and its Probability Distribution

We have already learnt about random experiments and formation of sample spaces. Sample spaces are
set of all possible results of any random experiment. The result of any random experiments may be numerical
or non-numerical. In most of these experiments, we were not only interested in the particular outcome that
occurs but rather in some number associated with that outcomes as shown in following example / experiments.

@) In tossing two dice, we may be interested in the sum of the number on the two dice.

(i) In tossing a coin 50 times, we may be interested in the sum of the number of heads obtained.

(@i)  In the experiment of taking out four articles (one after the other) at random from a lot of 20
articles in which 6 are defective, we want to know the number of defective in the sample of four and not in the
particular sequence of defective and non defective articles. In all of the above experiments, we have a rule
which assigns to each outcome of the experiment a single real number. This single real number may vary with
different outcome of a random experiment and hence, is called random variable. A random variable is usually
denoted by X. If you recall the defination of a function, you will realise that the random variable X is really
speaking a function whose domain is the set of outcomes(or sample space) of a random experiment. A ran-
dom variable can take any real value, therefore, its co-domain is the set of real numbers. Hence, a random
variable can be defined as follows :
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Definition : A random variable is a real valued function whose domain is the sample space of a random ex-
periment
Random variables are generally expresses as X, Y, Z
For example, let us consider the experiment of tossing a coin three times in succession.
S ={HHH,HHT,HTH,THH, HTT,THT ,TTH,TTT}
If X denotes the number of heads obtained, then X is a random variable and for each outcome, its
value is as given below :

X(HHH)=3, X(HHT)=2=X(HTH)=X (THH ),
X(HIT)=1=X(THT)=X (TTH), X (TTT)=0

NOTE : more than one random variables can be defined on the same sample space
Random variables are of two types :

@) Discrete Random variable

(i) Continuous Random variable
@) Discrete Random variable : If a random variable takes a finite or infinite value then that variable is
called as discrete random variable. For example -

(a) number of students in a class.

(b) the number of printed errors in a book

(© the number of complaints received in an office

(ii) Continuous Random variable : If a random variable takes all the values in a fixed interval then it is
called as continuous random variable for example -

(a) height of a person

(b) X ={xeR : 0<x<l1} etc.
NOTE : In this chapter random variable means discrete random variable only.

16.10 Probability distribution of a Random Variable

Probability distribution of a random variable is discription of collection of all possible results and prob-
ability related to them. The probability distribution of a random variable X is the system of numbers

X=x:1x X, X..X

n

P(X) D Dy P3P,

where p, >0 and Zn:pi =1, i=L2,...,n
i=1
The real numbers x, x,, x,, ..., x_are the possible values of the random variable X with possible prob-
abilities p , p,, p,, ..., p, etc.
For example, let us consider the experiment of tossing a coin two times in succession. The sample space
of the experiment is
S ={HH,HT,TH,TT)
If X denotes the number of heads obtained, then X is a random variable and for each outcome, its
value is as given below :

X(HH)=2,X(HT)=1= X (TH), X(TT)=0
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Here X tales the values 0, 1 and 2 whose corresponding probabilities are 1 /4,2 /4 and 1 /4, thus
the proabbility distribution is

X=x :0 1 2
P(X) : 1/4 2/4 1/4
1 2 1
, ==t —+—=1,
where p, >0 and ZP, 17177

Ilustrative Examples

Example 22. The probability distribution of a random variable X is given below :

Find

(1) k

X (0[1]2|3|4|5]6 7
P(X)|0 |k |2k |2k |3k |k>|2k>|Tk*+k

(i) P(X <6) (iii) P(X 26) (iv) P(0< X <35)

Solution : (i) The sum of probabilities in a probability distribution is always 1. Therefore
P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X =4)+P(X =5)+P(X =6)+P(X =7)=1

=
=

or

(ii)

(iii)

(iv)

Uy

O0+k+2k+2k+3k+k>+2k*+7k* +k =1
10k>+9% —1=0

(10k—1)(k+1)=0

10k-1=0 [k >0]

k=—
10

P(X<6)=P(X=0)+P(X =1)+P(X =2)+P(X =3)+P(X =4)+P(X =5)
0+k +2k + 2k +3k + k*
k* +8k

81
1/10)° +8(1/10) = —
(1/10)* +8(1/10) ==

P(X>6)=P(X=6)+P(X=7)
2k* +T7k* +k
9%* +k

9(1/10)%1/10:2
100

P(0<X <5)=P(X=1)+P(X =2)+P(X =3)+P(X =4)
k+2k +2k +3k =8k
8/10=4/5
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Example 23. Three cards are drawn succesively with replacement form a well-shuffled deck of 52 cards.
Find the probability distribution of the number of aces.

Solution : The number of aces is a random variable. Let it be denoted by X. Clearly, X can take the values
0,1,2or3.

48
p(X = 0) =P (non-ace and non-ace) = 52C3 = %
c; 5525
4 48
p(X = 1) =P (ace and two non-ace) = C‘; 2o 1128
C 5525
4 48 72
p( X = 2) =P (two ace and one non-ace) = c252>< G-
C 5525
4C3 1
P(X =3)=P (ace and ace and ace) = > =——
c; 5525

Thus, the required probability distribution is

X 0 1 2 3
4324 | 1128 | 72 1
5525 | 5525 | 5525 | 5525

P(X)

Example 24. Let X denote the number of hours you study during a randonly selected school day. The prob-
ability that X can take the values x, has the following form, where k is some unkonwn constant.

@

(ii)

0-1 ; If x=0
kx ;o If x=1or?2
P(X =x)= /
k(5—x) ; If x=3o0r4
0 ;. otherwise
Find the value of &.
What is the probability that
(@) you study at least two hours ?
(b) Exactly two hours ?
(© At most two hours ?

Solution : The probability disrtibution of X is

X : 0 1 2 3 4
P(X) : 01 k 2 2k k
(1) We know that
P(X=0)+P(X =1)+P(X =2)+P(X =3)+P(X =4)=1
Ol+k+2k+2k+k=1
= 6k =09
or k=015
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(i) (a) required probability
when P(X>2)=P(X =2)+P(X =3)+P(X =4)
=2k +2k+k=5k=5x015=075.
(b) required probability
when P(X =2)=2k =2x015=030.
(c) required probability
when P(X<2)=P(X=0)+P(X =1)+P(X =2)
=01+k+2k=3k+01
=01+3x015=055
Example 25. A coin is baised so that the head is 3 times as likely to occur as tail. If the coin is tosses twice,
find the probability distribution of number of tails.
Solution : Let p denotes the probability of getting tail in tossing a coin once then probability of getting head
will 3p
Thus getting " number of head " and " number of tails " are mutually exclussive and exhaustive events

P(H)+P(T)=1

= 3p+p=1
or p=1/4
3 1
P(H)== P(T)=—
(H)=7 and (7)=7

Let X denote the number of tails in tossing a coin twice then X will take values 0, 1 and 2
P(X =0)= P (not getting Tail)
= P (getting both Heads)

= P(HH)
=P(H) P(H) { .- both are independent }
3.3 9
=X —=—
4 4 16
P(X =1)= P (getting one Tail and one Head) = P(HT) + P(TH)
= P(H) P(T) + P(T) P(H)
3.1.1.3 3
=—X—4+—X—=—
4 4 4 4 8

P(X =2)= P( getting both Tails)

11 1
=P(TT) =P P(T) = ;%7 =1¢
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Now the probability distribution of X

X 10 |12
p(X) 2 E i
16 |8 |16

16.11 Mean of a Random Variable

In many problems, it is desirable to describe some feature of the random variable by means of a single
number that can be computed form its probability distribution. Few such numbers are mean, median and mode.
In this section, we shall discuss mean only. Mean is a measure of location or central tendency in the sense that
it roughly locates a middle or average value of the random varible

Let X be a random variable whose possible values x,, x,, x;,..., x, occur with probabilities p,, p,,..., p,

respectively.
The mean of a random variable X is also called the expection of X, denoted by E(X).

E(X)=p=2 xp,
i=1

=xpt+tx,p,+..+x,p,

The mean of X, denoted by p is the number Z X;P: 1.e. the mean of X is the weighted average of the

i=1
possible values of X, each being weighted by its probability with which it occurs.

Let a dice be thrown and the random variable X be the number that appears on the dice. Find the
mean or expectation of X.

The sample space is = {1,2,3,4,5,6}

Now the probability distribution with random variable X—
X=x : 1 2 3 4 5 6
P(x) : 1/6 1/6 1/6 1/6 1/6 1/6

p=E(X)=2 xp,
=XD XDy X3Py + X Pyt X5 Ps + X D

=1x1/6+2x1/64+3x1/6+4x1/64+5x1/6+6x1/6
=21/6=17/2
NOTE : This does not mean at all that in the experiment of tossing a coin we get the number 7/2. This number
indicates that if the coin is tossed for longer period then the number we get in average tossing is 7/2
Ilustrative Examples

Example 26. Three coins are tossed, If X denotes the number of Heads then find the mean or expectations of
X
Solution : Here X takes the values 0, 1, 2, and 3

P(X =0)= P(TTT):%
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3
P(X =1)=P (HTT @1 TTH = THT)=¢

3
P(X =2)= P(HHT =r THH = HTH)=¢

and P(X:3):P(HHH):%
Probability distribution of variable X is—
X=x0 1 2 3

P(x) 1/8 3/8 3/8 1/8
Mean of X :?:E(X):inpi

=0x1/8+1x3/8+2x3/8+3x1/8=12/8=3/2
Example 27. Two cards are drawn simultaneously (or successively with replacement) from a well shuffled
pack of 52 cards. Find the mean and probability of the number of aces.
Solution : Let X denote the number of aces.
Variable X take the values 0, 1 and 2
P(X =0) = P (not getting an ace)
= P (no ace and no ace) =P (no ace) . P (no ace)
=48/52x48/52=144/169
P(X =1) = P (getting an ace)
= P(ace and no ace or no ace and ace)
= P(ace) P(no ace) + P(no ace) P(ace)
=4/52x48/52+48/52x4/52=24/169
P(X =2) = P( gettting both the aces ace )
=P(ace and ace)
=P(ace) P(ace)

=4/52x4/52=1/169
Probability distribution of variable X-

X : 0 1 2
P(X) : 144/169 24/169 1/169

Mean :?:E(X):inpi
—0x144/169+1x24/169+2x1/169 = 26/1609.
16.12 Variance of a random variable

Let X be a random whose possible values x,,x,,...,x, occur with probabilities p,, p,,.... p,

respectively then variance of X is given by var(X) or o}

n

o7 =var (X)=E(X~u)' =Y. (5~ 4)'

i=1
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The positive square root of variance as "+, lvar(X) " is called as standard deviation

n

oy =+yvar(X) =+ 2 (xl.—u)2 P

1

Alternative Formula to find Variance.

n

var(X) =3 (%~ u) p,

i=1

= Zn:(xiz + ,uz _Zuxi)pi

i=1

=2 X P+ 1P = 2D uxp,
i=1 i=1 i=1

= Z x'p, +:u22 pi— 2:”2 X Pi
i=1 i=1 i=1

=3, (1)~ 2p(n)

i=1

= Zn:xizpi - ;uz
i=1

2
=>x5'p, - [ZWJ
i=1 i=1

var(X):E(Xz)—{E(X)}2 Where E(X2):in2pi

For Example : Find the Variance of head in three tosses of a fair coin.

Solution : We have to find the variance of head in three tosses of a fair coin
The sample space S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Here X can take the values 0, 1, 2 and 3 whose probabilities are 1/8,3/8,3/8 ; 1/8
The probability distribution of X is -

X=x : 0 1 2 3
P(X) : 1/8 3/8 3/8 1/8

Variance of X var (X) =E(X2)_[E(X)]2

where E(X)= inpi =X4P T Xpy F X Py X P,

i=1

=0x1/8+1x3/8+2x3/8+3x1/8=3/2
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and E(X*)= inzpi = x12p1 +x22p2 +x32p3 +x42p4
i=1
=(0)*x1/8+(1)*x3/8+(2)*x3/8+(3)*x1/8
=0+3/8+12/8+9/8=3
var(X) = E(X*)—[E(X)F

=3-(3/2)*=3-9/4=3/4.
Example 28. Two dice are thrown simultaneously. If X denotes the number of sixes, find the variance of X,
Solution : The Sample Space is tossing two coins is -

1,1, (1,2), (1,3), (1,4), (1,5), (1,6)

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)
(3.1), (3,2), (3,3), (3,4), (3,5), (3,6)
4,1), (4,2), (4,3), (4,4), (4,5), (4,6)
(5.1), (5,2), (5,3), (5,4), (5,5), (5,6)
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

X can take the values 0, 1 and 2
P(X = 0)=P(not getting six)=25/36
P(X =1)=P(getting six on one dice)=10/36
P(X = 2)=P(getting six on both the die)=1/36
The probability distribution of variable X -

X 0 1 2
P(X) : 25/36 10/36 1/36

E(X)=Y x,p,=0x25/36+1x10/36+2x1/36=12/36 =1/3

i=1

E(X?) =Y x?p, = (0> x25/36+(1)* x10/36 +(2)* x1/36 =14/36 =7/18

i=1

“18 (3) 18
Example 29. Two numbers are selected at random (without replacement) from the first six positive integers.

Let X denote the larger of the two numbers obtained. Find the variance
Solution : X takes the value 2, 3, 4,5, 6

var(X)= E(X*)~(E(X ) = (l}z 5
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P (X = 2) = P (getting a number greater than 2)
= P (getting 1 and then 2) or (getting 2 and then 1)
=1/6x1/5+1/6x1/5=2/30=1/15

P(X =3)= P (getting a number greater than 3)

= P (getting a number lesser than 3 and than 3) (getting 3 or a number lesser than 3)

=2/6x1/5+1/6x2/5=4/30=2/15

similarly P(X:4):3/6><1/5+1/6><3/5:6/30=1/5

and P(X:5):4/6><1/5+1/6><4/5:8/30:4/15
also P(X:6):5/6><1/5+1/6><5/5=10/30:1/3
Thus the probability distribution of X -

X : 2 3 4 5 6
P(X) : 1/15 2/15 15 4/15 1/3

E(X)=) xp,=2x1/15+3x2/15+4x1/5+5x4/15+6x1/3=70/15=14/3
E(X?*)=3x/p,=(2)° x1/15+(3) x2/15+(4)’ x1/5+(5)* x4/15+(6)* x1/3

=4/15+18/15+16/5+100/15+36/3=350/15=70/3
var(X)=E(X*)-{E(X)y

=70/3—(14/3)2 =70/3-196/9=14/9.

Example 30. A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19
and 20 years. One student in such a manner that each has the same chance of being chosen and the age X of
the selected student is recorded. What is the proabability distribution of the random variable X? Find mean,

variance and standard deviation of X.
Solution : X can take values 14, 15, 16, 17,18, 19, 20 and 21

. P(X =14)=2/15, P(X=15)=1/15, P(X=16)=2/15, P(X =17)=3/15,
P(X =18)=1/15, P(X =19)=2/15, P(X =20)=3/15, P(X =21)=1/15
The probability distribution of X -
X : 14 15 16 17 18 19 20 21
P(X) : 2/15 1/15 2/15 3/15 1/15 2/15 3/15 1/15
Mean of X :E(X):Zx[pi

=14x2/154+15x1/15+16x2/154+17x3/15+18x1/15+19%x2/154+20x3/15+21x1/15
=263/15=17"53

:E(X2)=in2pi
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=(14)’ x(2/15)+(15)* x(1/15) +(16)* x (2/15) +(17)* x(3/15) +(18)* x (1/15) +(19)* x (2/15) + (20)* x(3/15) +(21)* x (1/15)

10.
11.

12.

392 225 512 867 324 722 1200 441 4683
= - - - - - - - =
15 15 15 15 15 15 15 15 15

var(X)=E(X*)—(E(X )y’

4683 (263 70245-69169 1076
15 15 225 225

1076
jation =./—— =2-186
Standard Deviation 5

Exercise 16.4

State which of the following are not the probability distribution of a random variable. Give reasons for
your answer.

@ X 0 1 2 @m X =: 0 1 2
P(X) : 04 04 02 P(X) : 06 0.1 02

P(X) : 0.1 05 02 -0l 03

Find the probability distribution of number of heads in two tosses of a coin.

Four rotten oranges by mistake are mixed with 16 good oranges. Two oranges are drawn and found to
be rotten, find the probability distribution.

An urn contains 4 white and 3 red balls. Three balls are drawn at random and found to be red, find the
probability distribution.

From a lot of 10 object which includes 6 defective, a sample of 4 objects is drawn at random. If the
random variable of defective objects is denoted as X, then find-

(i) Probability distribution of X (i) P(X <1) (i) P(X <1)

(iv) P(0< X <2).

A die is rolled so that getting an even number is twice as likely to occur odd number. If a die is rolled
twice then considering the random variable X as the square of the number , find the probability distribution.
An urn contains 4 white and 6 red balls. Four balls are drawn at random, find the probability distribution
of number of white balls.

Find the probability distribution of getting a doublet in rolling two dice three times.

A pair of dice is rolled. Let X, the sum of the numbers on the dice. Find the mean of X.

Find the variance of the number obtained on a throw of an unbiased die.

In a meeting, 70% of the members favour and 30% oppose a certain proposal. A member is selected at
random and we take X = 0 if he opposed, and X = 1 if he is in favour. Find E(X) and Var (X).

Two cards are drawn simultaneously (or successively without replacement) from a well shuffled pack of
52 cards. Find the mean, variance and standard deviation of the number of kings.
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16.13 Bernoulli Trials

Each time we toss a coin or roll a die or perform any other experiments, we call it a trial. If a coin is
tossed, say, 4 times, the number of trials is 4, each having exactly two outcomes, namely, success or faliure.
The outcome of any trial is independent of the outcome of any other trial. In each of such trials, the probability
of success or failure remains constant. Such independent trials which have only two outcomes usually referred
as 'success' or 'failure' are called Bernoulli trials
() There should be a finite number of trials.

(i) The trials should be independent.
(i) Each trial has exactly two outcomes : success or failure.
(iv)  The probability of success remains the same in each trial.

For example, throwing a die 50 times is a case of 50 Bernoulli trials, in which each trial results is success
(say an even number) or failure (an odd number) and the probability of success (p) is same for all 50 throws.
Obviously, the successive throws of the die are independent experiments.

16.14 Binomial Distribution

Let an experiments is repeated n times. Therefore it is an experiments of n-Bernoulli trials where every
experiments is independent and let S and F denote respectively success and failure in each trial.

Let the probability of getting a success in an experiments is (p) and failure be (g =1- p)]
let in n- Bernoulli's trials experiment, the probability for r successes and (n - r) failure
P(X =r)=P(rsuccess).P [(n —r) failure]
=P(SSS...S FFF..F )
H_J %/_J
times (M=1)i 00
=P(S)P(S)P(S)...P(S) P(F)P(F)P(F)..P(F)
=ppp----P 4999--49
P(X — r) — prqn—r
This result shows r success and (n — r) failure in an experiments but in n experiments r success can
be found through "c_ procedures and probabilities of every procedure remains p"g" ™"
Thus Probability of r success in n-Bernoulli's experiments is
P(X=r)="¢,p’q""; r=012..,n and g=1-p

The distribution of number of successes X in n-Bernouli's experiments is given by-

X 0 1 2 r n

r _n-—r n __n-—n

P(X) n Oqun—O _n an nclplqn—l nczp2qn—2 ncrp q ncnp q :ncnpn

The above probability distribution is known as binomial distribution with parameters n and p, because
for given values of n and p, we can find the complete probability distribution.
A binomial distribution with n-Bernoulli trial and probability of success in each trial as p, is denote by

B(n,p).

NOTE : S P(x=r)=3"Cpq

r=0 r=o

_n o _n 1 _n-1

= Op q + n lp q +“.+11Cnpnqn—n :(q+p)ll :1.
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Ilustrative Examples
Example 31. A die is thrown 7 times. If 'getting a sum 7' is a success, what is the probability of (i) no success
? (if) 6 successes? (iii) at least 6 successes? (iv) at most 6 successes?
Solution : Let the probability of getting a sum 7 be p then p = 6/36 = 1/6
[ there are six ways of getting a sum 7 on the dice]

(1,6).(2,5).(3.4),(4,3).(5.2).(6.1)
g=1-p=1-1/6=5/6

Let the number of successes be X then
Let the number of successes be X then

P(X=r)="c,(1/6)(5/6)"; r=0,1,2,3,4,56,7

) P (no success) =P(X =0)
REORT
6 6 6

(ii) P (6 successes) =P(X =6)

(iit) P (atleast 6 successes) = P(X > 6)

(iv) P (at most 6 successes) = P(X <

I
T
il
>
v
2

7 7-7 7
ey ()
6)\7 6
Example 32. A die is thrown again and again until three sixes are obtained. Find the probability of obtaining

the third six in the sixth throw of the die.

. . . 1 1
Solution : Let the probability of getting a number 6 is p then p = rE g=1—-—= Bl

6 6
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Required probability = P (getting two 6 in first 5 throws). P (getting 6 in the sixth throw)
1Y (5) 1
—(5C. g% _sc. | = 2 x=
( 2P 4 )(P) 2(6) [6) 6

_10x125 625
60 23328
Example 33. A fair coin is tossed 5 times. Find the probability of getting atleast 3 Heads.
Solution : Let the probability be p then p=1/2, g=1/2 Let X denote getting a number 5 then n = 5

and p =1/2such that
X 1 5-r 1 r S 1 5
P(X=r)="C|5| | 7] ="C|7]: where r=0,1,2,3,4,5

Required probability = P (atleast 3 Heads)
=P(X >3)

=P(X =3)+(X =4)+(Xx =5)

1Y 1Y 1y
=°C,|=| +°C,| = | +°C,| =
[3) el3) vel3)

s S S 1)’ (10+5+1 1
=(°c,+7°¢C,+ CS)(EJ —[—32 =3

Example 34. A die is rolled 6 times. If getting an even number is a success than find the following probabilities

(1) exactly 5 successes (i) atleast 5 successes (iii) almost 5 successes
Solution : Let the probability be p then p=3/6=1/2 and g=1-p=1-1/2=1/2
and let n=6 and p=1/2 then -

1 6-r 1 r 1 6
p(xzr)=6cr(§j (_j :6Cr(_j + where r=0,1,2,3,4,5,6

6
1
@ P (exactly 5 successes) =P (X =5)="C; (EJ -

(ii) P (atleast 5 successes) =P(X 25)=P(X =5)+P(X =6)
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(i) P (atmost 5 successes) = P(X < 5)

=P(X=0)+P(X =1)+P(X =2)+P(X =3)+P(X =4)+P(X =5)

=1-P(X >5)

=1-P(X =6)

6
ZI_GCG(lJ :l_izﬁ'
2 64 64

Example 35. The probability of a shooter hitting a target is 1/4 How many minimum number of times must he/
she fire so that the probability of hitting the target at least once is more than 2/3 ?
Solution : Let a person hit the target n times

as per the question p=1/4 and g=1-p=1-1/4=3/4then

) 1 r 3 n—-r
P(er)z Cl—1|— swhere r=0,1,2,....n
4)\ 4
Given P ( hitting the target atleast once ) >2/3
P(X>1)>2/3
=N 1-P(X =0)>2/3
1 0 3 n—-0 2
1-"C,|=||=| >=
- @ @ 3
NE:
= 4) "3
3
= 4) 3

1 2
- n=4,5,6... (EJ >l,(§j
1) "3\a

1 (3}3 1 (3}“ 1 (3}5 1
>—, | =| >=but|—| <—,| = | <—,...
3 \4 3 4 3 \4 3
The person should hit the target atleast 4 times.

Example 36. A man takes a step forward with probability 0.4 and backwards with probability 0.6. Find the
probability that at the end of eleven steps he is just one step away from the starting point.

Solution : Let p denote the probability that the man takes a step forward. Then p = 0.4,
g=1-p=1-04=0.6
Let X denote the number of steps taken in the forward direction. Since the steps are independent of each

other, therefore X is a binomial variate with parameters n =11and p = 0.4 such that

11-r

P(X =r)="C(04) (0.6) ":r=0,1,2,...,11

Since the man is one step away from the initial point, he is either one step forward or one step backward
from the initial point at the end of eleven steps. If he is one step forward, then he must have taken six steps forward
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and five steps backward and if he is one step backward, then he must have taken five steps forward and six steps
backward. Thus, either X =6 or X =5

required probability = P[(X =5) or (X =6)]

—  required probability = P(X =5)+P(X =6) (both the event are mutually exclusive)

11-5 11-6

—  required probability — =''c, (0'4)5 (06) " +"¢, (0'4)6 (06)

—  required probability  =''c, (0'4)5 (0'6)6 +'¢, (0'4)6 (0'6)5 = 462(0'24)5.

Exercise 16.5
1. If afair coin is tossed 10 times, find the probability of
(i) exactly six heads (i) at least six heads  (ii7) at most six heads
2. An urn contains 5 white, 7 red and 8 black balls. If four balls are drawn with replacement then what is

the probability that
(7) all balls are white (if) only three balls are white
(717) none of the balls is white (iv) alleast three balls are white

3. Inahurdle race, a player has to cross 10 hurdless. The probability that he will clear each hurdle is 5/ 6.
What is the probability that he will knock down fewer that 2 hurdle.

4.  Five dice are thrown at once. If getting an even number is a success then find the probability of three
successes.

5. Ten eggs are drawn successively with replacement form a lot conatining 10% defective eggs. Find the
probability that there is at least one defective egg.

6. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is 1 / 100.
What is the probability that he will win a prize.

(i) at least once (i1) exactly once (iii) at least twice?

7.  The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the
probability that out of 5 such bulbs
(1) none (i1) not more than one  (iii) more than one (iv) at least one
will fuse after 150 days of use.

8. In a multiple choice examination with three possible answers for each of the five questions, what is the
probability that a candidate would get four or more correct answers just by guessing?

9.  In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to
determine his answer to each question. If the coin falls heads, he answers 'true’; if it falls tails, he answers
'false'. Find the probability that he answers at least 12 questions correctly.

10. A bag consists of 10 balls each marked with one of the digits O to 9. If four balls are drawn successively
with replacement from the bag, what is the probability that none is marked with the digit 0?7

11.  Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards,. What is the
probability that
(1) all the five cards are spades ? (i1) only 3 cards are spades ?

(i) none is a spade ?

12.  Suppose X has a binomial B (6, 1/ 2) Show that X = 3 is the most likely outcome.

13. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two
successes.
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Miscellaneous Examples

Example 37. A and B throw two dice alternatively. If A throws 6 before B throws 7 then A wins and if B

throws 7 before A throws 6 then B wins. If A starts playing then find the probability that A wins.
Solution : We can get 6 in five ways

{(L5) (2,4) (3,3) (4.2) (5.1)} =5/36
and  Probability of not getting 6=1-5/36=31/36
similarly we can get 7 in six different ways
{(16) (2,5) (3.4) (4.3) (5.2)(6,1)}
probability of getting 7=6/36=1/6

and  probability of not getting 7=1-1/6=5/6
Let two events A and B are defined such that

A 'getting 6 in one throw'

B 'getting 7 in one throw'

then P(A)Zi, P(Z)_31

36 36
1 — 5
A AW AL BL AW AL BL ALBL AW
A B, A, B, A B, A B, A B AB,

where A, and A are of winning and losing of events A, Similarly B, and B, are winning are losing
of events B

If A starts playing then the probability of winning A
P(A,)+P(ABA,)+(ABABA,)+..
= P(A)+P(A)P(B)P(A)+..

5 31 5 5
=+ xIx—+..

36 36 6 36

5 (31 5)
=—| 14| —=x— [+...
36{ 36 6

5 1

_ 92 _ a
_36{ (31 sﬂ (5. =1
-] —x=
36 6

_ 5 36x6 30
36216-155 61
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Example 38. If each element of a second order determinant is either zero or one, what is the probability that the
value of the determinant is positive? (Assuming that the individual entries of the determinant are chosen
independently, each value being assumed with probability 1/2).

a, a
Solution : Let the given determinantbe A = e

b

a4y Ay
where a; =0 or 1; 1i,j=1,2
It is clear that A<O0 if a,=0 or a,, =0 neither g, =0 nor a,, =0 = a,=1=a,, when

a,=a, =1then A=0Q if a,=a, =1s0 a,#1, a, #1 following are three posibility of values of A .

a,=a,=lLa,=1a,=0
a,=a,=1a,=0,a,=1
a,=a,=1a,=0,a, =0
Retired probability = P(a,, =a, =1,a, =1,a,, =0)+P(a, =a,, =1,a,=0,a, =1)
+P(a11 =a,,=1,a,=0,a,, :O)
1 1. 1.1 1 1 1 1 1 111
:5x5x5x5+5x5x5x5+5x5x5x5
1 1 1 3

=—+—+—=—.
16 16 16 16
Example 39. Find the mean of binomial distribution B(4, 1/3).
Solution : Let X be a random variable whose probability distribution is B(4, 1/3)

n=4,p=1/3,qg=1-p=1-1/3=2/3

2 4-x 1 X
P(X:X):4CX(§J (EJ ;X:O,1,2,3,4

thus the probability distribution is

here

and

0

2

2
3

4@(_

J

1

3

j

ZEfe

2

3

J G

_16 3 2 8 1
81 81 81 81 81
Mean u:E(X):inpi
16 32 24 8 1

=0x—+1x—+

81

2Xx—+3x—+4x—
81

81 81

32+448+24+4 108 4

81
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10.

Miscellaneous Exercise 16
Two events A and B are mutually independent if -

(A) P(A)=P(B) (B) P(A)+P(B)=1

(C) P(ZE) = [1 - P(A)] [1 —P (B)] (D) A and B are mutually exclusive

What is the probability of getting even prime number on both the dice if pair of dice is rolled together ?
(A)1/3 B)0 (C) 1736 D) 1/12

If A and B ae events so that A B and P(B) # (0 , then which of the following statement is true ?

(A) P(%j <P(A) (B) P(%j >P(A) ©) P(%} = P@ (D) None of these

(4)
Two cards are drawn from the well shuffled pack of 52 cards Let X denote the number of aces, then
find X -
(A)5/13 B)1/13 (C) 37/ 221 (D)2/13
Let X takes the value 0, 1, 2, 3. The mean of X is 1.3. If P(X = 3) = 2P(X = 1) and P(X = 2) =03

then find P(X =0).
(A)0.2 (B)0.4 (©)0.3 (D) 0.1
The probability of a girl being a racer is 4 / 5. Find the probability of 4 girls being a racer out of 5 girls.

4 5 14 X 4 4
wEHE el eeldE] oo

A box contains 100 objects out of which 10 are defective. The probability of the given 5 objects , find
the probability that none of them are defective-

5 9 (&)
A3 B) 10 © 10 AT
A couple has two children, find the probability -
()  that both are males if it is known that the elder one is a male
(i)  that both children are female, if it is known that the elder child is a female
(iii)  that both children are males, if it is known that at least one of the children is male
Two integers are chosen form the numbers 1 to 11. Find the probability that both the numbers are odd
if it is known that the sum of both is an even number.
An electronic assembly consists of two sub system, say, A and B. Form previous testing procedures, the
following probabilities are assumed to be known :
P (Afails) =0.2
P (B fails alone) = 0.15
P (A and B fail) =0.15
Evaluate the following probabilities

()  P(Afails | B has failed)
() P(A fails alone)
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Let A and B be two independent events. The probability that both occur together is 1 / 8 and probability
that both do not occur is 3 / 8. Determine P(A) and P(B).

Anil speaks truth in 60 ¢, of the cases and Anand speaks truth in 90 ¢, of the cases. Find the probability
that both of them contradicts on a statement.

Three people A, B and C toss a coin one by one. A person wins if he gets Heads first. Assuming that the
game continues , if A starts the game, find the probability that A wins.

The probability of a person remains alive for the next 25 years is 4 / 5 and the probability that his wife
remain alive for the same 25 yeas is 3 / 4, Find the probabilities that -

(1)  both are alive for the 25 years
(@) atleast one of them remain alive for the next 25 years.

(@ii)  Only wife remain alive for the next 25 years.

In a group of children there are 3 girls and 1 boy, 2 girls and 2 boys and 1 girl and 3 boys. One child
is selected at random form each group. Find the probability that the out of the three children selected
there is 1 girl and 2 boys.

Bag 1 contains 3 black and 4 white balls and Bag II contains 4 black and 3 white balls. A die is thrown.
If it shows 1 or 3 then a ball is drawn form Bag I and if some other number appear a ball is drawn from
Bag II. Find the probability the drawn ball is black.

A person has under taken a construction job. The probabilities are 0.65 that there will be strike , 0.80
that the construction job will be completed on time if there is no strike and 0.32 that the construction job
will be completed on time.

Bag I contains 8 white and 4 black balls and Bag II contains 5 white and 4 black balls. One ball is
transferred from Bag I to Bag II and then a ball is drawn from Bag II. Find the probability that the drawn
ball is white in colour.

On a multiple choice examination with four choices a student either guesses or knowns or cheat the answer.
Find the probability of guessing or cheating the answer if it is known that he answers the question correctly.
A letter comes form the two cities TATANAGAR or CALCUTTA. Only alphabets TA is visible on the
envelope. Find the probability that the letter comes from the city.

(i) CALCUTTA
(if) TATANAGAR,

A manufacturer has three machine operators A, B and C. The first operator A produces 1 %, whereas
the other two opeartors B and C produce 5% and 7% defective items resp. A is on the job for 50 %
of the time, B is on the job for 30 % of the time and C is on the job for 20 % of the time. A defective
item is produced, what is the probability that it was produced by A ?

A random variable X has a probability distribution P (X) of the following form where K is some number:

k if x=0

2k if x=1
P(X=x)= ]

3k ifx=2

0, otherwise

()  Find the value of K
(i) FindP(X <2),P(X <2) and P(X 22)

A random variable takes all negative integral values and the value of X is 'r' whose probability is directly
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24.

25.

26.

proportional to @’ where 0 < ¢ <1 then find P(X = 0)
Let X be the random variable with values x,, x,, x;, x, such that
2P(X =x)=3P(X =x,)=P(X =x,)=5P(X =x,)

Find the probability distribution of X
A fair coin is tossed to get one head or five tails. if X denotes the number of tosses then find the mean
of X.

Three cards are drawn from the well shuffled deck of 52 cards. Find the probability distribution of number
of red cards drawn. Also find the mean of the distribution.

[ IMPORTANT POINTS | ~

If any random experiment if A and B are two events related to sample space then the conditional probability
of event A, given the occuence of the event B is given by

P(%} :%; P(B)=0.

similarly P(gj =%; P(A)=0

OO0

If S is a sample space and A and B are two events then event F is such that P(F') # 0 then

PAuB :Pé+P£—PAmB
F F F F
Multiplication Rule of Probability

P(AmB):P(A)P(gj; P(A)=0 k P(AmB):P(B)P(—J; P(B)#0

If A and B are independent, then
A

P(Ej =P(A),P(B)#0; P(XJ =P(B),P(A)=0
and P(ANB)=P(A)P(B)

Therorem of total probability

Let A, A,,A,,....,A be n' partition of a sample spaces let A be any event associated with S, i.e. then
P(A)#0;j=12..n

E E E : E

P(E)= P(AI)P[XJ+P(A2)P(XJ+...+P(AH)P(A—J = ;P(Aj)P{XJ

J

J
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7. Baye's Theorem -

8. Arandom variable is a real valued function whose domain is the sample space of a random experiment.
9. The probability distribution of a random variable X is the system of numbers

X=x: X X5 X.X

n

- where p; >0, , p,=1 i=12,..,n
P(x) i b 1 D, where ;

10. Let X be a random variable whose possible values x,, x,,...,x, occur with probabilities

Dy» Dys---» P, Tespectively. The mean of X, denoted by u is the number z X, P;

i=1
(@) The mean of a random variable X is also called the expectation of X, denoted by E (X).
(b)  Varience of X

n

=var(X)=0=E(X-u) =D (x-u) p,

© var(X)=E(X*)-{E(X))
(d) Standard Deviation

o, =+far(¥) =35 -)"

11. Trials of a random experiments are called Bernoulli trials, if they satisfy the following conditions :
(1  There should be a finite number of trials.
@)  The trials should be independent.
@) Each trial has exactly two outcomes : success or failure.
(iv) The probability of success remains the same in each trial.
12. Probability of r successes in binomial distribution is B (n, p)

p(X = r):”Crp’q””; r=0,1,2,....,n where g =1-p.

ANSWERS

Exercise 16.1

1.4/9 2.16/25 3.11 /26 4. P(ﬁJzz, P(Ej:l 5. (i) 0.32; (ii) 0.64 ; (iii) 0.98
B) 3 \a) 3
6.1/3 7. (i) P(éle (ii) P(ﬁj:o 3. P(éj:l
B B B

o (AY 1 (BY 1 . p é}zl P(EJ:Z, (AUBJZE (A“BJ:l
9-(1)”(;}—5’1’(;}—5’(“) (c 2\ a) T3 P e = Pl =g



10. 1/15 11.4/7 12. 0.1 13.27/5 14.2/9

Exercise 16.2
1.3/8 2.1/3 3.(1)0.12; (1) 0.58 ; (iii) 0.3; (iv) 0.4 4. (1) 0.18 ; (i) 0.12 ; (dii) 0.72 ; (iv) 0.28
5.1/969 6.7/8 7.25/102 8.1/3 9. W) 1/5 @) 1/3;@Gi)1/2
10. 0.97 11.3/4 12.1/7 13.)2/3;@G)1/2

Exercise 16.3
1.35/68 2.1/2 3.16/ 31 4.2/3 5.4/9 6.22 /133 7.9/13
8.1/52 9.12/13 10. 20/ 21 11.2/9 12. 8/ 11 13.11/50 14.2/9

Exercise 16.4
1. () 2. X=x : 0 1 2 3. X=x : 0 1 2
P(x)y : 1/4 1/2 1/4 P(x) : 12/19 32/95 3/95

4. X=x : O 1 2 3
P(x) : 4/35 18/35 12/35 1/35

50 X=x: 0 1 2 3 (i) 2/3 (iii) 1/6 (iv) 1/2
P(x) : 1/6 1/2 3/10 1/30
6. X=x : 0 1 2 7. X=x : 0 1 2 3 4
P(x) @ 419 419 119 P(x) :1/14 8/21 6/14 4/35 1/210
8. X=x :0 1 2 3 9.7 10.35/12  11.7/10, 21/ 100
125 75 15 1
P(x) ‘216 216 216 216
34 6800

B SN X 037
221 (221)

Exercise 16.5
Y Y (3
1. (i) 105/ 512 ; (ii) 193 / 512 ; (iii) 53 / 64 2.(1)&} (11)3&} (m)(ﬂ (iv) 27

5" 13 9" 99 Y . 1( 991" 149( 99 "
10" (i) (100) (i) 5 (100) (i) 100(100)

3 006 " 16
5 4 4 5
A(19Y . .6(19 . 6(19 . 19 A
7. (i) [z—oj (11)5(2—()) (111)1—5(2—()} (1V)1—[2—0j 8. 243
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o PCa+ " Cyt.t"C, o[> ) - 45 243
' 2% 110 - Tozz * (D 5725 () 1677
13 25
216
Miscellaneous Exercise - 16
1. (C) 2. (C) 3.(B) 4. (D) 5.(B) 6. (C) 7. (D)
8. () 1/2; (i) 1/2; i) 1/3 9.3/5 10. (i) 1/2; (ii) 0.05
11. P(A):l, P(B):l k P(A)zl, P(B):l 12. 0.42 13.4/7,2/7,117
2 4 4 2
14. (i 3oan 2 i = 15 13 16 1 17. 0.488 18 8 19 24
(1) 35 () 7 @) 5 32 21 e " 150 " 29
4 7 5 1 1 1
Ny — 2 D — (i) P(X <2)=—, P(X<2)=1, P(X >2)=—
20. () 773 (i) 7 2L 57 2200 ¢ i) P(X <2)=—. P(X<2)=1 P(X22)=7
23. (1-«a) 24. X 1 oxox XX 25. 1.9
P - 15 10 30 6

61 61 61 61
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